Metamorphic P-T Path of High-Pressure Mafic Granulite (Retrograded Eclogite) from Dinggye of Tibet and Its Tectonic Implication
-
摘要: 定结(Dinggye)位于藏南高喜马拉雅结晶岩系的中部,研究该区域麻粒岩的变质P-T轨迹对于理解青藏高原的碰撞和抬升过程至关重要.通过对该地区的高压基性麻粒岩(退变榴辉岩)的岩相学观察,确定了4期矿物组合:(1)峰期榴辉岩相矿物组合(M1)由石榴子石(核部)+绿辉石(假象)+石英+金红石组成;(2)高压麻粒岩相矿物组合(M2)主要由石榴子石(幔部)+单斜辉石+斜长石+钛铁矿+角闪石+黑云母组成;(3)中压麻粒岩相矿物组合(M3)由石榴子石(边缘)+斜方辉石+斜长石+钛铁矿+黑云母组成;(4)角闪岩相矿物组合(M4)主要由角闪石+斜长石组成.在NCFMASHTO体系下,用THERMOCALC软件对该高压基性麻粒岩进行了热力学模拟.结合传统温压计和平均温压计计算结果,求得M2、M3、M4阶段的温压条件分别为786~826 ℃、0.78~0.96 GPa;798~850 ℃、0.71~0.75 GPa;610~666 ℃、0.51~0.60 GPa,这指示了一条以峰期后近等温降压(ITD)为特征的顺时针P-T轨迹.结合已有地质资料,表明定结高压基性麻粒岩(退变榴辉岩)是喜马拉雅碰撞造山的产物,峰期后经历了近等温降压的构造抬升过程.Abstract: Dinggye is located in the central part of the Greater Himalayan crystalline complex (GHC) in southern Tibet. It is essential to investigate the metamorphic P-T path of granulite in this area to better understand the collision and uplifting process of the Tibetan plateau. The petrological study of the high-pressure mafic granulite (retrograded eclogite) from the region indicates four stages:(1) peak eclogite facies mineral assemblage (M1) consists of garnet (core)+omphacite (psedomorph)+quartz+rutile; (2) high-pressure granulite facies mineral assemblage (M2) comprises garnet (mantle)+clinopyroxene+plagioclase+ilmenite+amphibole+biotite; (3) medium-pressure granulite facies assemblage (M3) is composed of garnet (rim)+orthopyroxene+plagioclase+biotite; (4) amphibolite facies mineral assemblage (M4) consists of amphibole+plagioclase. Using the THERMOCALC program, the thermodynamic modeling in the NCFMASHTO system has been undertaken for the high-pressure mafic granulite. Combined with the conventional thermobarometers and the average P-T estimates, the P-T conditions of the different metamorphic stages are estimated to be 786-826℃, 0.78-0.96 GPa (M2); 798-850℃, 0.71-0.75 GPa (M3); and 610-666℃, 0.51-0.60 GPa (M4), respectively, indicating a post-peak clockwise P-T path characterized by nearly isothermal decompression. Combined with geological data available, we propose that the high-pressure mafic granulite (retrograded eclogite) of the Dinggye formed during the Himalayan collisional orogeny, and underwent a post-peak tectonic uplift process of nearly isothermal decompression.
-
Key words:
- high-pressure mafic granulite /
- P-T path /
- collisional orogenesis /
- Greater Himalaya /
- Dinggye /
- petrology
-
图 1 喜马拉雅造山带(a)、喜马拉雅中部(b)以及定结区域(c)地质简图
图a据Xu et al.(2013)修改;图b据Grujic et al.(2011)修改,并标示出了前人发现的麻粒岩化榴辉岩的位置和变质年龄(Kellet et al., 2014;刘树文等,2005; Corrie et al., 2010; Wang et al., 2017);图c据刘树文等(2005)修改.STDS.藏南拆离断层系;MCT.主中央逆冲断层;MBT.主边界逆冲断层;ADM.Ama Drime地块;XDNFS.申扎-定结正断层体系;ADD.Ama Drime拆离断层;NRD.Nyönno Ri拆离断层
Fig. 1. Geological sketch of the Himalayan orogen (a), central Himalaya (b) and Dinggye area (c)
图 2 定结高压基性麻粒岩的显微照片(a~d,单偏光)以及背散射照片(e~h)
a.基性麻粒岩中的石榴子石变斑晶、单斜辉石、斜长石、斜方辉石和钛铁矿等,L-13-64;b.石榴子石变斑晶中的金红石包裹体,L-13-60;c.绿辉石分解后形成的单斜辉石与斜长石的交生结构,L-13-60;d.峰期黑云母与角闪石共生,L-13-60;e.单斜辉石与斜长石的交生结构,L-13-60;f.石榴子石变斑晶边部的斜方辉石与斜长石的蠕虫状后成合晶,L-13-60;g.钛铁矿与斜方辉石和斜长石组成的后成合晶,L-13-60;h.斜方辉石与斜长石的蠕虫状后成合晶以及角闪石和斜长石的后成合晶,L-13-60.矿物缩写:g.石榴子石;opx.斜方辉石;cpx.单斜辉石;pl.斜长石;hb.角闪石;bi.黑云母;ilm.钛铁矿;ru.金红石;q.石英
Fig. 2. Photomicrographs and back scattered images (BSI) of high-pressure mafic granulites in Dinggye
图 3 石榴子石变斑晶Grs-Alm+Sps-Pyr图解
A、B、C分别为科尔曼3类榴辉岩中石榴子石成分区;D为麻粒岩相石榴子石分布区,据Coleman et al.(1965)
Fig. 3. Grs-Alm+Sps-Pyr diagram for garnet porphyroblast
图 5 基性麻粒岩中角闪石分类图解
Fig. 5. Classification diagram of amphiboles in the mafic granulite
图 7 西藏定结高压基性麻粒岩(退变榴辉岩)的P-T轨迹
AM.角闪岩相;Amp-Ec.角闪-榴辉岩相;EA.绿帘角闪岩相;EC.榴辉岩相;Ep-Ec.绿帘-榴辉岩相;GR.麻粒岩相;GS.绿片岩相.相边界据Zhang et al.(2010)修改
Fig. 7. P-T paths of the Dinggye high-pressure mafic granulites (retrograded eclogite)
表 1 定结高压基性麻粒岩中代表性矿物电子探针数据(%)
Table 1. The representative mineral microprobe data (%) of the high-pressure mafic granulite in Dinggye
榴辉岩相矿物组合(M1) 矿物 g(c) g(c) g(c) bi1 bi1 bi1 bi1 bi1 hb1 hb1 hb1 hb1 hb1 hb1 SiO2 39.13 38.80 38.24 37.65 38.07 37.25 37.76 37.84 42.03 42.85 43.87 43.75 44.56 42.10 TiO2 0.05 0.06 0.02 4.79 4.81 4.70 4.86 4.07 0.69 1.61 1.13 0.92 0.68 0.72 Al2O3 21.97 21.88 21.89 14.68 14.47 14.51 14.78 14.64 13.07 12.65 12.23 13.16 11.51 13.67 Cr2O3 0.01 0.01 0.04 0.05 0.10 0.08 0.04 0.04 0.00 0.02 0.03 0.01 0.01 0.03 Fe2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FeO 23.04 24.40 24.18 18.82 18.62 18.14 20.61 19.23 16.44 17.56 17.59 17.23 16.56 17.89 MnO 0.57 1.03 0.61 0.04 0.05 0.05 0.08 0.02 0.06 0.14 0.12 0.13 0.08 0.09 MgO 4.83 3.81 3.87 11.24 11.44 11.00 10.41 12.29 10.97 9.17 9.96 9.77 10.87 9.78 CaO 10.75 10.44 11.38 0.00 0.00 0.00 0.02 0.00 11.33 11.16 11.17 11.17 11.89 11.69 Na2O 0.02 0.04 0.03 0.12 0.15 0.24 0.20 0.18 1.13 1.35 1.26 1.21 1.02 1.44 K2O 0.00 0.00 0.00 9.29 9.14 8.78 8.85 9.50 0.92 1.33 1.17 1.22 0.75 1.20 Cl 0.01 0.00 0.01 0.15 0.16 0.16 0.16 0.10 0.12 0.16 0.14 0.14 0.08 0.20 F 0.00 0.00 0.00 0.19 0.21 0.23 0.10 0.00 0.05 0.07 0.09 0.09 0.10 0.10 Total 100.38 100.47 100.27 97.02 97.22 95.14 97.87 97.91 96.81 98.07 98.76 98.80 98.11 98.92 Si 3.020 3.012 2.974 2.815 2.835 2.830 2.813 2.805 6.245 6.412 6.487 6.449 6.575 6.247 Ti 0.000 0.004 0.001 0.269 0.269 0.269 0.272 0.227 0.078 0.181 0.125 0.102 0.076 0.081 Al 1.997 2.002 2.007 1.294 1.270 1.300 1.298 1.280 2.289 2.232 2.132 2.287 2.003 2.392 Cr 0.001 0.001 0.002 0.003 0.006 0.005 0.002 0.002 0.000 0.003 0.003 0.002 0.001 0.004 Fe3+ 0.000 0.000 0.043 0.000 0.000 0.000 0.000 0.000 0.773 0.224 0.332 0.320 0.389 0.458 Fe2+ 1.485 1.584 1.530 1.177 1.160 1.153 1.284 1.192 1.270 1.949 1.807 1.769 1.611 1.711 Mn 0.037 0.068 0.041 0.003 0.003 0.003 0.005 0.001 0.007 0.018 0.015 0.017 0.010 0.011 Mg 0.555 0.440 0.449 1.253 1.270 1.246 1.155 1.358 2.429 2.045 2.194 2.146 2.391 2.162 Ca 0.888 0.868 0.948 0.000 0.000 0.000 0.001 0.000 1.804 1.790 1.769 1.764 1.880 1.859 Na 0.003 0.007 0.004 0.018 0.021 0.035 0.029 0.026 0.327 0.392 0.360 0.347 0.293 0.415 K 0.003 0.000 0.000 0.886 0.868 0.851 0.841 0.898 0.174 0.255 0.220 0.229 0.141 0.227 Total 7.989 7.986 7.999 7.718 7.702 7.692 7.700 7.789 15.396 15.501 15.444 15.432 15.370 15.567 高压麻粒岩相矿物组合(M2) 矿物 g(m) g(m) g(m) cpx2 cpx2 cpx2 cpx2 cpx2 pl2 pl2 pl2 pl2 pl2 bi2 bi2 bi2 SiO2 38.69 38.61 38.41 51.44 51.79 51.45 52.01 51.53 51.96 52.37 50.11 52.38 50.43 36.19 37.53 37.92 TiO2 0.10 0.07 0.15 0.06 0.01 0.05 0.08 0.02 0.01 0.02 0.02 0.07 0.06 4.75 5.07 4.88 Al2O3 21.80 21.73 21.61 0.81 0.39 0.90 1.34 1.60 29.23 29.75 23.94 31.60 31.94 14.86 14.18 14.25 Cr2O3 0.00 0.05 0.00 0.04 0.04 0.02 0.00 0.04 0.00 0.02 0.00 0.00 0.00 0.06 0.03 0.09 Fe2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FeO 24.05 24.12 23.28 11.83 11.60 11.06 8.61 10.68 0.53 0.29 2.44 0.29 0.27 19.93 18.80 19.29 MnO 0.86 0.98 0.64 0.27 0.18 0.16 0.11 0.23 0.00 0.00 0.06 0.00 0.00 0.05 0.09 0.09 MgO 3.78 3.77 4.04 12.28 12.21 12.74 13.67 12.39 0.42 0.00 2.81 0.00 0.00 11.26 11.01 11.08 CaO 10.52 10.35 11.76 22.77 22.92 22.88 23.32 23.30 13.38 12.89 17.24 12.88 13.67 0.23 0.02 0.04 Na2O 0.01 0.11 0.03 0.14 0.19 0.17 0.38 0.14 4.36 4.50 2.55 4.36 3.54 0.10 0.10 0.13 K2O 0.02 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.06 0.10 0.03 0.04 0.02 9.52 9.22 9.34 Cl 0.01 0.04 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.01 0.01 0.00 0.13 0.15 0.15 F 0.03 0.06 0.05 0.00 0.00 0.00 0.03 0.00 0.09 0.03 0.00 0.00 0.00 0.05 0.15 0.19 Total 99.87 99.90 99.98 99.64 99.35 99.43 99.56 99.93 100.05 99.99 99.21 101.63 99.93 97.13 96.35 97.45 Si 3.018 3.016 2.993 1.949 1.968 1.945 1.944 1.939 2.369 2.380 2.346 2.339 2.294 2.731 2.827 2.831 Ti 0.006 0.004 0.009 0.002 0.000 0.001 0.002 0.000 0.000 0.001 0.001 0.002 0.002 0.270 0.287 0.274 Al 2.005 2.001 1.985 0.036 0.017 0.040 0.059 0.071 1.571 1.594 1.322 1.664 1.713 1.322 1.260 1.255 Cr 0.000 0.003 0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.004 0.002 0.006 Fe3+ 0.000 0.000 0.016 0.071 0.060 0.079 0.077 0.058 0.020 0.011 0.096 0.011 0.010 0.000 0.000 0.000 Fe2+ 1.569 1.575 1.500 0.304 0.308 0.271 0.192 0.278 0.000 0.000 0.000 0.000 0.000 1.258 1.185 1.204 Mn 0.057 0.065 0.042 0.009 0.006 0.005 0.004 0.007 0.000 0.000 0.002 0.000 0.000 0.003 0.006 0.006 Mg 0.439 0.439 0.470 0.694 0.691 0.718 0.761 0.695 0.029 0.000 0.196 0.000 0.000 1.266 1.236 1.233 Ca 0.879 0.866 0.982 0.925 0.933 0.927 0.934 0.940 0.653 0.628 0.865 0.616 0.666 0.019 0.002 0.003 Na 0.002 0.016 0.004 0.010 0.014 0.013 0.028 0.010 0.385 0.396 0.232 0.378 0.312 0.015 0.015 0.019 K 0.002 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.004 0.006 0.002 0.002 0.001 0.917 0.886 0.890 Total 7.977 7.986 8.001 4.001 3.999 4.000 4.001 3.999 5.031 5.017 5.062 5.012 4.998 7.805 7.706 7.721 麻粒岩相矿物组合(M3) 角闪岩相矿物组合(M4) 矿物 g(r) g(r) g(r) bi3 bi3 opx3 opx3 opx3 opx3 pl3 pl3 pl3 pl3 hb4 hb4 pl4 pl4 SiO2 37.88 39.06 38.45 34.81 36.32 50.54 50.75 49.97 49.88 45.08 45.24 45.65 45.29 45.64 45.61 50.43 56.39 TiO2 0.07 0.08 0.01 3.75 5.08 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 1.11 1.16 0.06 0.00 Al2O3 21.69 22.07 21.83 14.97 15.11 0.30 0.36 2.84 3.07 34.35 34.80 33.50 34.64 8.26 9.22 31.94 26.87 Cr2O3 0.00 0.00 0.03 0.09 0.14 0.00 0.04 0.03 0.05 0.03 0.01 0.00 0.00 0.05 0.03 0.00 0.00 Fe2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FeO 25.95 24.30 24.56 22.67 20.69 31.46 31.25 29.51 29.46 0.38 0.43 0.79 0.37 17.27 17.63 0.33 0.37 MnO 0.94 0.74 0.49 0.04 0.03 0.39 0.37 0.32 0.48 0.00 0.06 0.04 0.02 0.06 0.07 0.00 0.03 MgO 4.08 3.96 3.89 11.20 10.22 16.11 16.54 15.11 14.73 0.01 0.01 0.43 0.01 11.22 10.70 0.00 0.04 CaO 8.96 10.41 11.07 0.10 0.09 0.45 0.49 1.43 1.36 18.00 18.67 17.88 18.07 11.78 12.20 13.67 9.33 Na2O 0.02 0.01 0.05 0.23 0.29 0.16 0.00 0.07 0.14 1.18 0.91 1.05 1.06 0.73 0.91 3.54 6.32 K2O 0.00 0.00 0.00 8.26 9.01 0.00 0.01 0.03 0.02 0.01 0.01 0.01 0.03 0.58 0.58 0.02 0.06 Cl 0.00 0.00 0.00 0.11 0.12 0.03 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.07 0.08 0.00 0.00 F 0.00 0.00 0.00 0.06 0.01 0.00 0.00 0.00 0.02 0.00 0.21 0.07 0.00 0.01 0.00 0.00 0.00 Total 99.59 100.63 100.38 96.29 97.11 99.48 99.82 99.31 99.22 99.04 100.38 99.42 99.49 96.78 98.19 99.99 99.41 Si 2.979 3.018 2.989 2.649 2.739 1.975 1.974 1.946 1.945 2.098 2.086 2.118 2.097 6.812 6.744 2.294 2.548 Ti 0.004 0.005 0.001 0.215 0.288 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.124 0.129 0.002 0.000 Al 2.011 2.010 2.000 1.343 1.344 0.014 0.017 0.130 0.141 1.885 1.891 1.833 1.891 1.453 1.607 1.713 1.432 Cr 0.000 0.000 0.002 0.006 0.008 0.000 0.001 0.001 0.002 0.001 0.000 0.000 0.000 0.006 0.003 0.000 0.000 Fe3+ 0.027 0.000 0.026 0.216 0.000 0.047 0.035 0.000 0.000 0.015 0.017 0.030 0.014 0.470 0.345 0.011 0.014 Fe2+ 1.681 1.570 1.571 1.226 1.305 0.981 0.981 0.961 0.961 0.000 0.000 0.000 0.000 1.685 1.836 0.000 0.000 Mn 0.063 0.048 0.032 0.003 0.002 0.013 0.012 0.011 0.016 0.000 0.002 0.002 0.001 0.008 0.009 0.000 0.001 Mg 0.478 0.456 0.450 1.271 1.149 0.938 0.959 0.877 0.856 0.001 0.001 0.030 0.001 2.496 2.359 0.000 0.003 Ca 0.755 0.862 0.922 0.009 0.007 0.019 0.020 0.060 0.057 0.898 0.922 0.889 0.897 1.884 1.933 0.666 0.452 Na 0.003 0.002 0.007 0.034 0.043 0.012 0.000 0.005 0.011 0.106 0.081 0.095 0.095 0.212 0.261 0.312 0.554 K 0.003 0.003 0.000 0.801 0.867 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.002 0.110 0.110 0.001 0.004 Total 8.004 7.974 8.000 7.773 7.752 4.000 4.000 3.992 3.990 5.004 5.000 4.998 4.998 15.260 15.336 4.999 5.008 注:矿物的离子数是利用AX 程序计算的(Holland and Powell, 1998; 2003年升级).g(c).石榴子石核部;g(m).石榴子石幔部;g(r).石榴子石边部. 表 2 利用传统矿物温压计计算的各阶段变质P-T条件
Table 2. The calculated P-T results of different metamorphic stages by conventional mineral thermobarometry
变质阶段 温度计 T(℃) 压力计 P(GPa) M2 T(00R) 650~730 P(91E) 0.78~0.96 M3 T(93L) 798~850 P(93L) 0.71~0.75 M4 T(94H) 610~666 P(07B)
P(95A)0.51~0.60 注:T(00R).g-cpx温度计,Ravna(2000);T(93L).g-opx温度计,Lal(1993);T(94H).hb-pl温度计,Holland and Blundy(1994);P(91E).g-cpx-pl-q压力计, Eckert et al.(1991) ;P(93L).g-opx-pl-q压力计,Lal(1993);P(07B).hb-pl-q压力计,Bhadra and Bhattachary(2007);P(95A).Al-in hb压力计,Anderson and Smith(1995).表 3 全岩地球化学数据
Table 3. Whole-rock compositions (%) of the mafic granulite
Na2O MgO P2O5 Al2O3 SiO2 K2O CaO TiO2 MnO TFe2O3 Total L-13-60 0.71 7.21 0.22 14.48 46.73 1.36 10.20 1.95 0.25 16.61 99.54 L-13-61 0.78 7.04 0.24 14.33 46.70 1.31 10.13 2.02 0.25 16.68 99.35 L-13-64 0.70 7.13 0.22 14.07 46.64 1.38 10.53 1.96 0.28 17.35 99.99 注:数据为摩尔百分含量. -
Anderson, J.L., Smith, D.R., 1995.The Effects of Temperature and F(O2) on the Al-in-Hornblende Barometer.American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-615 Bézos, A., Humler, E., 2005.The Fe3+/∑Fe Ratios of MORB Glasses and Their Implications for Mantle Melting.Geochimica et Cosmochimica Acta, 69(3):711-725. https://doi.org/10.1016/j.gca.2004.07.026 Bhadra, S., Bhattacharya, A., 2007.The Barometer Tremolite+Tschermakite+2 Albite=2 Pargasite+8 Quartz:Constraints from Experimental Data at Unit Silica Activity, with Application to Garnet-Free Natural Assemblages.American Mineralogist, 92(4):491-502. https://doi.org/10.2138/am.2007.2067 Bohlen, S.R., 1987.Pressure-Temperature-Time Paths and a Tectonic Model for the Evolution of Granulites.The Journal of Geology, 95(5):617-632. doi: 10.1086/629159 Chakungal, J., Dostal, J., Grujic, D., et al., 2010.Provenance of the Greater Himalayan Sequence:Evidence from Mafic Granulites and Amphibolites in NW Bhutan.Tectonophysics, 480(1-4):198-212. https://doi.org/10.1016/j.tecto.2009.10.014 Chen, X.Y., Tong, L.X., Zhang, C.L., et al., 2015.Retrograde Garnet Amphibolite from Eclogite of the Zhejiang Longyou Area:New Evidence of the Caledonian Orogenic Event in the Cathaysia Block.Chinese Science Bulletin, 60(13):1207-1217 (in Chinese with English abstract). doi: 10.1360/N972015-00094 Coleman, R.G., Lee, D.E., Beatty, L.B., et al., 1965.Eclogites and Eclogites:Their Differences and Similarities.Geological Society of America Bulletin, 76(5):483-508. https://doi.org/10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2 Corrie, S.L., Kohn, M.J., Vervoort, J.D., 2010.Young Eclogite from the Greater Himalayan Sequence, Arun Valley, Eastern Nepal:P-T-t Path and Tectonic Implications.Earth & Planetary Science Letters, 289(3-4):406-416. https://doi.org/10.1016/j.epsl.2009.11.029 Cottrell, E., Kelley, K.A., 2011.The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle.Earth and Planetary Science Letters, 305(3-4):270-282. https://doi.org/10.1016/j.epsl.2011.03.014 Daczko, N.R., Halpin, J.A., 2009.Evidence for Melt Migration Enhancing Recrystallization of Metastable Assemblages in Mafic Lower Crust, Fiordland, New Zealand.Journal of Metamorphic Geology, 27(2):167-185. https://doi.org/10.1111/j.1525-1314.2009.00811.x Diener, J.F.A., Powell, R., White, R.W., et al., 2007.A New Thermodynamic Model for Clino-and Orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O.Journal of Metamorphic Geology, 25(6):631-656. https://doi.org/10.1111/j.1525-1314.2007.00720.x Ding, L., Zhong, D.L., 1999.Metamorphic Characteristic and Geotectonic Implication of the High-Pressure Granulites from Namjagbarwa, Eastern Tibet.Science in China (Series D), 29(5):385-397 (in Chinese). Eckert, J.O., Newton, R., Kleppa, O., 1991.The H of Reaction and Recalibration of Garnet-Pyroxene-Plagioclase-Quartz Geobarometers in the CMAS System by Solution Calorimetry.American Mineralogist, 76(1-2):148-160. https://pubs.geoscienceworld.org/ammin/article-lookup/76/1-2/148 England, P.C., Thompson, A.B., 1984.Pressure-Temperature-Time Paths of Regional Metamorphism I.Heat Transfer during the Evolution of Regions of Thickened Continental Crust.Journal of Petrology, 25(4):894-928. https://doi.org/10.1093/petrology/25.4.894 Green, E., Holland, T., Powell, R., 2007.An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks.American Mineralogist, 92(7):1181-1189. https://doi.org/10.2138/am.2007.2401 Groppo, C., Lombardo, B., Rolfo, F., et al., 2007.Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range (Eastern Himalayas).Journal of Metamorphic Geology, 25(1):51-75. https://doi.org/10.1111/j.1525-1314.2006.00678.x Grujic, D., Warren, C.J., Wooden, J.L., 2011.Rapid Synconvergent Exhumation of Miocene-Aged Lower Orogenic Crust in the Eastern Himalaya.Lithosphere, 3(5):346-366. https://doi.org/10.1130/L154.1 Guilmette, C., Indares, A., Hébert, R., 2011.High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications.Lithos, 124(1-2):66-81. https://doi.org/10.1016/j.lithos.2010.09.003 Harley, S.L., 1989.The Origins of Granulites:A Metamorphic Perspective.Geological Magazine, 126(3):215-247. https://doi.org/10.1017/s0016756800022330 Hodges, K.V., 2000.Tectonics of the Himalaya and Southern Tibet from Two Perspectives.Geological Society of America Bulletin, 112(3):324-350.https://doi.org/10.1130/0016-7606(2000)112<0324:TOTHAS>2.3.CO;2 doi: 10.1130/0016-7606(2000)112<0324:TOTHAS>2.3.CO;2 Holland, T., Blundy, J., 1994.Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry.Contributions to Mineralogy and Petrology, 116(4):433-447. https://doi.org/10.1007/BF00310910 Holland, T., Powell, R., 2003.Activity-Composition Relations for Phases in Petrological Calculations:An Asymmetric Multicomponent Formulation.Contributions to Mineralogy and Petrology, 145(4):492-501. https://doi.org/10.1007/s00410-003-0464-z Holland, T.J.B., Powell, R., 1998.An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest.Journal of Metamorphic Geology, 16(3):309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x Jessup, M.J., Cottle, J.M., 2010.Progression from South-Directed Extrusion to Orogen-Parallel Extension in the Southern Margin of the Tibetan Plateau, Mount Everest Region, Tibet.The Journal of Geology, 118(5):467-486. https://doi.org/10.1086/655011 Jessup, M.J., Newell, D.L., Cottle, J.M., et al., 2008.Orogen-Parallel Extension and Exhumation Enhanced by Denudation in the Trans-Himalayan Arun River Gorge, Ama Drime Massif, Tibet-Nepal.Geology, 36(7):587-590. https://doi.org/10.1130/G24722A.1 Ji, J.Q., Zhong, D.L., Song, B., et al., 2004.Metamorphism, Geochemistry and U-Pb Zircon SHRIMP Geochronology of the High-Pressure Granulites in the Central Greater Himalayas.Acta Petrologica Sinica, 20(5):1283-1300 (in Chinese with English abstract). Kali, E., Leloup, P.H., Arnaud, N., et al., 2010.Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models.Tectonics, 29(2):TC2014. https://doi.org/10.1029/2009TC002551 Kellet, D.A., Cottle, J.M., Smit, M., 2014.Eocene Deep Crust at Ama Drime, Tibet:Early Evolution of the Himalayan Orogen.Lithosphere, 6(4):220-229. https://doi.org/10.1130/L350.1 Kohn, M.J., 2014.Himalayan Metamorphism and Its Tectonic Implications.Annual Review of Earth and Planetary Sciences, 42(1):381-419. https://doi.org/10.1146/annurev-earth-060313-055005 Lal, R.K., 1993.Internally Consistent Recalibrations of Mineral Equilibria for Geothermobarometry Involving Gar-net-Orthopyroxene-Plagioclase-Quartz Assemblages and Their Application to the South Indian Granulites.Journal of Metamorphic Geology, 11(6):855-866. https://doi.org/10.1111/j.1525-1314.1993.tb00195.x Langille, J.M., Jessup, M.J., Cottle, J.M., et al., 2010.Kinematic Evolution of the Ama Drime Detachment:Insights into Orogen-Parallel Extension and Exhumation of the Ama Drime Massif, Tibet-Nepal.Journal of Structural Geology, 32(7):900-919. https://doi.org/10.1016/j.jsg.2010.04.005 Le Fort, P., 1975.Himalayas:The Collided Range.Present Knowledge of the Continental Arc.American Journal of Science, 275:1-44. http://www.oalib.com/references/7070282 Leake, B.E., Woolley, A.R., Brich, W.D., et al., 2004.Nomenclature of Amphiboles:Additions and Revisions to the International Mineralogical Association's Amphibole Nomenclature.Mineralogical Magazine, 68(1):209-215. https://doi.org/10.1180/0026461046810182 Leloup, P.H., Mahéo, G., Arnaud, N., et al., 2010.The South Tibet Detachment Shear Zone in the Dinggye Area:Time Constraints on Extrusion Models of the Himalayas.Earth and Planetary Science Letters, 292(1-2):1-16. https://doi.org/10.1016/j.epsl.2009.12.035 Li, D.W., Liao, Q.A., Yuan, Y.M., et al., 2002.Discovery and Significance of Basic Granulites in the Complexes in the Middle Himalaya.Earth Science, 27(1):80, 96 (in Chinese). doi: 10.1007/s11430-011-4250-x Li, D.W., Liao, Q.A., Yuan, Y.M., et al., 2003.U-Pb Zircon Ages of Rimana Granulites in the Middle Himalaya.Chinese Science Bulletin, 48(20):2176-2179 (in Chinese). doi: 10.1007/BF03182846 Liao, Q.A., Li, D.W., Yi, S.H., et al., 2003.Petrologic and Geologic Significance of Garnet Pyroxenite and Mafic Granulites from High Himalayan Region, Tibet.Earth Science, 28(6):627-633 (in Chinese with English abstract). Liu, D.M., Li, D.W., Yang, W.R., 2003.Study of Mylonite and Deformation of Ductile Shear Zone, Dingjie Area.Earth Science Frontiers, 10(2):479-486 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/0191814180900486 Liu, Q., Deng, Y.B., Xiang, S.Y., et al., 2017.Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance.Earth Science, 42(6):881-890 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.076 Liu, S.W., Zhang, J.J., Shu, G.M., et al., 2005.Mineral Chemistry, P-T-t Paths and Exhumation Processes of Mafic Granulites in Dinggye, Southern Tibet.Science in China (Series D), 35(9):810-820 (in Chinese). Liu, X.H., Ju, Y.T., Wei, L.J., et al., 2009.An Alternative Tectonic Model for the Yarlung Zangbo Suture Zone.Science in China (Series D), 39(4):448-463 (in Chinese). doi: 10.1007/s11430-009-0177-x Liu, Y., Zhong, D.L., 1998.Petrology of High-Pressure Granulites from Eastern Himalaya:Implications to Tectonic Significance.Scientia Geologica Sinica, 33(3):267-281 (in Chinese with English abstract). https://www.researchgate.net/publication/230028123_Petrology_of_high-pressure_granulites_from_the_eastern_Himalayan_syntaxis Lombardo, B., Rolfo, F., 2000.Two Contrasting Eclogite Types in the Himalayas:Implications for the Himalayan Orogeny.Journal of Geodynamics, 30(1-2):37-60. https://doi.org/10.1016/S0264-3707(99)00026-5 Lombardo, B., Rolfo.F., Compagnoni, R., 2000.Glaucophane and Barroisite Eclogites from the Upper KaghanNappe:Implications for the Metamorphic History of the NW Himalaya.Geological Society, London, Special Publications, 170(1):411-430. https://doi.org/10.1144/GSL.SP.2000.170.01.22 Mottram, C.M., Parrish, R.R., Regis, D., et al., 2015.Using U-Th-Pb Petrochronology to Determine Rates of Ductile Thrusting:Time Windows into the Main Central Thrust, Sikkim Himalaya.Tectonics, 34(7):1355-1374. https://doi.org/10.1002/2014TC003743 Mukherjee, B., Sachan, H.K., Ahmad, T., 2005.A New Occurrence of Microdiamond from Indus Suture Zone, Himalata:A Possible Origin.In:Memoire, H.S., ed., Special Extended Abstract Volume.Géologie Alpine, 44:136. https://www.researchgate.net/publication/278300924_New_occurrence_of_microdiamond_from_indus_suture_Zone_Himalaya_possible_origin_Geologie_alpine_abs_2005_No_44p_35 Möller, C., 1998.Decompressed Eclogites in the Sveconorwegian (-Grenvillian) Orogen of SW Sweden:Petrology and Tectonic Implications.Journal of Metamorphic Geology, 16(5):641-656. https://doi.org/10.1111/j.1525-1314.1998.00160.x O'Brien, P.J., Zotov, N., Law, R., et al., 2001.Coesite in Himalayan Eclogite and Implications for Models of India-Asia Collision.Geology, 29(5):435-438.https://doi.org/10.1130/0091-7613(2001)029<0435:CIHEAI>2.0.CO;2 doi: 10.1130/0091-7613(2001)029<0435:CIHEAI>2.0.CO;2 Pan, Y., Kidd, W.S.F., 1992.Nyainqentanglha Shear Zone:A Late Miocene Extensional Detachment in the Southern Tibetan Plateau.Geology, 20(9):775-778.https://doi.org/10.1130/0091-7613(1992)020<0775:NSZALM>2.3.CO;2 doi: 10.1130/0091-7613(1992)020<0775:NSZALM>2.3.CO;2 Pitra, P., Ballèvre, M., Ruffet, G., 2010.Inverted Metamorphic Field Gradient towards a Variscan Suture Zone (Champtoceaux Complex, Armorican Massif, France).Journal of Metamorphic Geology, 28(2):183-208. https://doi.org/10.1111/j.1525-1314.2009.00862.x Powell, R., Holland, T., Worley, B., 1998.Calculating Phase Diagrams Involving Solid Solutions via Non-Linear Equations, with Examples Using THERMOCALC.Journal of Metamorphic Geology, 16(4):577-588. https://doi.org/10.1111/j.1525-1314.1998.00157.x Ravna, K., 2000.The Garnet-Clinopyroxene Fe2+-Mg Geothermometer:An Updated Calibration.Journal of Metamorphic Geology, 18(2):211-219. https://doi.org/10.1046/j.1525-1314.2000.00247.x Rolfo, F., McClelland, W., Lombardo, B., 2005.Geochronological Constraints on the Age of the Eclogite-Facies Metamorphism in the Eastern Himalaya.In:Memoire, H.S., ed., Special Extended Abstract Volume.Géologie Alpine, 44:170. Wang, Y.H., Zhang, L.F., Zhang, J.J., et al., 2017.The Youngest Eclogite in Central Himalaya:P-T Path, U-Pb Zircon Age and Its Tectonic Implication.Gondwana Research, 41:188-206. https://doi.org/10.1016/j.gr.2015.10.013 Wei, C.J., 2011.Approaches and Advancement of the Study of Metamorphic P-T-t Paths.Earth Science Frontiers, 18(2):1-16 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0037073804002362 White, R.W., Powell, R., Clarke, G.L., 2002.The Interpretation of Reaction Textures in Fe-Rich Metapelitic Granulites of the Musgrave Block, Central Australia:Constraints from Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3.Journal of Metamorphic Geology, 20(1):41-55. https://doi.org/10.1046/j.0263-4929.2001.00349.x White, R.W., Powell, R., Holland, T.J.B., 2007.Progress Relating to Calculation of Partial Melting Equilibria for Metapelites.Journal of Metamorphic Geology, 25(5):511-527. https://doi.org/10.1111/j.1525-1314.2007.00711.x White, R.W., Powell, R., Holland, T.J.B., et al., 2000.The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions:Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3.Journal of Metamorphic Geology, 18(5):497-511. doi: 10.1046/j.1525-1314.2000.00269.x Xiao, W.J., Ao, S.J., Yang, L., et al., 2017.Anatomy of Composition and Nature of Plate Convergence:Insights for Alternative Thoughts for Terminal India-Eurasia Collision.Science in China (Series D), 47(6):631-656 (in Chinese). doi: 10.1007/s11430-016-9043-3 Xu, Z.Q., Wang, Q., Pêcher, A., et al., 2013.Orogen-Parallel Ductile Extension and Extrusion of the Greater Himalaya in the Late Oligocene and Miocene.Tectonics, 32(2):191-215. https://doi.org/10.1002/tect.20021 Yin, A., 2006.Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation.Earth-Science Reviews, 76(1):1-131. https://doi.org/10.1016/j.earscirev.2006.08.005 Yu, J.J., Zeng, L.S., Liu, J., et al., 2011.Early Miocene Leucogranites in Dinggye Area, Southern Tibet:Formation Mechanism and Tectonic Implications.Acta Petrologica Sinica, 27(7):1961-1972 (in Chinese with English abstract). http://www.irgrid.ac.cn/password-login;jsessionid=E73DBB84A6B710BEEF8327921CA5133E Zhang, J.J., Guo, L., Ding, L., 2002.Structural Characteristics of Middle and Southern Xainza-Dinggye Normal Fault System and Its Relationship to Southern Tibetan Detachment System.Chinese Science Bulletin, 47(10):738-743 (in Chinese). Zhang, Z.M., Dong, X., He, Z.Y., et al., 2013.Indian and Asian Continental Collision Viewed from HP and UHP Metamorphism of the Himalaya Orogen.Acta Petrologica Sinica, 29(5):1713-1726 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20130518 Zhang, Z.M., Zhao, G., Santosh, M., et al., 2010.Two Stages of Granulite Facies Metamorphism in the Eastern Himalayan Syntaxis, South Tibet:Petrology, Zircon Geochronology and Implications for the Subduction of Neo-Tethys and the Indian Continent beneath Asia.Journal of Metamorphic Geology, 28(7):719-733. https://doi.org/10.1111/j.1525-1314.2010.00885.x Zhang, Z.M., Zheng, L.L., Wang, J.L., et al., 2007.Garnet Pyroxenite in the Namjagbarwa Group-Complex in the Eastern Himalayan Tectonic Syntaxis, Tibet, China:Evidence for Subduction of the Indian Continent beneath the Eurasian Plate at 80-100km Depth.Geological Bulletin of China, 26(1):1-12 (in Chinese with English abstract). Zhao, G., Cawood, P.A., Wilde, S.A., et al., 2001.High-Pressure Granulites (Retrograded Eclogites) from the Hengshan Complex, North China Craton:Petrology and Tectonic Implications.Journal of Petrology, 42(6):1141-1170. https://doi.org/10.1093/petrology/42.6.1141 Zhou, X., Tong, L.X., Liu, X.H., et al., 2014.Metamorphism Evolution of Mafic Granulite from the Larsemann Hills, East Antarctica.Acta Petrologica Sinica, 30(6):1731-1747 (in Chinese with English abstract). https://www.researchgate.net/publication/266383599_Metamorphism_evolution_of_mafic_granulite_from_the_Larsemann_Hills_East_Antarctica 陈相艳, 仝来喜, 张传林, 等, 2015.浙江龙游石榴石角闪岩(退变榴辉岩):华夏加里东期碰撞造山事件的新证据.科学通报, 60(13):1207-1217. http://www.oalib.com/paper/4267633 丁林, 钟大赉, 1999.西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义.中国科学(D辑), 29(5):385-397. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd199905001 季建清, 钟大赉, 宋彪, 等, 2004.喜马拉雅中段高压麻粒岩变质作用、地球化学与年代学.岩石学报, 20(5):1283-1300. https://www.researchgate.net/profile/Li_Wangchao/publication/277559493_Metamorphism_and_anatexis_of_the_Himalayan_orogen_Petrology_and_geochronology_of_HP_pelitic_granulites_from_the_Yadong_area_Southern_Tibet/links/556d358d08aefcb861d7ec4c.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail 李德威, 廖群安, 袁晏明, 等, 2002.喜马拉雅造山带中段核部杂岩中基性麻粒岩的发现及构造意义.地球科学, 27(1):80, 96. http://earth-science.net/WebPage/Article.aspx?id=1077 李德威, 廖群安, 袁晏明, 等, 2003.喜马拉雅造山带中段日玛那麻粒岩锆石U-Pb年代学.科学通报, 48(20):2176-2179. doi: 10.3321/j.issn:0023-074X.2003.20.015 廖群安, 李德威, 易顺华, 等, 2003.西藏定结高喜马拉雅石榴辉石岩-镁铁质麻粒岩的岩石特征及其地质意义.地球科学, 28(6):627-633. http://earth-science.net/WebPage/Article.aspx?id=1303 刘德民, 李德威, 杨巍然, 2003.定结地区韧性剪切带变形特征与糜棱岩研究.地学前缘, 10(2):479-486. http://www.docin.com/p-24115591.html 刘强, 邓玉彪, 向树元, 等, 2017.藏南仲巴地体早奥陶世构造-热事件及其地质意义.地球科学, 42(6):881-890. http://earth-science.net/WebPage/Article.aspx?id=3585 刘树文, 张进江, 舒桂明, 等, 2005.藏南定结铁镁质麻粒岩矿物化学、PTt轨迹和折返过程.中国科学(D辑), 35(9):810-820. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200509002 刘小汉, 琚宜太, 韦利杰, 等, 2009.再论雅鲁藏布江缝合带构造模型.中国科学(D辑), 39(4):448-463. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk200904008&dbname=CJFD&dbcode=CJFQ 刘焰, 钟大赉, 1998.东喜马拉雅地区高压麻粒岩石学研究及构造意义.地质科学, 33(3):267-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200509002 魏春景, 2011.变质作用P-T-t轨迹的研究方法与进展.地学前缘, 18(2):1-16. doi: 10.1360/N072016-00244 肖文交, 敖松坚, 杨磊, 等, 2017.喜马拉雅汇聚带结构-属性解剖及印度-欧亚大陆最终拼贴格局.中国科学(D辑), 47(6):631-656. http://mall.cnki.net/magazine/Article/JDXK201706001.htm 于俊杰, 曾令森, 刘静, 等, 2011.藏南定结地区早中新世淡色花岗岩的形成机制及其构造动力学意义.岩石学报, 27(7):1961-1972. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110705&journal_id=ysxb 张进江, 郭磊, 丁林, 2002.申扎-定结正断层体系中, 南段构造特征及其与藏南拆离系的关系.科学通报, 47(10):738-743. doi: 10.3321/j.issn:0023-074X.2002.10.003 张泽明, 董昕, 贺振宇, 等, 2013.喜马拉雅造山带的高压超高压变质作用与印度-亚洲大陆碰撞.岩石学报, 29(5):1713-1726. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20130518 张泽明, 郑来林, 王金丽, 等, 2007.东喜马拉雅构造结南迦巴瓦岩群中的石榴辉石岩-印度大陆向欧亚板块之下俯冲至80~100km深度的证据.地质通报, 26(1):1-12. doi: 10.3969/j.issn.1671-2552.2007.01.002 周信, 仝来喜, 刘小汉, 等, 2014.东南极拉斯曼丘陵镁铁质麻粒岩的变质作用演化.岩石学报, 30(6):1731-1747. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20140615