Tectonic Setting of Hadahushu Mafic Intrusion in Urad Zhongqi Area, Inner Mongolia: Implications for Early Subduction History of Paleo-Asian Ocean Plate
-
摘要: 内蒙古乌拉特中旗地区在大地构造上横跨华北板块边缘和兴蒙造山带,区域基性岩体多以小岩株形式产出,侵入时代缺少可靠的资料.对乌拉特中旗哈达呼舒基性岩进行锆石U-Pb年代学、岩石地球化学以及Hf同位素研究,对其岩石成因和古亚洲洋板块俯冲作用的开始时间给予制约.哈达呼舒基性岩锆石LA-ICP-MS U-Pb定年结果表明,该岩体形成于晚寒武世(513±2 Ma).在地球化学上,它们属于钙碱性系列,富集大离子亲石元素(如K、Rb、Ba),亏损高场强元素(如Nb、Ta、Zr、Ti)和LREE.岩石的εHf(t)值为14.15~15.03,单阶段模式年龄(TDM1)为518~556 Ma,与岩石原岩形成时代513 Ma相近,认为其原始岩浆起源于亏损岩石圈地幔.综合区域同时代火成岩的研究成果,认为哈达呼舒基性岩体形成于古亚洲洋俯冲消减环境.Abstract: The Urad Zhongqi area of western Inner Mongolia crosses the North China Plate margin and Xing'an-Mongolia Orogenic Belt, which distributed regional basic rock massif occurred as small stocks, and a lack of reliable data of intrusion age. This paper reports LA-ICP-MS zircon U-Pb dating, geochemical and Hf isotopic data of Hadahushu mafic intrusion in Urad Zhongqi area, with the aim of constraining its petrogenesis and the beginning time of subduction of the Paleo-Asian oceanic plate. LA-ICP-MS U-Pb dating results of zircons from the mafic intrusion indicate that the intrusion formed at the Late Cambrian (513±2 Ma). The geochemical characteristics of these rocks indicate that they are the calc-alkaline series, and are characterized by enrichment in LILE (such as K, Ba, Rb), relatively depleted in HFSE (such as Nb, Ta, Zr, Ti) and LREE. The εHf(t) values and one-stage model ages (TDM1) of zircons from the rock vary from 14.15 to 15.03 and from 518 to 556 Ma, respectively. These characteristics suggest that the primary magma was derived from the depleted lithospheric mantle source. Based on the previous study, we conclude that the formation of mafic intrusion was related to the subduction of the Paleo-Asian oceanic plate.
-
Key words:
- geochronology /
- zircon Hf isotope /
- mafic intrusion /
- Urad Zhongqi /
- geochemistry
-
图 1 研究区地质略图
图a据Safonova and Santosh(2014);图b据Xiao et al.(2009);图c据矿区资料;胡安新(2014).1.上白垩统;2.温都尔庙群;3.中元古界宝音图群;4.下志留统花岗闪长岩;5.下志留统钠长花岗岩;6.寒武系基性岩体;7.地层界限;8.断层;9.取样点
Fig. 1. Geological sketch of the studied area
图 4 岩石的TiO2-SiO2图解(a)和(FeOT+TiO2)-Al2O3-MgO三角图(b)
PK.橄榄质科马提岩; BK.玄武质科马提岩; HMT.高镁拉班玄武岩; HFT.高铁拉班玄武岩; TA.拉斑质安山岩; TD.拉斑质英安岩; TR.拉斑质流纹岩; CB.钙碱性玄武岩; CA.钙碱性安山岩; CD.钙碱性英安岩;CR.钙碱性流纹岩;图b据Jensen(1976)
Fig. 4. TiO2-SiO2 diagram (a) and (FeOT+TiO2)-Al2O3-MgO diagram (b) of the amphibolite rocks
图 5 岩石稀土元素球粒陨石标准化配分图解(a)和微量元素原始地幔标准化蛛网图(b)
a.标准化值据Boynton(1984); b.标准化值据Sun and Mcdonough(1989)
Fig. 5. Chondrite-normalized REE distribution patterns and primitive mantle-normalized trace element spider diagrams of amphibolite
图 7 岩石的Ta/Yb-Th/Yb图解(a)和Nb/Yb-Th/Yb图解(b)
Fig. 7. Ta/Yb-Th/Yb diagram (a) and Nb/Yb-Th/Yb diagram (b) of the amphibolite rocks
表 1 岩石中锆石LA-ICP-MS U-Pb同位素分析结果
Table 1. LA-ICPMS zircon U-Pb analyses of the rocks
样品 Th
(10-6)U
(10-6)Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U Ratio 1σ Ratio 1σ Ratio 1σ t(Ma) 1σ(Ma) HDHS-1 1 143 1 899 0.602 17 0.059 68 0.001 29 0.682 87 0.014 49 0.082 61 0.000 88 512 5 HDHS-2 1 089 1 462 0.744 48 0.058 33 0.001 42 0.668 02 0.015 97 0.082 57 0.000 66 511 4 HDHS-3 231 311 0.742 66 0.057 96 0.001 85 0.658 70 0.019 94 0.082 40 0.000 63 510 4 HDHS-4 111 160 0.691 17 0.058 39 0.002 97 0.652 92 0.033 17 0.082 28 0.001 06 510 6 HDHS-5 380 505 0.753 24 0.058 19 0.001 53 0.667 03 0.017 08 0.083 00 0.000 62 514 4 HDHS-6 1 875 2 303 0.814 27 0.059 12 0.001 16 0.685 50 0.012 32 0.084 03 0.000 78 520 5 HDHS-7 555 572 0.970 06 0.059 45 0.003 97 0.660 37 0.024 56 0.083 13 0.000 84 515 5 HDHS-8 421 803 0.523 82 0.058 09 0.001 47 0.664 64 0.016 99 0.082 49 0.000 74 511 4 HDHS-9 717 1 553 0.461 97 0.057 11 0.001 17 0.655 38 0.013 37 0.082 64 0.000 58 512 3 HDHS-10 679 1 396 0.486 04 0.057 13 0.001 11 0.658 81 0.012 88 0.082 96 0.000 59 514 4 HDHS-11 781 1 380 0.565 63 0.057 28 0.001 26 0.654 49 0.014 57 0.082 23 0.000 76 509 5 HDHS-12 769 1 205 0.638 25 0.056 86 0.001 44 0.655 49 0.016 22 0.082 87 0.000 57 513 3 HDHS-13 0.33 296 0.001 12 0.063 42 0.002 08 0.538 65 0.016 47 0.061 68 0.000 64 386 4 HDHS-14 0.06 178 0.000 36 0.057 24 0.002 76 0.484 91 0.023 21 0.061 55 0.000 71 385 4 表 2 岩石主量元素(%)、微量和稀土元素(10-6)含量及有关参数
Table 2. Major (%), trace and rare element (10-6) content and parameter of the rocks
样品 HDHS-Y1 HDHS-Y2 HDHS-Y3 HDHS-Y4 HDHS-Y5 HDHS-Y6 SiO2 48.64 48.35 47.40 49.82 47.02 49.17 TiO2 0.29 0.26 0.31 0.28 0.20 0.30 Al2O3 16.88 16.70 16.83 17.31 17.65 17.11 Fe2O3 1.34 1.40 1.46 1.23 1.29 1.37 FeO 6.40 6.55 6.82 6.00 6.75 6.39 MnO 0.16 0.16 0.18 0.15 0.16 0.15 MgO 8.63 9.16 9.28 8.29 9.63 8.71 CaO 12.77 12.44 13.29 11.57 12.17 11.35 Na2O 2.04 1.92 1.48 2.62 1.90 2.18 K2O 0.39 0.50 0.40 0.46 0.72 0.80 P2O5 0.02 0.05 0.05 0.03 0.03 0.04 LOI 1.68 1.71 1.68 1.55 1.69 1.69 Mg# 67 68 67 68 68 67 La 0.79 0.98 0.87 1.05 0.53 2.09 Ce 1.95 2.08 2.16 2.36 1.28 3.94 Pr 0.33 0.34 0.34 0.41 0.22 0.61 Nd 1.84 1.89 2.01 2.15 1.24 2.82 Sm 0.66 0.70 0.76 0.84 0.42 0.76 Eu 0.29 0.30 0.36 0.35 0.24 0.34 Gd 0.92 0.87 1.10 1.10 0.65 0.97 Tb 0.22 0.21 0.25 0.28 0.14 0.25 Dy 1.48 1.29 1.30 1.54 1.07 1.54 Ho 0.29 0.27 0.29 0.33 0.20 0.27 Er 0.84 0.75 0.90 1.08 0.60 0.82 Tm 0.13 0.11 0.15 0.17 0.10 0.15 Yb 0.83 0.77 0.84 1.05 0.60 0.87 Lu 0.14 0.12 0.12 0.14 0.09 0.12 Y 8.78 7.01 8.45 10.50 5.91 8.83 ∑REE 10.70 10.70 11.40 12.90 7.37 15.50 LREE 5.85 6.29 6.49 7.16 3.92 10.57 HREE 4.84 4.39 4.94 5.69 3.45 4.98 LREE/HREE 1.21 1.43 1.31 1.26 1.14 2.12 LaN/YbN 0.69 0.91 0.74 0.72 0.63 1.73 δEu 1.14 1.18 1.20 1.10 1.42 1.23 Rb 8.26 12.60 7.99 10.80 27.40 23.10 Ba 56.4 94.7 68.0 68.4 120.0 171.0 Th 0.11 0.11 0.10 0.14 0.08 0.51 U 0.13 0.10 0.18 0.18 0.15 0.22 Nb 0.186 0.171 0.202 0.220 0.106 1.310 Ta 0.021 0.014 0.016 0.019 0.009 0.094 Sr 124 128 124 142 127 140 Zr 5.17 5.20 5.58 5.55 5.19 11.70 Hf 0.285 0.283 0.333 0.315 0.217 0.506 Li 13.4 14.1 16.8 14.3 19.3 18.1 Be 0.28 0.30 0.97 0.33 0.26 0.36 Sc 36.5 37.7 41.8 36.5 35.7 35.1 V 151 153 184 151 135 158 Cr 146 165 179 139 150 150 Co 41.9 46.4 52.0 43.3 51.7 48.7 Ni 64.1 74.7 84.3 70.8 88.2 77.9 Cu 34.0 24.9 27.0 26.9 20.2 23.2 Zn 34.8 40.7 50.0 36.1 41.3 41.1 Ga 8.47 8.37 8.98 8.33 9.15 10.20 Mo 0.28 0.20 0.24 0.27 0.16 0.26 Cd 0.07 0.08 0.11 0.06 0.06 0.07 In 0.03 0.02 0.03 0.03 0.02 0.03 Sb 0.15 0.17 0.16 0.19 0.18 0.20 Cs 0.36 0.58 0.36 0.49 1.36 0.75 W 0.60 0.17 0.19 0.17 0.14 0.24 Tl 0.08 0.12 0.10 0.11 0.27 0.19 Pb 4.11 5.11 5.45 4.99 5.05 6.60 Bi 0.13 0.17 0.29 0.09 0.18 0.19 Nb/U 1.48 1.80 1.10 1.21 0.70 6.09 Ta/U 0.17 0.15 0.09 0.10 0.06 0.44 Nb/La 0.23 0.18 0.23 0.21 0.20 0.63 Ce/Pb 0.47 0.41 0.40 0.47 0.25 0.60 La/Sm 1.21 1.40 1.14 1.25 1.26 2.75 Zr/Y 0.59 0.74 0.66 0.53 0.88 1.33 La/Nb 4.26 5.71 4.28 4.77 4.95 1.60 (Th/Nb)N 9.26 10.74 8.13 9.95 12.76 6.31 Ta/Yb 0.03 0.02 0.02 0.02 0.02 0.11 Zr/Nb 27.80 30.40 27.60 25.20 49.00 8.93 注:Mg#=100×(MgO/40.31)/(MgO/40.31+Fe2O3T×2/159.7). 表 3 岩石中锆石Hf同位素分析结果
Table 3. LA-ICPMS zircon U-Pb analyses of the rocks
样品 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 1σm εHf(0) εHf(t) 1σ TDM1(Hf) fLu/Hf HDHS-1 513 0.100 76 0.002 605 0.282 902 0.000 020 4.60 15.03 0.90 518 -0.92 HDHS-2 513 0.089 36 0.002 711 0.282 894 0.000 029 4.30 14.69 1.23 532 -0.92 HDHS-3 513 0.082 90 0.002 103 0.282 882 0.000 023 3.90 14.50 0.99 540 -0.94 HDHS-4 513 0.089 07 0.002 370 0.282 882 0.000 022 3.88 14.39 0.98 545 -0.93 HDHS-5 513 0.109 52 0.002 791 0.282 901 0.000 026 4.56 14.92 1.09 523 -0.92 HDHS-7 513 0.079 52 0.001 900 0.282 892 0.000 016 4.25 14.92 0.79 523 -0.94 HDHS-8 513 0.064 13 0.001 874 0.282 883 0.000 022 3.93 14.61 0.99 535 -0.94 HDHS-9 513 0.127 54 0.003 184 0.282 883 0.000 027 3.91 14.15 1.13 556 -0.90 HDHS-10 513 0.048 34 0.001 260 0.282 882 0.000 021 3.89 14.77 0.94 528 -0.96 -
Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons.Nature, 399(6733):252-255. doi: 10.1038/20426 Amelin, Y., Lee, D.C., Halliday, A.N., 2000.Early-Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains.Geochimica et Cosmochimica Acta, 64(24):4205-4225.doi: 10.1016/s0016-7037(00)00493-2 Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x Boynton, W.V., 1984.Geochemistry of the Rare Earth Elements:Meterorite Studies.In:Henderson, P., ed..Rare Earth Elements Geochemistry.Elsevier, Amsterdam, 63-114. Chen, B., Jahn, B.M., Tian, W., 2009.Evolution of the Solonker Suture Zone: Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction-and Collision-Related Magmas and Forearc Sediments.Journal of Asian Earth Sciences, 34(3):245-257.doi: 10.1016/j.jseaes.2008.05.007 Chen, B., Jahn, B.M., Wilde, S., et al., 2000.Two Contrasting Paleozoic Magmatic Belts in Northern Inner Mongolia, China:Petrogenesis and Tectonic Implications.Tectonophysics, 328(1-2):157-182.doi: 10.1016/s0040-1951(00)00182-7 Chen, Y.P., Wei, C.J., Zhang, J.R., et al., 2014.Metamorphism and Zircon U-Pb Dating of Garnet Amphibolite in the Baoyintu Group, Inner Mongolia.Annual Meeting of Chinese Geoscience Union, Beijing, 2152(in Chinese). Chu, H., Zhang, J.R., Wei, C.J., et al., 2013.A New Interpretation of the Tectonic Setting and Age of Meta-Basic Volcanics in the Ondor Sum Group, Inner Mongolia.Chinese Science Bulletin, 58(28-29):3580-3587.doi: 10.1007/s11434-013-5862-7 Deng, J.F., Mo, X.X., Luo, Z.H., et al., 1999.Igneous Petrotectonic Assemblage and Crust-Mantle Metallogenic System.Earth Science Frontiers, 6(2):259-270(in Chinese with English abstract). https://www.researchgate.net/publication/285219384_Petrology_and_zircon_chronology_of_the_Dorolj_granite_in_Hinggan_League_Inner_Mongolia Du, L.K., Ge, M.C., 2010.Geochemical Tracing on Protolith Reconstruction of Amphibolite of Baoyintu Group in Xilinhot, Inner Mongolia.Xinjiang Geology, 28(2): 200-203(in Chinese with English abstract). Elliott, T., Plank, T., Zindler, A., et al., 1997.Element Transport from Slab to Volcanic Front at the Mariana Arc.Journal of Geophysical Research:Solid Earth, 102(B7):14991-15019.doi: 10.1029/97jb00788 Fisher, C.M., Vervoort, J.D., Hanchar, J.M., 2014.Guidelines for Reporting Zircon Hf Isotopic Data by LA-MC-ICPMS and Potential Pitfalls in the Interpretation of These Data.Chemical Geology, 363:125-133.doi: 10.1016/j.chemgeo.2013.10.019 Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.doi: 10.1016/s0024-4937(02)00082-8 Gu, C.N., Zhou, Z.G., Zhang, Y.K., et al., 2012.Zircon Dating of the Baiyinduxi Group in Inner Mongolia and Its Tectonic Interpretation.Geoscience, 26(1):1-9(in Chinese with English abstract). https://www.researchgate.net/publication/309665425_Zircon_dating_of_the_baiyinduxi_group_in_inner_Mongolia_and_its_tectonic_interpretation Guo, F., Fan, W.M., Li, C.W., et al., 2009.Early Paleozoic Subduction of the Paleo-Asian Ocean: Geochronological and Geochemical Evidence from the Dashizhai Basalts, Inner Mongolia.Science in China (Series D), 39(5):569-579(in Chinese). https://www.researchgate.net/profile/Feng_Guo8/publication/225244689_Early_Paleozoic_subduction_of_the_Paleo-Asian_Ocean_Geochronological_and_geochemical_evidence_from_the_Dashizhai_basalts_Inner_Mongolia/links/00b4951df59c173268000000.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail Hong, D.W., Wang, S.G., Xie, X.L., et al., 2000.Genesis of Positive εNd(t) Granitoids in the Da Hinggan Mts-Mongolia Orogenic Belt and Growth Continental Crust.Earth Science Frontiers, 7(2):441-456(in Chinese with English abstract). Hu, A.X., 2014.Study on the Enrichment Regularities of Mineralization of Tugurige Gold Deposit in Urad Zhongqi, Inner Mongolia (Dissertation).Jilin University, Changchun, 1-99(in Chinese with English abstract). Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. doi: 10.1039/c2ja30078h Janne, B.T., Catherine, C., Frances, A., 1997.Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS.Contributions to Mineralogy and Petrology, 127:248-260. doi: 10.1007/s004100050278 Jesen, L.S., 1976.A New Cation Plot for Classifying Subalkalic Volcanic Rocks.Ontario Department of Mines, Miscellaneous Paper 66. doi: 10.1080/08120090701305210?src=recsys Jian, P., Liu, D.Y., Kr ner, A., et al., 2008.Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for Continental Growth.Lithos, 101(3-4):233-259.doi: 10.1016/j.lithos.2007.07.005 Li, C.D., Ran, H., Zhao, L.G., et al., 2012.LA-MC-ICPMS U-Pb Geochronology of Zircons from the Wenduermiao Group and Its Tectonic Significance.Acta Petrologica Sinica, 28(11):3705-3714(in Chinese with English abstract). https://www.researchgate.net/publication/285763101_LA-MC-ICPMS_U-Pb_geochronology_of_zircons_from_the_Wenduermiao_Group_and_its_tectonic_significance Li, W.B., Chen, Y.J., Lai, Y., et al., 2008.Metallogenic Time and Tectonic Setting of the Bainaimiao Cu-Au deposit, Inner Mongolia.Acta Petrologica Sinica, 24(4):890-898(in Chinese with English abstract). https://www.researchgate.net/publication/274458333_Metallogenic_time_and_tectonic_setting_of_the_Bainaimiao_Cu-Au_deposit_Inner_Mongolia Liu, Y., Gao, S., Hu, Z., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082 Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/j.chemgeo.2008.08.004 Liu, C.F., 2010.Paleozoic-Early Mesozoic Magmatic Belts and Tectonic Significance in Siziwangqi Area, Inner Mongolia (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). https://www.researchgate.net/publication/269875246_Geochronology_geochemistry_and_origins_of_the_Paleozoic-Triassic_plutons_in_the_Langshan_area_western_Inner_Mongolia_China Liu, D.Y., Jian, P., Zhang, Q., et al., 2003.SHRIMP Dating of Adakites in the Tulinkai Ophiolite, Inner Mongolia:Evidence for the Early Paleozoic Subduction.Acta Geologica Sinica, 77(3):317-327(in Chinese with English abstract). doi: 10.1007/s11434-007-0204-2 Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Execl.No.4.Berkeley Geochronology Center Special Publication. https://www.researchgate.net/publication/284696948_User's_manual_for_a_geochronological_toolkit_for_Microsoft_Excel_IsoplotEx_version_30 McKenzie, D., 1989.Some Remarks on the Movement of Small Melt Fractions in the Mantle.Earth and Planetary Science Letters, 95(1-2):53-72.doi: 10.1016/0012-821x(89)90167-2 Ma, J., 2010.Tepogeritu Ultrabasic Rock Bodies Characteristics and Metallogenic Potentiality, Inner Mongolia (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract). Miao, L.C., Fan, W.M., Liu, D.Y., et al., 2008.Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex:Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China.Journal of Asian Earth Sciences, 32(5-6):348-370.doi: 10.1016/j.jseaes.2007.11.005 Pearce, J.A., 1982.Trace Element Characteristics of Lavas from Destructive Plate Boundaries.In:Thorps, R.S., ed., Andesites.John Wiley and Sons, New York, 525-548. Qi, S.S., Deng, J.F., Zhang, L., et al., 2012.Discovery and Significance of the Late Devonian High-Alumina Basalt in the Tuotuo River Region of the Qinghai-Tibet Plateau.Earth Science Frontiers, 19(5):177-186(in Chinese with English abstract). Qin, Y., Liang, Y.H., Xing, J.L., et al., 2013.The Identification of Early Paleozoic O-Type Adakitic Rocks in Zhengxiangbaiqi Area, Inner Mongolia and Its Significance.Earth Science Frontiers, 20(5):106-114(in Chinese with English abstract). https://www.researchgate.net/publication/285761656_The_identification_of_Early_Paleozoic_O-type_adakitic_rocks_in_Zhengxiangbaiqi_Area_Inner_Mongolia_and_its_significance Rudnick, R.L., Gao, S., 2003.The Composition of Continental Crust.In:Rudnick, R.L., ed., Treatise on Geochemistry, Vol.3.the Crust.Elsevier, Oxford. Rudnick, R.L., Gao, S., Ling, W.L., et al., 2004.Petrology and Geochemistry of Spinel Peridotite Xenoliths from Hannuoba and Qixia, North China Craton.Lithos, 77:609-637. doi: 10.1016/j.lithos.2004.03.033 Safonova, I.Y., Santosh, M., 2014.Accretionary Complexes in the Asia-Pacific Region:Tracing Archives of Ocean Plate Stratigraphy and Tracking Mantle Plumes.Gondwana Research, 25(1):126-158.doi: 10.1016/j.gr.2012.10.008 Sengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993.Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia.Nature, 364(6435):299-307.doi: 10.1038/364299a0 Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 Smith, E.I., Sánchez, A., Walker, J.D., et al., 1999.Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah:Implications for Small-and Large-Scale Chemical Variability of the Lithospheric Mantle.The Journal of Geology, 107(4):433-448.doi: 10.1086/314355 Shi, G.H., Liu, D.Y., Zhang, F.Q., et al., 2003.SHRIMP U-Pb Zircon Geochronology and Its Implications on the Xilin Gol Complex, Inner Mongolia, China.Chinese Science Bulletin, 48(24):2742-2748.doi: 10.1007/bf02901768 Shi, G.H., Miao, L.C., Zhang, F.Q., et al., 2004.The Age and Regional Tectonic Significance of A-Type Granite in Xilinhot, Inner Mongolia.Chinese Science Bulletin, 49(4):384-389(in Chinese). https://www.researchgate.net/publication/302968409_The_age_and_its_regional_tectonic_implication_of_the_Xilinhot_A-type_granites_Inner_Mongolia Sun, L.X., Zhao, F.Q., Wang, H.C., et al., 2013.Zircon U-Pb Geochronology of Metabase Rocks from the Baoyintu Block in the Langshan Area, Inner Mongolia, and Its Tectonic Significance.Acta Geologica Sinica, 87(2):197-207(in Chinese with English abstract). https://www.researchgate.net/publication/282375856_Geochemistry_geochronology_and_petrogenesis_of_the_ore-forming_intrusive_body_in_the_Baoyintu_molybdenum_deposit_Inner_Mongolia Taylor, S.R., McClennan, S., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Publication, Boston, 209-230. Taylor, S.R., McLennan, S.M., 1995.The Geochemical Evolution of the Continental Crust.Reviews of Geophysics, 33(2):241.doi: 10.1029/95rg00262 Weaver, B.L., 1991.The Origin of Ocean Island Basalt End-Member Compositions:Trace Element and Isotopic Constraints.Earth and Planetary Science Letters, 104(2-4):381-397.doi: 10.1016/0012-821x(91)90217-6 Wang, J., Sun, F.Y., Li, B.L., et al., 2016.Age, Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige, Urad Zhongqi, Inner Mongolia.Earth Science, 41(5):792-808(in Chinese with English abstract). https://www.researchgate.net/publication/282460166_Metamorphism_and_zircon_U-Pb_dating_of_garnet_amphibolite_in_the_Baoyintu_Group_Inner_Mongolia Wang, R.M., He, G.P., Chen, Z.Z., et al., 1987.Metamorphic Protolith Graphical Criterion.Geological Publishing House, Beijing (in Chinese). Wang, S.Q., Xin, H.T., Hu, X.J., et al., 2016.Geochonology, Geochemistry and Geological Significance of Early Paleozoic Wulanapbaotu Intrusive Rocks, Inner Mongolia.Earth Science, 41(4):555-569(in Chinese with English abstract). https://www.researchgate.net/publication/281601324_Geochronology_and_geochemistry_of_the_Daolanghuduge_A-type_granite_in_Inner_Mongolia_and_its_geological_significance Wang, Y.D., 2016.Metallogenesis of Gold Deposits in Tugurige of Urad Zhongqi, Inner Mongolia (Dissertation).Jilin University, Changchun (in Chinese with English abstract). Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). https://www.researchgate.net/publication/305531916_Lu-Hf_isotopic_systematics_and_thier_applications_in_petrology Xu, B., Charvet, J., Chen, Y., et al., 2013.Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China):Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt.Gondwana Research, 23(4):1342-1364.doi: 10.1016/j.gr.2012.05.015 Xu, B., Chen, B., 1997.Framework and Evolution of the Middle Paleozoic Orogenic Belt between Siberian and North China Plates in Northern Inner Mongolia.Science in China (Series D), 27(3):227-232(in Chinese). https://www.researchgate.net/publication/225392818_Framework_and_evolution_of_the_middle_Paleozoic_orogenic_belt_between_Siberian_and_North_China_Plates_in_northern_Inner_Mongolia Xu, B., Zhao, P., Bao, Q.Z., et al., 2014.Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB).Acta Petrologica Sinica, 30(7):1841-1857(in Chinese with English abstract). https://www.researchgate.net/publication/293238367_Preliminary_study_on_the_pre-Mesozoic_tectonic_unit_division_of_the_Xing-Meng_Orogenic_Belt_XMOB Xiao, W.J., Shu, L.S., Gao, J., et al., 2008.Continental Dynamics of the Central Asian Orogenic Belt and Its Metallogeny.Xinjiang Geology, 26(1):4-8(in Chinese with English abstract). Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):1069-1088.doi: 10.1029/2002tc001484 Xiao, W.J., Windley, B.F., Huang, B.C., et al., 2009.End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids:Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia.International Journal of Earth Sciences, 98(6):1189-1217.doi: 10.1007/s00531-008-0407-z Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2007.The Discrimination between Continental Basalt and Island Arc Basalt Based on Geochemical Method.Acta Petrologica et Mineralogica, 26(1):77-89(in Chinese with English abstract). http://www.adearth.ac.cn/EN/abstract/abstract3541.shtml Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370.doi: 10.1111/j.1751-908x.2004.tb00755.x Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003.Determination of U-Pb Age and Rare Earth Element Concentrations of Zircons from Cenozoic Intrusions in Northeastern China by Laser Ablation ICP-MS.Chinese Science Bulletin, 48(14):1511-1520(in Chinese). https://www.researchgate.net/publication/296840091_Determination_of_U-Pb_age_and_rare_earth_element_concentrations_of_zircons_from_Cenozoic_intrusions_in_northeastern_China_by_laser_ablation_ICP-MS Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2000.Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution.Precambrian Research, 103(1-2):55-88.doi: 10.1016/s0301-9268(00)00076-0 Zhang, W., Jian, P., 2008.SHRIMP Dating of Early Paleozoic Granites from North Damaoqi, Inner Mongolia.Acta Geologica Sinica, 82(6):778-787(in Chinese with English abstract). https://www.researchgate.net/publication/291105113_SHRIMP_dating_of_Early_Paleozoic_granites_from_north_Damaoqi_Inner_Mongolia Zhou, Z.G., Zhang, H.F., Liu, H.L., et al., 2009.Zircon U-Pb Dating of Basic Intrusions in Siziwangqi Area of Middle Inner Mongolia, China.Acta Petrologica Sinica, 25(6):1519-1528(in Chinese with English abstract). https://www.researchgate.net/publication/285895417_Zircon_U-Pb_dating_of_basic_intrusions_in_Siziwangqi_area_of_middle_Inner_Mongolia_China Zhou, J.B., Wilde, S.A., Zhang, X.Z., et al., 2012.Detrital Zircons from Phanerozoic Rocks of the Songliao Block, NE China:Evidence and Tectonic Implications.Journal of Asian Earth Sciences, 47:21-34.doi: 10.1016/j.jseaes.2011.05.004 陈亚平, 魏春景, 张晋瑞, 等, 2014.内蒙古西部地区宝音图群变质作用和年代学研究.北京:中国地球科学联合学术年会, 2152. 邓晋福, 莫宣学, 罗照华, 等, 1999.火成岩构造组合与壳-幔成矿系统.地学前缘, 6(2): 259-270. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY902.005.htm 杜理科, 葛梦春, 2010.内蒙古锡林浩特宝音图群斜长角闪岩原岩恢复的地球化学示踪.新疆地质, 28(2): 200-203. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201002023.htm 谷丛楠, 周志广, 张有宽, 等, 2012.内蒙古白乃庙地区白音都西群的碎屑锆石年龄及其构造意义.现代地质, 26(1): 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201201001.htm 郭锋, 范蔚茗, 李超文, 等, 2009.早古生代古亚洲洋俯冲作用:来自内蒙古大石寨玄武岩的年代学与地球化学证据.中国科学(D辑), (5): 569-579. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200905004.htm 洪大卫, 王式洸, 谢锡林, 等, 2000.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长.地学前缘, 7(2): 441-456. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200002016&dbname=CJFD&dbcode=CJFQ 胡安新, 2014. 内蒙古乌拉特中旗图古日格金矿床矿化富集规律研究(硕士学位论文). 长春: 吉林大学, 1-99. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014281753.htm 李承东, 冉皞, 赵利刚, 等, 2012.温都尔庙群锆石的LA-MC-ICPMS U-Pb年龄及构造意义.岩石学报, 28(11): 3705-3714. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211022.htm 李文博, 陈衍景, 赖勇, 等, 2008.内蒙古白乃庙铜金矿床的成矿时代和成矿构造背景.岩石学报, 24(4): 890-898. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804028.htm 柳长峰, 2010. 内蒙古四子王旗地区古生代-早古生代岩浆岩带及其构造意义(博士学位论文). 北京: 中国地质大学. http://cdmd.cnki.com.cn/article/cdmd-11415-2010086241.htm 刘敦一, 简平, 张旗, 等, 2003.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据.地质学报, 77(3): 317-327. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200303004.htm 马娟, 2010. 内蒙古特颇格日图超基性岩特征及成矿潜力研究(硕士学位论文). 成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-2010218870.htm 祁生胜, 邓晋福, 张林, 等, 2012.青藏高原沱沱河地区晚泥盆世高铝玄武岩的发现及意义.地学前缘, 19(5): 177-186. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205019.htm 秦亚, 梁一鸿, 邢济麟, 等, 2013.内蒙古正镶白旗地区早古生代O型埃达克岩的厘定及其意义.地学前缘, 20(5): 106-114. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201305008.htm 施光海, 苗来成, 张福勤, 等, 2004.内蒙古锡林浩特A型花岗岩的时代及区域构造意义.科学通报, 49(4): 384-389. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200404015.htm 孙立新, 赵凤清, 王惠初, 等, 2013.内蒙古狼山地区宝音图地块变质基底的锆石U-Pb年龄及构造意义.地质学报, 87(2): 197-207. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302007.htm 王键, 孙丰月, 李碧乐, 等, 2016.内蒙古乌拉特中旗图古日格二叠纪角闪石岩年龄、岩石成因及构造背景.地球科学, 41(5): 792-808. http://earth-science.net/WebPage/Article.aspx?id=3299 王仁民, 贺高品, 陈珍珍, 等, 1987.变质岩原岩图解判别法.北京:地质出版社. 王树庆, 辛后田, 胡晓佳, 等, 2016.内蒙古乌兰敖包图早古生代侵入岩年代学、地球化学特征及地质意义.地球科学, 41(4): 555-569. http://earth-science.net/WebPage/Article.aspx?id=3274 王英德, 2016. 内蒙古乌拉特中旗图古日格一带金矿成矿作用研究(硕士学位论文). 长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016089745.htm 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2): 185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm 徐备, 陈斌, 1997.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化.中国科学, 27(3): 227-232. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199703005.htm 徐备, 赵盼, 鲍庆中, 等, 2014.兴蒙造山带前中生代构造单元划分初探.岩石学报, 30(7): 1841-1857. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm 夏林圻, 夏祖春, 徐学义, 等, 2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩.岩石矿物学杂志, 26(1): 77-89. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200701010.htm 肖文交, 舒良树, 高俊, 等, 2008.中亚造山带大陆动力学过程与成矿作用.新疆地质, 26(1): 4-8. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB200903011.htm 袁洪林, 吴福元, 高山, 等, 2003.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报, 48(14): 1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 张维, 简平, 2008.内蒙古达茂旗北部早古生代花岗岩类SHRIMP U-Pb年代学.地质学报, 82(6): 778-787. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200806008.htm 周志广, 张华锋, 刘还林, 等, 2009.内蒙中部四子王旗地区基性侵入岩锆石定年及其意义.岩石学报, 25(6): 1519-1528. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906023.htm