Geochronology, Geochemistry and Geological Significance of Early Paleozoic Wulanaobaotu Intrusive Rocks, Inner Mongolia
-
摘要: 对造山带中岩浆作用的研究可以为构造演化提供约束.兴蒙造山带中段乌兰敖包图一带出露一套早古生代早期的闪长质侵入岩(石英闪长岩和闪长岩),具有俯冲带型侵入岩的岩石组合和地球化学特征,标志着早古生代古亚洲洋的俯冲事件.通过锆石LA-MC-ICPMS U-Pb定年,在石英闪长岩和闪长岩中分别获得了474.0±1.8 Ma和487.8 ±1.9 Ma的年龄,属于晚寒武世-早奥陶世.锆石原位Hf同位素分析表明,乌兰敖包图侵入岩具有富集的Hf同位素组成,176Hf/177Hf范围为0.282 123~0.282 304,εHf(t)均为负值(两件样品的平均值分别为-10.84和-8.53),二阶段模式年龄为古元古代(范围为1 851~2 250 Ma),表明这套侵入岩源于古元古代中期再循环地壳物质.岩石地球化学分析显示,石英闪长岩和闪长岩具有中等SiO2含量(56.52%~66.06%),较高的Na2O(2.60%~6.81%)、Al2O3(14.69%~18.35%)、CaO(0.57%~6.58%,平均值为3.97%)含量,低的K2O(0.73%~2.94%)、TFeO、MgO含量,Na2O/K2O比值较高(0.92~5.66,平均值为3.19);微量元素具有Rb、Ba、Th、U、Sr、K等大离子亲石元素的富集以及Nb、Ta、P、Ti等高场强元素的亏损;稀土总量较低,轻稀土富集,具有较弱的Eu负异常(δEu范围为0.76~0.99).地球化学特征以及锆石Hf同位素组成表明,乌兰敖包图早古生代侵入岩在主动大陆边缘的构造背景之下,由古老地壳物质熔融形成的,代表了兴蒙造山带中段早古生代早期的俯冲事件,将兴蒙造山带中段早古生代北部岩浆岩带向东延伸,并且佐证了锡林浩特地区存在前寒武纪基底.Abstract: The study of magmatism can reveal the orogenic tectonic evolution. In this paper, zircon LA-MC-ICPMS U-Pb dating, Hf isotopic compositions and whole rock geochemical data of the Early Paleozoic dioritic rocks from Wulanaobaotu region, central part of the Xing-Meng Orogenic belt are present. The rock suite consists of two major rock types, i.e., quartz-diorite and diorite, with zircon U-Pb ages of 474.0±1.8 Ma and 487.8±1.9 Ma, respectively. In-situ zircon Hf isotopic analysis shows enriched compositions with 176Hf/177Hf ratios varying from 0.282 123 to 0.282 304, negative εHf(t) values and Hf two stage model ages(TDMC) from 1 851 to 2 250 Ma. The results indicate that the intrusive rocks are likely derived from an ancient basement material. Geochemically, these rocks show moderate SiO2 contents (56.52%-66.06%), high and variable Na2O (2.60%-6.81%), Al2O3 (14.69%-18.35%), and CaO (0.57%-6.58%, average 3.97%) contents, but low K2O (0.73%-2.94%), TFeO and MgO contents. Most Na2O/K2O ratios are all higher (0.92-5.66, average 3.19). The trace elemental data of these rocks display enrichment of Rb, Ba, Th, U, K and Sr, but depletion of Nb, Ta, P and Ti. The total REE contents are low with moderate fractionation between LREE and HREE. Meanwhile, weakly negative Eu anormalyies (δEu ranges from 0.76 to 0.99) are observed in all samples. Thus, we propose that the Wulanaobaotu dioritic intrusive rocks were likely formed in an active continental margin setting during Late Cambrian to Early Ordovician, consistent with the existence of Early Paleozoic subduction-related tectonic-magmatic belt in Xing-Meng orogenic belt. The enriched zircon Hf isotopic characteristics further northern suggest the magma originated from a Precambrian basement source.
-
Key words:
- Early Paleozoic /
- intrusive rock /
- subduction /
- active continental margin /
- Precambrian basement /
- isotope /
- geochemistry
-
图 1 研究区地质简图
图a据喇嘛音乌苏地质图(中国地质调查局实物地质资料中心.2013.1: 50 000喇嘛音乌苏等4幅区调报告)修改;图b据Xiao et al.(2003)
Fig. 1. Geological sketch of study area
图 5 内蒙古乌兰敖包图闪长质侵入岩SiO2-K2O图解
Fig. 5. SiO2-K2O diagram of Wulanaobaotu dioritic intrusive rocks
图 6 内蒙古乌兰敖包图闪长质侵入岩A/CNK-A/NK图解
据Maniar and Piccoli(1989)
Fig. 6. A/CNK-A/NK diagram of Wulanaobaotu dioritic intrusive rocks
图 7 内蒙古乌兰敖包图闪长质侵入岩原始地幔标准化微量元素蛛网图
原始地幔标准化数据根据Sun and McDonough(1989)
Fig. 7. Primitive mantle-normalized trace elements spider diagram of Wulanaobaotu dioritic intrusive rocks
图 8 内蒙古乌兰敖包图闪长质侵入岩稀土配分模式图
原始地幔标准化数据根据Sun and McDonough(1989)
Fig. 8. Chondrite-normalized REE patterns diagram of Wulanaobaotu dioritic intrusive rocks
图 9 内蒙古乌兰敖包图闪长质侵入岩的Y-Nb及Y+Nb-Rb构造环境判别图解
Fig. 9. Y-Nb and Y+Nb-Rb discrimination diagrams of Wulanaobaotu dioritic intrusive rocks, Inner Mongolia
图 10 内蒙古乌兰敖包图闪长质侵入岩的Th/Yb-Ta/Yb判别图解
OCEANIC ARCS.大洋岛弧;ACM.主动大陆边缘;WPVZ.陆内火山岩带;MORB.洋中脊玄武岩;WPB.板内玄武岩;据Gorton and Schandl(2000)
Fig. 10. Th/Yb-Ta/Yb discrimination diagrams of Wulanaobaotu dioritic intrusive rocks, Inner Mongolia
图 11 内蒙古乌兰敖包图闪长质侵入岩εHf(t)-t图解
兴蒙造山带东段Hf同位素组成据Yang et al.(2006)
Fig. 11. εHf(t)-t diagrams of Wulanaobaotu dioritic intrusive rocks, Inner Mongolia
表 1 内蒙古乌兰敖包图闪长质侵入岩锆石U-Pb测年分析结果
Table 1. Zircon LA-MC-ICPMS U-Pb dating data of Wulanaobaotu dioritic intrusive rocks, Inner Mongolia
点号 含量(10-6) Th/U 同位素比值 年龄(Ma) Pb U Th 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206U 1σ 石英闪长岩(14XL02.1) 1 10 138 45 0.326 1 0.076 0 0.000 7 0.594 2 0.012 7 0.056 7 0.001 2 472 5 474 10 480 45 2 18 229 88 0.386 0 0.076 0 0.000 7 0.598 3 0.009 8 0.057 1 0.000 9 472 5 476 8 495 34 3 16 207 72 0.350 0 0.076 1 0.000 7 0.602 2 0.011 1 0.057 4 0.001 0 473 5 479 9 507 38 4 12 158 48 0.305 6 0.076 1 0.000 7 0.598 7 0.012 4 0.057 0 0.001 1 473 5 476 10 493 43 5 27 340 138 0.404 3 0.076 2 0.000 7 0.593 2 0.009 1 0.056 5 0.000 8 473 5 473 7 471 31 6 10 127 40 0.316 8 0.076 3 0.000 7 0.598 4 0.014 1 0.056 9 0.001 3 474 5 476 11 488 50 7 26 326 118 0.363 1 0.076 0 0.000 7 0.594 2 0.008 7 0.056 7 0.000 7 472 5 474 7 481 29 8 12 156 47 0.299 3 0.076 1 0.000 7 0.591 9 0.010 9 0.056 4 0.001 0 473 5 472 9 470 38 9 18 232 65 0.279 7 0.076 6 0.000 7 0.596 2 0.016 4 0.056 5 0.001 5 476 5 475 13 471 57 10 18 219 72 0.329 2 0.077 3 0.000 7 0.597 2 0.011 0 0.0560 0.001 0 480 5 475 9 453 38 11 11 134 35 0.258 1 0.076 9 0.000 8 0.598 2 0.018 5 0.056 4 0.001 7 478 5 476 15 469 66 12 11 135 39 0.288 5 0.077 1 0.000 8 0.594 3 0.014 7 0.055 9 0.001 3 479 5 474 12 447 52 13 11 140 43 0.307 4 0.076 8 0.000 7 0.595 7 0.016 3 0.056 2 0.001 5 477 5 474 13 462 58 14 18 230 90 0.394 0 0.076 3 0.000 7 0.596 9 0.011 7 0.056 7 0.001 0 474 5 475 9 480 41 15 9 117 35 0.301 7 0.076 5 0.000 8 0.599 9 0.019 9 0.056 9 0.001 8 475 5 477 16 488 71 16 19 240 97 0.402 0 0.076 4 0.000 7 0.595 8 0.009 7 0.056 6 0.000 9 474 5 475 8 476 33 17 10 131 50 0.383 6 0.076 1 0.000 7 0.600 4 0.017 0 0.057 2 0.001 6 473 5 477 14 500 60 18 8 98 31 0.316 3 0.076 0 0.000 8 0.592 4 0.023 4 0.056 5 0.002 2 472 5 472 19 472 84 19 8 108 44 0.405 7 0.076 7 0.000 8 0.598 9 0.021 0 0.056 7 0.001 9 476 5 477 17 479 75 20 16 200 93 0.464 1 0.076 2 0.000 7 0.598 2 0.020 4 0.057 0 0.001 9 473 5 476 16 490 73 21 11 142 58 0.408 0 0.075 8 0.000 7 0.593 1 0.015 2 0.056 8 0.001 4 471 5 473 12 483 55 22 10 128 45 0.353 5 0.075 8 0.000 7 0.593 6 0.013 3 0.056 8 0.001 2 471 5 473 11 484 47 23 9 112 35 0.313 9 0.076 0 0.000 7 0.595 9 0.018 4 0.056 9 0.001 7 472 5 475 15 487 66 24 12 149 57 0.379 4 0.076 1 0.000 7 0.595 9 0.013 2 0.056 8 0.001 2 473 5 475 10 484 46 闪长岩(14XL03.1) 1 24 292 109 0.371 4 0.078 6 0.000 8 0.621 3 0.009 4 0.0573 0.000 8 488 5 491 7 504 30 2 26 310 118 0.380 0 0.078 6 0.000 8 0.628 6 0.009 7 0.0580 0.000 8 488 5 495 8 530 31 3 18 221 89 0.401 6 0.078 0 0.000 8 0.616 9 0.010 6 0.0573 0.000 9 484 5 488 8 505 35 4 32 380 135 0.354 1 0.079 1 0.000 8 0.625 0 0.011 6 0.0573 0.001 0 491 5 493 9 502 37 5 36 439 157 0.357 3 0.078 5 0.000 8 0.615 3 0.009 1 0.0568 0.000 8 487 5 487 7 485 30 6 24 302 113 0.373 1 0.078 5 0.000 8 0.617 4 0.010 1 0.0570 0.000 9 487 5 488 8 493 33 7 27 333 127 0.380 7 0.078 5 0.000 8 0.617 0 0.009 0 0.0570 0.000 7 487 5 488 7 492 29 8 22 271 98 0.360 9 0.078 4 0.000 8 0.616 0 0.010 1 0.0570 0.000 9 487 5 487 8 490 34 9 25 305 143 0.467 6 0.078 0 0.000 8 0.619 7 0.009 7 0.0576 0.000 8 484 5 490 8 515 31 10 16 197 76 0.384 5 0.078 8 0.000 8 0.619 9 0.013 8 0.0570 0.001 2 489 5 490 11 493 46 11 28 342 189 0.553 1 0.078 7 0.000 8 0.619 9 0.009 9 0.0571 0.000 8 488 5 490 8 497 32 12 33 406 192 0.473 3 0.078 5 0.000 8 0.618 8 0.009 1 0.0572 0.000 8 487 5 489 7 499 30 13 10 131 40 0.308 5 0.078 5 0.000 8 0.633 1 0.015 6 0.0585 0.001 4 487 5 498 12 547 52 14 18 228 93 0.408 6 0.078 5 0.000 8 0.627 6 0.010 6 0.0580 0.000 9 487 5 495 8 530 34 15 22 271 111 0.409 6 0.078 7 0.000 8 0.626 6 0.009 7 0.0578 0.000 8 488 5 494 8 521 31 16 33 396 176 0.444 2 0.079 0 0.000 8 0.636 3 0.009 3 0.0584 0.000 8 490 5 500 7 545 28 17 30 367 152 0.415 3 0.078 4 0.000 8 0.630 2 0.009 3 0.0583 0.000 8 486 5 496 7 542 29 18 32 395 162 0.410 3 0.078 6 0.000 8 0.622 6 0.008 9 0.0574 0.000 7 488 5 491 7 509 28 19 32 393 154 0.391 5 0.078 7 0.000 8 0.633 0 0.009 2 0.0583 0.000 8 488 5 498 7 542 29 20 38 467 187 0.399 3 0.078 7 0.000 8 0.638 1 0.008 9 0.0588 0.000 7 488 5 501 7 561 27 21 28 348 144 0.413 3 0.079 2 0.000 8 0.642 2 0.010 7 0.0588 0.000 9 491 5 504 8 561 34 22 21 264 90 0.340 8 0.078 8 0.000 8 0.630 2 0.010 7 0.0580 0.000 9 489 5 496 8 530 35 23 27 339 136 0.401 9 0.078 9 0.000 8 0.632 0 0.010 2 0.0581 0.000 8 490 5 497 8 532 32 24 39 484 205 0.424 1 0.078 6 0.000 8 0.621 2 0.008 6 0.0573 0.000 7 488 5 491 7 505 27 表 2 内蒙古乌兰敖包图闪长质侵入岩锆石Hf同位素组成
Table 2. Hf isotopic compositions for zircons of Wulanaobaotu dioritic intrusive rocks, Inner Mongolia by LA-MC-ICPMS
点号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) 2σ TDM(Ma) TDMC(Ma) fLu/Hf 石英闪长岩(14XL02.1) 2 474 0.023 642 0.000 907 0.282 160 0.000 018 0.282 152 -21.64 -11.51 0.65 1 536 2 169 -0.97 3 474 0.020 162 0.000 784 0.282 207 0.000 018 0.282 200 -19.98 -9.81 0.62 1 467 2 063 -0.98 7 474 0.033 324 0.001 286 0.282 226 0.000 022 0.282 215 -19.30 -9.28 0.77 1 459 2 029 -0.96 10 474 0.023 852 0.000 928 0.282 125 0.000 016 0.282 117 -22.88 -12.76 0.55 1 586 2 247 -0.97 11 474 0.022 722 0.000 847 0.282 197 0.000 017 0.282 190 -20.32 -10.17 0.61 1 482 2 085 -0.97 12 474 0.027 976 0.001 065 0.282 123 0.000 015 0.282 113 -22.96 -12.88 0.54 1 595 2 255 -0.97 16 474 0.019 539 0.000 761 0.282 257 0.000 017 0.282 250 -18.22 -8.04 0.60 1 396 1 951 -0.98 17 474 0.017 884 0.000 725 0.282 147 0.000 018 0.282 141 -22.10 -11.92 0.64 1 547 2 194 -0.98 18 474 0.020 503 0.000 835 0.282 160 0.000 016 0.282 152 -21.65 -11.50 0.56 1 534 2 168 -0.97 19 474 0.019 483 0.000 749 0.282 152 0.000 021 0.282 145 -21.92 -11.74 0.73 1 541 2 184 -0.98 20 474 0.025 841 0.001 047 0.282 143 0.000 019 0.282 134 -22.24 -12.16 0.66 1 566 2 210 -0.97 23 474 0.022 979 0.000 917 0.282 237 0.000 017 0.282 229 -18.92 -8.79 0.60 1 430 1 998 -0.97 24 474 0.015 688 0.000 608 0.282 210 0.000 016 0.282 204 -19.88 -9.66 0.57 1 456 2 053 -0.98 闪长岩(14XL03.1) 2 484 0.022 977 0.000 910 0.282 224 0.000 017 0.282 215 -19.39 -9.04 0.58 1 448 2 022 -0.97 4 484 0.033 733 0.001 277 0.282 253 0.000 019 0.282 242 -18.34 -8.11 0.68 1 421 1 963 -0.96 6 484 0.035 415 0.001 332 0.282 240 0.000 024 0.282 228 -18.80 -8.59 0.83 1 441 1 993 -0.96 7 484 0.027 639 0.001 099 0.282 272 0.000 020 0.282 262 -17.68 -7.40 0.69 1 388 1 918 -0.97 8 484 0.033 706 0.001 358 0.282 228 0.000 020 0.282 216 -19.23 -9.03 0.70 1 459 2 021 -0.96 9 484 0.032 520 0.001 328 0.282 183 0.000 022 0.282 171 -20.83 -10.62 0.75 1 521 2 120 -0.96 11 484 0.033 275 0.001 421 0.282 231 0.000 018 0.282 218 -19.13 -8.95 0.63 1 458 2 016 -0.96 14 484 0.027 115 0.001 084 0.282 302 0.000 017 0.282 292 -16.63 -6.34 0.59 1 346 1 852 -0.97 18 484 0.039 999 0.001 534 0.282 255 0.000 019 0.282 241 -18.30 -8.15 0.66 1 429 1 966 -0.95 19 484 0.040 566 0.001 596 0.282 193 0.000 021 0.282 178 -20.48 -10.36 0.75 1 519 2 104 -0.95 20 484 0.033 335 0.001 290 0.282 235 0.000 019 0.282 224 -18.98 -8.76 0.65 1 447 2 004 -0.96 22 484 0.034 361 0.001 301 0.282 304 0.000 023 0.282 292 -16.55 -6.33 0.81 1 350 1 851 -0.96 23 484 0.033 929 0.001 261 0.282 202 0.000 023 0.282 191 -20.14 -9.91 0.81 1 492 2 076 -0.96 24 484 0.031 695 0.001 288 0.282 235 0.000 023 0.282 224 -18.98 -8.76 0.80 1 446 2 004 -0.96 注:εHf(0)=[176Hf/177Hf)s/(176Hf/177Hf)CHUR, 0 -1]×10 000;εHf(t)={[(176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)]/[176Hf/177HfCHUR, 0-(176Lu/177Hf)s×(eλt-1)]-1}×10 000;TDM=1/λ×ln{1+[(176Hf/177Hf)s-(176Hf/177Hf)DM]/[(176Lu/177Hf)s-(176Lu/177Hf)DM];TDMC=TDM-(TDM-t)×[(fcc-fs)/(fcc-fDM)];fs=(176Lu/177Hf)s/[(176Lu/177Hf)CHUR-1;其中(176Lu/177Hf)s和176Hf/177Hfs为样品测定值,(176Lu/177Hf)CHUR=0.033 2,(176Hf/177Hf)CHUR, 0=0.0282 772;(176Lu/177Hf)DM=0.038 4,(176Hf/177Hf)DM=0.283 25.fcc,fs,fDM分别为大陆平均地壳、样品和亏损地幔的fLu/Hf,fcc=-0.55,fDM=0.16.t为样品形成时间,λ=1.867×10-11a-1. 表 3 内蒙乌兰敖包图闪长质侵入岩主量元素(%)和微量元素(10-6)分析结果
Table 3. Major(%) and trace elements(10-6) data of Wulanaobaotu dioritic intrusive rocks, Inner Mongolia
样品号 石英闪长岩 闪长岩 14XL01-1 14XL02-1 14XL02-2 14XL02-3 14XL03-2 14XL03-1 14XL03-3 14XL04-1 14XL04-3 14XL04-4 SiO2 64.20 61.91 61.22 66.06 64.02 58.28 59.58 58.71 56.52 56.78 Al2O3 16.66 16.76 16.84 15.08 14.71 16.64 14.69 17.84 18.16 18.35 Fe2O3 2.40 2.83 4.16 2.24 1.70 1.90 2.04 1.78 2.52 2.74 FeO 2.69 3.57 2.11 3.04 3.75 5.27 5.05 4.16 4.71 4.09 TFeO 4.85 6.12 5.85 5.06 5.28 6.98 6.89 5.76 6.98 6.56 TFe2O3 5.39 6.80 6.50 5.62 5.87 7.76 7.65 6.40 7.75 7.29 CaO 0.57 3.08 6.58 2.90 5.03 4.32 5.77 3.30 3.94 4.25 MgO 2.18 2.54 1.53 1.98 2.55 3.84 4.51 2.76 3.38 2.94 K2O 1.50 1.22 1.11 0.88 1.11 2.84 0.73 1.97 2.94 1.86 Na2O 6.81 4.56 3.66 4.98 3.20 2.60 3.17 5.36 3.65 4.69 TiO2 0.50 0.48 0.38 0.42 0.53 0.69 0.65 0.57 0.72 0.65 P2O5 0.16 0.15 0.13 0.10 0.13 0.15 0.15 0.25 0.28 0.27 MnO 0.10 0.12 0.11 0.10 0.10 0.15 0.13 0.15 0.19 0.16 LOI 1.94 2.38 1.92 1.88 2.75 2.74 2.95 2.70 2.47 2.75 总量 99.71 99.60 99.75 99.66 99.58 99.42 99.42 99.55 99.48 99.53 Na2O/K2O 4.54 3.74 3.30 5.66 2.88 0.92 4.34 2.72 1.24 2.52 A/CNK 1.20 1.16 0.88 1.05 0.94 1.09 0.89 1.05 1.11 1.05 Cs 1.17 1.20 0.87 0.76 1.20 2.69 1.30 1.27 2.53 1.92 Rb 26.9 25.6 16.7 13.9 29.2 80.4 19.0 44.0 77.4 52.0 Ba 436 321 306 296 667 1 440 283 862 852 456 Sr 147.0 408.0 532.0 228.0 240.0 285.0 98.5 217.0 452.0 427.0 Li 9.78 15.90 6.75 7.48 15.90 19.40 19.10 14.40 15.80 13.80 Ga 14.6 16.1 18.6 11.6 13.9 15.0 13.9 16.0 17.4 17.3 Nb 8.84 7.50 6.01 7.34 5.86 7.41 6.00 6.41 8.26 7.35 Ta 0.69 0.52 0.46 0.52 0.36 0.50 0.40 0.39 0.64 0.49 Zr 125.0 130.0 94.0 99.5 128.0 97.8 116.0 64.9 82.9 120.0 Hf 4.03 4.09 3.01 3.08 3.57 3.02 3.36 2.14 2.68 3.59 U 0.93 1.50 2.18 1.64 0.94 1.29 0.86 1.31 1.72 1.75 Th 4.71 5.10 7.90 7.10 2.64 13.90 4.62 11.60 18.00 8.28 Cu 5.92 43.70 7.21 5.16 25.00 20.30 57.00 12.50 28.10 10.40 Pb 3.21 6.50 10.30 2.34 6.18 4.31 4.75 6.50 5.04 5.49 Zn 54.6 40.5 32.3 33.0 53.7 77.8 68.5 58.8 62.0 61.8 Cr 4.52 3.77 3.99 18.80 23.60 19.60 84.30 5.07 7.80 8.79 Ni 3.74 4.85 5.73 5.43 7.98 5.18 15.40 6.42 8.14 8.52 Co 8.01 9.95 8.57 10.40 14.10 18.30 22.80 14.50 19.20 16.50 V 85.0 96.4 106.0 112.0 152.0 200.0 194.0 153.0 219.0 165.0 Sc 12.80 8.44 9.55 11.00 20.60 29.50 31.60 15.30 23.20 16.80 La 12.90 15.30 23.00 14.80 9.78 38.80 14.00 18.00 28.00 13.20 Ce 31.7 33.8 57.3 39.6 24.3 71.1 36.5 39.3 62.2 30.4 Pr 3.12 4.18 5.63 3.43 2.98 7.28 4.28 5.14 7.94 4.59 Nd 11.6 16.3 21.1 12.7 12.7 26.1 17.9 20.6 31.2 20.3 Sm 2.08 3.42 3.86 2.60 3.16 4.68 3.84 4.26 6.04 4.77 Eu 0.52 0.94 1.01 0.74 0.96 1.45 0.99 1.30 1.64 1.30 Gd 2.09 3.24 4.05 2.56 3.55 5.05 4.01 3.75 5.38 3.92 Tb 0.29 0.55 0.59 0.42 0.52 0.70 0.59 0.56 0.78 0.62 Dy 1.51 3.31 3.39 2.42 3.16 3.94 3.51 3.12 3.98 3.51 Ho 0.28 0.67 0.70 0.50 0.63 0.81 0.71 0.62 0.80 0.72 Er 0.83 2.01 2.07 1.46 1.84 2.43 1.95 1.72 2.36 2.05 Tm 0.13 0.31 0.32 0.22 0.28 0.36 0.31 0.28 0.36 0.31 Yb 0.86 2.12 2.17 1.53 1.82 2.41 2.11 1.89 2.44 2.12 Lu 0.14 0.36 0.36 0.25 0.30 0.40 0.35 0.31 0.42 0.35 Y 6.65 17.40 18.80 12.60 16.20 20.60 18.20 16.20 20.70 17.80 ΣREE 68.05 86.51 125.55 83.23 65.98 165.51 91.05 100.85 153.54 88.16 δEu 0.76 0.86 0.78 0.88 0.88 0.91 0.77 0.99 0.88 0.92 (La/Yb)N 10.76 5.18 7.60 6.94 3.85 11.55 4.76 6.83 8.23 4.47 (La/Sm)N 4.00 2.89 3.85 3.67 2.00 5.35 2.35 2.73 2.99 1.79 (Gd/Yb)N 2.01 1.26 1.54 1.38 1.61 1.73 1.57 1.64 1.82 1.53 注:测试工作由天津地质矿产研究所实验室完成,主量元素采用熔片法XRF测试,其中FeO采用氢氟酸、硫酸溶样、重铬酸钾滴定容量法,微量元素采用ICP-MS测试.N代表球粒陨石标准化,$ \delta {\rm{Eu}} = \sqrt {{\rm{S}}{{\rm{m}}_{\rm{N}}} \times {\rm{G}}{{\rm{d}}_{\rm{N}}}} $,标准化数据引自Sun and McDonough(1989). -
Badarch, G., Cunningham, W.D., Windley, B.F., 2002.A New Terrane Subdivision for Mongolia:Implications for the Phanerozoic Crustal Growth of Central Asia.Journal of Asian Earth Sciences, 21(1):87-110.doi: 10.1016/S1367-9120(02)00017-2 Bai, X.H., Xu, Z.Y., Liu, Z.H., et al., 2015.Zircon U-Pb Dating, Geochemistry and Geological Significance of the Early Silurian Plutons from the Southeastern Margin of the Central Asian Orogenic Belt.Acta Petrologica Sinica, 31(1):67-79 (in Chinese with English abstract). https://www.researchgate.net/publication/279318765_Zircon_U-Pb_dating_geochemistry_and_geological_significance_of_the_Early_Silurian_plutons_from_the_southeastern_margin_of_the_Central_Asian_Orogenic_Belt Bureau of Geology and Mineral Resources of Nei Monggol Autonomous Region., 1996.Stratigraphy (Lithostratic) of Nei Monggol Autonomous Region.China University of Geosciences Press, Wuhan, 354 (in Chinese). doi: 10.1007/s11430-009-0062-7 Buslovl, M.M., Fujiwara, Y., Iwata, K., et al., 2004.Late Paleozoic-Early Mesozoic Geodynamics of Central Asia.Gondwana Research, 7(3):791-808.doi: 10.1016/S1342-937X(05)71064-9 Chen, B., Jahn, B.M., Tian, W., 2009.Evolution of the Solonker Suture Zone:Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction-and Collision-Related Magmas and Forearc Sediments.Journal of Asian Earth Sciences, 34(3):245-257.doi: 10.1016/j.jseaes.2008.05.007 Chen, B., Jahn, B.M., Wilde, S., et al., 2000.Two Contrasting Paleozoic Magmatic Belts in Northern Inner Mongolia, China:Petrogenesis and Tectonic Implications.Tectonophysics, 328(1-2):157-182.doi: 10.1016/S0040-1951(00)00182-7 Chen, B., Zhao, G.C., Wilde, S., 2001.Subduction-and Collision-Related Granitoids from Southern Sonidzuoqi, Inner Mongolia:Isotopic Ages and Tectonic Implications.Geological Review, 47(4):361-367(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200104005.htm Condie, K.C., 1989.Geochemical Changes in Basalts and Andesites across the Archean-Proterozoic Boundary:Identification and Significance.Lithos, 23(1-2):1-18.doi: 10.1016/0024-4937(89)90020-0 Deng, J.F., Xiao, Q.H., Su, S.G., et al., 2007.Igneous Petrotectonic Assemblages and Tectonic Settings:A Discussion.Geological Journal of China Universities, 13(3):392-402(in Chinese with English abstract). http://caod.oriprobe.com/articles/13184536/Igneous_Petrotectonic_Assemblages_and_Tectonic_Settings__A_Discussion.htm Ge, M.C., Zhou, W.X., Yu, Y., et al., 2011.Dissolution and Supracrustal Rocks Dating of Xilin Gol Complex, Inner Mongolia, China.Earth Science Frontiers, 18(5):182-195(in Chinese with English abstract). https://www.researchgate.net/publication/275349754_Dissolution_and_supracrustal_rocks_dating_of_Xilin_Gol_Complex_Inner_Mongolia_China Geng, J.Z., Li, H.K., Zhang, J., et al., 2011.Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS.Geological Bulletin of China, 30(10):1508-1513(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201110005.htm Gorton, M.P., Schandl, E.V., 2000.From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks.Canadian Mineralogist, 38(5):1065-1073.doi: 10.2113/gscanmin.38.5.1065 Hao, X., Xu, B., 1997.Sm-Nd, Rb-Sr Isotopic Geochronology of the Xilin Gol Complex, Inner Mongolia, China.Geological Review, 43(1):101-105(in Chinese with English abstract). http://www.cqvip.com/QK/86894X/199613/4001157507.html Hong, D.W., Wang, S.G., Xie, X.L., et al., 2000.Genesis of Positive ε(Nd, t) Granitoids in the Da Hinggan Mts.-Mongolia Orogenic Belt and Growth Continental Crust.Earth Science Frontiers, 7(2):441-456(in Chinese with English abstract). https://www.researchgate.net/publication/228492898_Source_contributions_to_Devonian_granite_magmatism_near_the_Laurentian_border_New_Hampshire_and_Western_Maine_USA Hong, D.W., Wang, S.G., Xie, X.L., et al., 2003.Correlation between Continental Crustal Growth and the Supercontinental Cycle:Evidence from the Granites with Positive εNd in the Central Asian Orogenic Belt.Acta Geologica Sinica, 77(2):203-209 (in Chinese with English abstract). http://www.deepdyve.com/lp/elsevier/continental-crustal-growth-and-the-supercontinental-cycle-evidence-6iCdnPI0N4 Jian, P., Kröner, A., Windley, B.F., et al., 2012.Carboniferous and Cretaceous Mafic-Ultramafic Massifs in Inner Mongolia (China):A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral "Hegenshan Ophiolite".Lithos, 142-143:48-66.doi: 10.1016/j.lithos.2012.03.007 Jian, P., Liu, D.Y., Kröner, A., 2010.Evolution of a Permian Intraoceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia.Lithos, 118(1-2):169-190.doi: 10.1016/j.lithos.2010.04.014 Jian, P., Liu, D.Y., Kröner, A., et al., 2008.Time Scale of the Early to Mid-Paleozoic Orogenic Cycle of the Longlived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for Continental Growth.Lithos, 101(3-4):233-259.doi: 10.1016/j.lithos.2007.07.005 Khain, E.V., Bibikova, E.V., Kröner, A., et al., 2002.The Most Ancient Ophiolite of the Central Asian Fold Belt:U-Pb and Pb-Pb Zircon Ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and Geodynamic Implications.Earth and Planetary Science Letters, 199(3-4):311-325.doi: 10.1016/S0012-821X(02)00587-3 Khain, E.V., Bibikova, E.V., Salnikova, E.B., et al., 2003.The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic:New Geochronologic Data and Palaeotectonic Reconstructions.Precambrian Research, 122(1-4):329-358.doi: 10.1016/S0301-9268(02)00218-8 Kröner, A., Demoux, A., Zack, T., et al., 2011.Zircon Ages for a Felsic Volcanic Rock and Arc-Related Early Palaeozoic Sediments on the Margin of the Baydrag Microcontinent, Central Asian Orogenic Belt, Mongolia.Journal of Asian Earth Sciences, 42(5):1008-1017.doi: 10.1016/j.jseaes.2010.09.002 Kröner, A., Kovach, V., Belousova, E., et al., 2014.Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt.Gondwana Research, 25(1):103-125.doi: 10.1016/j.gr.2012.12.023 Kröner, A., Lehmann, J., Schulmann, K., et al., 2010.Lithostratigraphic and Geochronological Constrains on the Evolution of the Central Asian Orogenic Belt in SW Mongolia:Early Paleozoic Rifting Followed by Late Paleozoic Accretion.American Journal of Science, 310(1):523-574.doi: 10.2475/07.2010.01 Kröner, A., Windley, B.F., Badarch, G., 2007.Accretionary Growth and Crust-Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield.Geological Society of America Memoir, 200:181-209. doi: 10.1130/2007.1200(11) Le Maitre, R.W., Bateman, P., Dudek, A., et al., 1989.A Classification of Igneous Rocks and Glossary of Terms.Blackwell, Oxford. http://www.doc88.com/p-6983720446711.html Li, H.K., Zhu, S.X., Xiang, Z.Q., et al., 2010.Zircon U-Pb Dating on Tuffbed from Gaoyuzhuang Formation in Yanqing, Beijing:Further Constrains on the New Subdivision of the Mesoproterozoic Stratigraphy in the Northern North China Craton.Acta Petrologica Sinica, 26(7):2131-2140(in Chinese with English abstract). doi: 10.1007/s11631-017-0149-3 Li, J.Y., 2006.Permian Geodynamic Setting of Northeast China and Adjacent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific PlateJournal of Asian Earth Sciences, 26(3-4):207-224.doi: 10.1016/j.jseaes.2005.09.001 Li, Y.L., Zhou, H.W., Brouwer, M.F., et al., 2011.Tectonic Significance of the Xilin Gol Complex, Inner Mongolia, China:Petrological, Geochemical and U-Pb Zircon Age Constraints.Journal of Asian Earth Sciences, 42(5):1018-1029.doi: 10.1016/j.jseaes.2010.09.009 Liu, D.Y., Jian, P., Zhang, Q., et al., 2003.SHRIMP Dating of Adakites in the Tulingkai Ophiolite, Inner Mongolia:Evidence for the Early Paleozoic Subduction.Acta Geologica Sinica, 77(3):317-327(in Chinese with English abstract). https://www.researchgate.net/publication/291106553_SHRIMP_dating_of_adakites_in_the_Tulingkai_ophiolite_inner_Mongolia_Evidence_for_early_Paleozoic_subduction Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082 Ludwig, K.R., 2003.Users Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication, 4:1-71. http://www.wenkuxiazai.com/doc/d814e0217fd5360cbb1adb03-4.html Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.doi: 10.1130/0016-7606 Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956 Qin, Y., Liang, Y.H., Xing, J.L., et al., 2013.The Identification of Early Paleozoic O-Type Adakitic Rocks in Zhengxiangbaiqi Area, Inner Mongolia and Its Significance.Earth Science Frontiers, 20(5):106-114(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201305008.htm Sengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993.Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia.Nature, 364:299-307.doi: 10.1038/364299a0 Shi, G.H., Liu, D.Y., Zhang, F.Q., et al., 2003.SHRIMP Zircon Geochronology and Its Significance of Xilin Gol Complex, Inner Mongolia, China.Chinese Science Bulliten, 48(20):2187-2192(in Chinese). doi: 10.1007/BF02901768 Shi, Y.R., Liu, D.Y., Jian, P., et al., 2005a.Zircon SHRIMP Dating of K-rich Granites in Sonid Zuoqi, Central Inner Mongolia.Geological Bulletin of China, 24(5):424-428(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200505006.htm Shi, Y.R., Liu, D.Y., Zhang, Q., et al., 2005b.The Petrogenesis and SHRIMP Dating of the Baiyinbaolidao Adakitic Rocks in Southern Suzuoqi, Inner Mongolia.Acta Petrologica Sinica, 21(1):143-150(in Chinese with English abstract). http://www.oalib.com/paper/1470664 Shi, Y.R., Liu, D.Y., Zhang, Q., et al., 2004.SHRIMP Dating of Diorites and Granites in Southern Suzuoqi, Inner Mongolia.Acta Geologica Sinica, 78(6):789-799(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200406009.htm Sun, L.X., Ren, B.F., Zhao, F.Q., 2013.Zircon U-Pb Dating and Hf Isotopic Compositions of the Mesoproterozoic Granitic Gneisis in Xilinhot Block, Inner Mongolia.Geological Bulletin of China, 32(2-3):327-340(in Chinese with English abstract). doi: 10.1007/978-3-662-47885-1_12 Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.In:Saunders, A.D., Norry, M.J., eds., Magmatism in Oceanic Basins.Geological Society Special Publication, 42(1):313-345.doi: 10.1144/GSL.SP.1989.042.01.19 Tang, K.D., 1992.Tectonic Evolution and Minerogenetic Regularities of the Fold Belt along the Northern Margin of Sino-Korean Plate.Peking University Press, Beijing, 305(in Chinese with English abstract). doi: 10.1007/BF02877693 Windley, B.F., Alexelev, D., Xiao, W.J., et al., 2007.Tectonic Models for Accretion of the Central Asian Orogenic Belt.Journal of Geological Society, London, 164:31-47.doi: 10.1144/0016-76492006-022 Wu, F.Y., Jahn, B.M., Wilde, S., et al., 2000.Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China.Tectonophysics, 328(1-2):89-113.doi: 10.1016/S0040-1951(00)00179-7 Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):1069-1090.doi: 10.1029/2002TC001484 Xu, B., Charvet, J., Yan, C., et al., 2013.Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China):Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt.Gondwana Research, 23(4):1342-1364.doi: 10.1016/j.gr.2012.05.015 Xu, B., Charvet, J., Zhang, F.Q., 2001.Primary Study on Petrology and Geochronology of Blueschists in Sunitezuoqi, Northern Inner Mongolia.Chinese Journal of Geology, 36(4):424-434(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200104005.htm Xu, B., Chen, B., 1997.Framework and Evolution of the Middle Paleozoic Orogenic Belt between Siberian and North China Plates in Northern Inner Mongolia.Science in China(Series D), 27(3):227-232 (in Chinese). http://earth.scichina.com:8080/sciDe/EN/abstract/abstract306023.shtml Xu, B., Chen, B., Shao, J.A., 1996.Sm-Nd, Rb-Sr Study of Xilin Gol Complex, Inner Mongolia.Chinese Science Bulletin, 41(2):153-155(in Chinese). http://www.cqvip.com/QK/86894X/199613/4001157507.html Xu, B., Zhao, P., Wang, Y.Y., et al., 2015.The Pre-Devonian Tectonic Framework of Xing'an-Mongolia Orogenic Belt (XMOB) in North China.Journal of Asian Earth Sciences, 97(Part B):183-196.doi: 10.1016/j.jseaes.2014.07.020 Xu, Y.W., Li, C.D., Zhao, L.G., et al., 2014.The Discovery of Devonian Strata in Xilin Gol Complex of Inner Mongolia and Its Geological Significance.Geology in China, 41(4):1167-1177(in Chinese with English abstract). https://www.researchgate.net/publication/287598825_The_discovery_of_Devonian_strata_in_Xilin_Gol_complex_of_Inner_Mongolia_and_its_geological_significance Xu, Y.G., Wu, X.Y., Luo, Z.Y., et al., 2007.Zircon Hf Isotope Compositions of Middle Jurassic-Early Cretaceous Intrusions in Shandong Province and Its Implications.Acta Petrologica Sinica, 23(2):307-316(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702012.htm Xue, H.M., Guo, L.J., Hou, Z.Q., et al., 2009.The Xilingele Complex from the Eastern Part of the Central Asian-Mongolia Orogenic Belt, China:Products of Early Variscan Orogeny other than Ancient Block:Evidence from Zircon SHRIMP U-Pb Ages.Acta Petrologica Sinica, 25(8):2001-2010(in Chinese with English abstract). https://www.researchgate.net/publication/279620476_The_Xilingele_complex_from_the_eastern_part_of_the_Central_Asian-Mongolia_Orogenic_Belt_China_Products_of_Early_Variscan_orogeny_other_than_ancient_block_Evidence_from_zircon_SHRIMP_U-Pb_ages Yang, G., Xiao, L., Wang, G.C., et al., 2015.Geochronology, Geochemistry and Zircon Lu-Hf Study of Granites in Western Section of Xiemisitai Area, Western Junggar.Earth Science, 40(3):548-562 (in Chinese with English abstract).doi: 10.3799/dqkx.2015.043 Yang, J.H., Wu, F.Y., Shao, J.A., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352.doi: 10.1016/j.epsl.2006.04.029 Yang, W.L., Luo, M.S., Wang, C.G., et al., 2014.Neoproterozoic-Paleozoic Sedimentary Basins Evolution of Xing-Meng Orogenic Belt.Earth Science, 39(8):1155-1168(in Chinese with English abstract).doi: 10.3799/dqkx.2014.101 Zhang, W., Jian, P., 2008.SHRIMP Dating of Early Paleozoic Granites from North Damaoqi, Inner Mongolia.Acta Geologica Sinica, 82(6):778-787(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200806008.htm Zhang, W., Jian, P., Kröner, A., et al., 2013.Magmatic and Metamorphic Development of an Early to Mid-Paleozoic Continental Margin Arc in the Southernmost Central Asian Orogenic Belt, Inner Mongolia, China.Journal of Asian Earth Sciences, 72:63-74.doi: 10.1016/j.jseaes.2012.05.025 Zhao, L.G., Ran, H., Zhang, Q.H., et al., 2013.Discovery of Ordovician Pluton in Abaga Banner, Inner Mongolia and Its Geological Significance.Global Geology, 31(3):451-461(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ201203003.htm 白新会, 徐仲元, 刘正宏, 等, 2015.中亚造山带东段南缘早志留世岩体锆石U-Pb定年、地球化学特征及其地质意义.岩石学报, 31(1): 67-79. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501005.htm 内蒙古自治区地质矿产局, 1996.内蒙古自治区岩石地层.武汉:中国地质大学出版社. http://cdmd.cnki.com.cn/Article/CDMD-10183-1012366036.htm 陈斌, 徐备, 1996.内蒙古苏左旗地区古生代两类花岗岩类的基本特征和构造意义.岩石学报, 12(4): 546-561. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB604.003.htm 陈斌, 赵国春, Wilde, S., 2001.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义.地质论评, 47(4): 361-367. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200104005.htm 邓晋福, 肖庆辉, 苏尚国, 等, 2007.火成岩组合与构造环境:讨论.高校地质学报, 13(3): 392-402. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703004.htm 葛梦春, 周文孝, 于洋, 等, 2011.内蒙古锡林郭勒杂岩解体及表壳岩系年代确定, 地学前缘, 18(5): 182-195. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105017.htm 耿建珍, 李怀坤, 张健, 等, 2011.锆石Hf同位素组成的LA-MC-ICP-MS测定.地质通报, 30(10):1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 郝旭, 徐备, 1997.内蒙古锡林浩特锡林郭勒杂岩的原岩年代和变质年代.地质论评, 43 (1):101-105. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199701015.htm 洪大卫, 王式洸, 谢锡林, 等, 2000.兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长.地学前缘, 7(2): 441-456. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302015.htm 洪大卫, 王式洸, 谢锡林, 等, 2003.从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系.地质学报, 77(2):203-209. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302015.htm 李怀坤, 朱士兴, 相振群, 等, 2010.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束.岩石学报, 26(7):2131-2140. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007016.htm 刘敦一, 简平, 张旗, 等, 2003.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据.地质学报, 77(3): 317-327. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200303004.htm 秦亚, 梁一鸿, 邢济麟, 等, 2013.内蒙古正镶白旗地区早古生代O型埃达克岩的厘定及其意义.地学前缘, 20(5):106-114. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201305008.htm 施光海, 刘敦一, 张福勤, 等, 2003.中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义.科学通报, 48(20):2187-2192. doi: 10.3321/j.issn:0023-074X.2003.20.017 石玉若, 刘敦一, 简平, 等, 2005a.内蒙古中部苏尼特左旗富钾花岗岩锆石SHRIMP U-Pb年龄.地质通报, 24(5): 424-428. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200702008.htm 石玉若, 刘敦一, 张旗, 等, 2005b.内蒙古苏左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP年代学研究.岩石学报, 21(1):143-150. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501015.htm 石玉若, 刘敦一, 张旗, 等, 2004.内蒙古苏左旗地区闪长-花岗岩类SHRIMP年代学.地质学报, 78(6): 789-799. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200406009.htm 孙立新, 任邦方, 赵凤清, 等, 2013.内蒙古锡林浩特地块中元古代花岗片麻岩的锆石U-Pb年龄和Hf同位素特征.地质通报, 32(2-3):327-340. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1011.htm 唐克东, 1992.中朝板块北侧褶皱带构造演化及成矿规律.北京:北京大学出版社, 305. http://cdmd.cnki.com.cn/Article/CDMD-10710-1013017281.htm 徐备, 陈斌, 1997.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化.中国科学(D辑), 27(3):227-232. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199703005.htm 徐备, 陈斌, 邵济安, 1996.内蒙古锡林郭勒杂岩Sm-Nd, Rb-Sr同位素年代研究.科学通报, 41(2): 153-155. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199602015.htm 徐备, Charvet, J., 张福勤, 2001.内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究.地质科学, 36(4): 424-434. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200104005.htm 徐义刚, 巫祥阳, 罗震宇, 等, 2007.山东中侏罗世-早白垩世侵入岩的锆石Hf同位素组成及其意义.岩石学报, 23(2):307-316. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200704001037.htm 许雅雯, 李承东, 赵利刚, 等, 2014.内蒙古锡林郭勒杂岩中泥盆纪地层的发现及地质意义.中国地质, 41(4): 1167-1177. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201404011.htm 薛怀民, 郭利军, 侯增谦, 等, 2009.中亚-蒙古造山带东段的锡林郭勒杂岩:早华力西期造山作用的产物而非古老陆块-锆石SHRIMP U-Pb年代学证据.岩石学报, 25(8): 2001-2010. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908025.htm 杨钢, 肖龙, 王国灿, 等, 2015.西准噶尔谢米斯台西段花岗岩年代学、地球化学、锆石Lu-Hf同位素特征及大地构造意义.地球科学, 40(3): 548-562. http://earth-science.net/WebPage/Article.aspx?id=3236 杨文麟, 骆满生, 王成刚, 等, 2014.兴蒙造山系新元古代-古生代沉积盆地演化.地球科学, 39(8): 1155-1168. http://earth-science.net/WebPage/Article.aspx?id=2920 张维, 简平, 2008.内蒙古达茂旗北部早古生代花岗岩类SHRIMP U-Pb年代学.地质学报82(6): 778-787. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200806008.htm 赵利刚, 冉皞, 张庆红, 等, 2013.内蒙古阿巴嘎旗奥陶纪岩体的发现及地质意义.世界地质, 31(3): 451-461. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201203003.htm