Original Depth of Paleoproterozoic Carbonatites in North China Craton and Onset of Modern-Style Plate Tectonics
-
摘要: 俯冲作用是改变地球内部物质演化的关键因素之一,而现代板块的启动时间一直存在争论.华北克拉通中部造山带内蒙古丰镇古元古代碳酸岩内超硅石榴石包体和榴辉岩捕虏体的发现,为研究岩浆起源深度和板块构造提供了窗口.矿物学和高温高压实验限定超硅石榴石(Si~3.18 pfu)富集三价铁(Fe3+/∑Fe~0.8),来源于地幔约400 km的深度表明碳酸岩岩浆起源于地幔过渡带.矿物对温压计和P-T视剖面图确定榴辉岩捕虏体变质峰期温压分别为~660 ℃和~2.65 GPa,温压梯度为~250 ℃·GPa-1,与现代板块深俯冲产物相似,说明现代板块构造在古元古代已经启动.统计显示全球古元古代碳酸岩与造山带内高压变质岩石密切共生.全球古元古代的板块俯冲可能与哥伦比亚超大陆的拼合有关.大规模板片俯冲携带地壳沉积物质进入深部地幔,形成碳酸岩岩浆及氧化的富Fe3+超硅石榴石.地壳物质在地幔源区循环约20亿年,导致了地幔源区的不均一性以及长时间的碳循环.Abstract: Subduction is one of the key factors that change the evolution of the interior of the Earth, and there have been controversies over the starting time of modern-style plate tectonics. The discovery of majorite garnet inclusions and eclogite xenoliths hosted by the Paleoproterozoic carbonatites in the Fengzhen area, Inner Mongolia, provides a rare window into the origin depth of magma and plate tectonics. Mineralogy and high temperature and pressure experiments constrain the ferric iron-rich (Fe3+/∑Fe~0.8) majoritic garnets (Si ~3.18 pfu) originated from about ~400 km in depth, indicating that the carbonatitic magma originated from the mantle transition zone. The mineral-pair thermobarometer and P-T phase diagram determine the peak metamorphic pressure and temperature at ~660 ℃ and ~2.65 GPa, which gives a peak thermal gradient of ~250 ℃·GPa-1, similar to the product of modern plate deep subduction, indicating that the modern plate tectonics has started since the Paleoproterozoic. Statistics show that the global Paleoproterozoic carbonatites are closely associated with high-pressure metamorphic rocks in Paleoproterozoic orogens. Global Paleoproterozoic slab subduction might be linked to the Columbia supercontinent amalgamation. Large-scale slab subduction inputted crustal sediments into the deep mantle, forming carbonatitic magmas and oxidized ferric iron-rich majoritic garnets. Crustal materials recycled for about 2 billion years in the mantle source region, leading to the compositional heterogeneities and carbon cycle in the deep mantle.
-
Key words:
- carbonatite /
- plate tectonics /
- magma origin /
- North China craton /
- Fengzhen /
- subduction /
- petrology
-
图 1 全球古元古代碳酸岩、麻粒岩、榴辉岩及显生宙造山带碳酸岩分布示意图
底图据Woolley and Kjarsgaard (2008); Xu et al.(2018)
Fig. 1. Distribution of Paleoproterozoic carbonatites, granulites, eclogites and Phanerozoic orogenic carbonatites worldwide
图 3 超硅石榴石及榴辉岩捕虏体照片
a, b.超硅石榴石及其寄主石榴石背散射图像;c.榴辉岩捕虏体手标本;d.榴辉岩捕虏体背散射图像.底图据Xu et al.(2017, 2018)
Fig. 3. Photographs of the majoritic garnets and the eclogite xenolith
图 5 科马提岩与地幔潜能温度-时间分布及全球变质带峰期温压条件统计
底图据van Thienen et al.(2004)、Herzberg et al.(2007)和Brown and Johnson(2018).a.科马提岩与地幔潜能温度-时间分布;b.全球变质带峰期温压条件统计图,NA、NC,北美克拉通、华北克拉通(Xu et al., 2018)
Fig. 5. Distribution of time-temperature of komatiites (a) and a global compilation of peak pressure-temperature conditions of metamorphic belts (b)
-
Agard, P., Yamato, P., Jolivet, L., et al., 2009.Exhumation of Oceanic Blueschists and Eclogites in Subduction Zones:Timing and Mechanisms.Earth-Science Reviews, 92(1-2):53-79. doi: 10.1016/j.earscirev.2008.11.002 Bell, K., Keller, J., 1995.Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites.Springer, Berlin. https://www.researchgate.net/publication/321612811_Carbonatite_Volcanism_Oldoinyo_Lengai_and_the_Petrogenesis_of_Natrocarbonatites Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., et al., 2010.The Growth of the Continental Crust:Constraints from Zircon Hf-Isotope Data.Lithos, 119(3-4):457-466. doi: 10.1016/j.lithos.2010.07.024 Brown, M., 2006.Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean.Geology, 34(11):961-964. doi: 10.1130/G22853A.1 Brown, M., Johnson, T., 2018.Secular Change in Metamorphism and the Onset of Global Plate Tectonics.American Mineralogist, 103(2):181-196. doi: 10.2138/am-2018-6166 Collerson, K.D., Williams, Q., Kamber, B.S., et al., 2010.Majoritic Garnet:A New Approach to Pressure Estimation of Shock Events in Meteorites and the Encapsulation of Sub-Lithospheric Inclusions in Diamond.Geochimica et Cosmochimica Acta, 74(20):5939-5957. doi: 10.1016/j.gca.2010.07.005 Condie, K.C., 2011.Earth as an Evolving Planetary System.Academic Press, Amsterdam. Dasgupta, R., Hirschmann, M.M., 2006.Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide.Nature, 440(7084):659-662. doi: 10.1038/nature04612 Dasgupta, R., Mallik, A., Tsuno, K., et al., 2013.Carbon-Dioxide-Rich Silicate Melt in the Earth's Upper Mantle.Nature, 493(7431):211-215. doi: 10.1038/nature11731 Dhuime, B., Storey, C.D., 2012.A Change in the Geodynamics of Continental Growth 3 Billion Years Ago.Science, 335(6074):1334-1336. doi: 10.1126/science.1216066 Dobson, D.P., Jones, A.P., Rabe, R., et al., 1996.In-Situ Measurement of Viscosity and Density of Carbonate Melts at High Pressure.Earth and Planetary Science Letters, 143(1-4):207-215. doi: 10.1016/0012-821X(96)00139-2 Feng, M., Xu, C., Kynicky, J., et al., 2016.Rare Earth Element Enrichment in Palaeoproterozoic Fengzhen Carbonatite from the North China Block.International Geology Review, 58(15):1940-1950. doi: 10.1080/00206814.2016.1193774 Fischer, T.P., Burnard, P., Marty, B., et al., 2009.Upper-Mantle Volatile Chemistry at Oldoinyo Lengai Volcano and the Origin of Carbonatites.Nature, 459(7243):77-80. doi: 10.1038/nature07977 Foley, S.F., Buhre, S., Jacob, D.E., 2003.Evolution of the Archaean Crust by Delamination and Shallow Subduction.Nature, 421(6920):249-252. doi: 10.1038/nature01319 Frost, D.J., McCammon, C.A., 2008.The Redox State of Earth's Mantle.Annual Review of Earth and Planetary Sciences, 36(1):389-420. doi: 10.1146/annurev.earth.36.031207.124322 Gaillard, F., Malki, M., Iacono-Marziano, G., et al., 2008.Carbonatite Melts and Electrical Conductivity in the Asthenosphere.Science, 322(5906):1363-1365. doi: 10.1126/science.1164446 Genge, M.J., Price, G.D., Jones, A.P., 1995.Molecular Dynamics Simulations of CaCO3 Melts to Mantle Pressures and Temperatures:Implications for Carbonatite Magmas.Earth and Planetary Science Letters, 131(3-4):225-238. doi: 10.1016/0012-821X(95)00020-D Greber, N.D., Dauphas, N., Bekker, A., et al., 2017.Titanium Isotopic Evidence for Felsic Crust and Plate Tectonics 3.5 Billion Years Ago.Science, 357(6357):1271-1274. doi: 10.1126/science.aan8086 Guo, J.H., Zhai, M.G., Zhang, Y.G., et al., 1993.Early Precambrian Manjinggou High-Pressure Granulite Melange Belt on the South Edge of the Huaian Complex, North China Craton:Geological Features, Petrology and Isotopic Geochronology.Acta Petrologica Sinica, 9(4):329-341 (in Chinese with English abstract). Hawkesworth, C.J., Kemp, A.I.S., 2006.Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution.Chemical Geology, 226(3-4):144-162. https://doi.org/10.1016/j.chemgeo.2005.09.018 Herzberg, C., Asimow, P.D., Arndt, N., et al., 2007.Temperatures in Ambient Mantle and Plumes:Constraints from Basalts, Picrites, and Komatiites.Geochemistry Geophysics Geosystems, 8(2):Q02006. doi: 10.1029-2006GC001390/ Höfer, H.E., Brey, G.P., Schulz-Dobrick, B., et al., 1994.The Determination of the Oxidation State of Iron by the Electron Microprobe.European Journal of Mineralogy, 6(3):407-418. https://doi.org/10.1127/ejm/6/3/0407 Hofmann, A.W., 1997.Mantle Geochemistry:The Message from Oceanic Volcanism.Nature, 385(6613):219-229. doi: 10.1038/385219a0 Hofmeister, A.M., Giesting, P.A., Wopenka, B., et al., 2004.Vibrational Spectroscopy of Pyrope-Majorite Garnets:Structural Implications.American Mineralogist, 89(1):132-146. https://doi.org/10.2138/am-2004-0116 Irifune, T., Sekine, T., Ringwood, A.E., et al., 1986.The Eclogite-Garnetite Transformation at High Pressure and Some Geophysical Implications.Earth and Planetary Science Letters, 77(2):245-256.https://doi.org/10.1016/0012-821x(86)90165-2 doi: 10.1016/0012-821X(86)90165-2 Jacob, D.E., 2004.Nature and Origin of Eclogite Xenoliths from Kimberlites.Lithos, 77(1-4):295-316. https://doi.org/10.1016/j.lithos.2004.03.038 Jahn, B.M., Caby, R., Monie, P., 2001.The Oldest UHP Eclogites of the World:Age of UHP Metamorphism, Nature of Protoliths and Tectonic Implications.Chemical Geology, 178(1-4):143-158.https://doi.org/10.1016/s0009-2541(01)00264-9 doi: 10.1016/S0009-2541(01)00264-9 Kiseeva, E.S., Yaxley, G.M., Stepanov, A.S., et al., 2013.Metapyroxenite in the Mantle Transition Zone Revealed from Majorite Inclusions in Diamonds.Geology, 41(8):883-886. doi: 10.1130/G34311.1 Kiseeva, E.S., Wood, B.J., Ghosh, S., et al., 2016.The Pyroxenite-Diamond Connection.Geochemical Perspectives Letters, 2(1):1-9. doi: 10.7185/geochemlet.1601 Korh, A.E., Schmidt, S.T., Ulianov, A., et al., 2009.Trace Element Partitioning in HP-LT Metamorphic Assemblages during Subduction-Related Metamorphism, Ile de Groix, France:A Detailed LA-ICPMS Study.Journal of Petrology, 50(6):1107-1148. doi: 10.1093/petrology/egp034 Labrosse, S., Jaupart, C., 2007.Thermal Evolution of the Earth:Secular Changes and Fluctuations of Plate Characteristics.Earth and Planetary Science Letters, 260(3-4):465-481. doi: 10.1016/j.epsl.2007.05.046 Li, S.Z., Dai, L.M., Zhang, Z., et al., 2015.Precambrian Geodynamics(Ⅲ):General Features of Precambrian Geology.Earth Science Frontiers, 22(6):27-45 (in Chinese with English abstract). https://www.researchgate.net/publication/287261159_Precambrian_geodynamics_III_General_features_of_Precambrian_geology Litasov, K., Ohtani, E., 2010.The Solidus of Carbonated Eclogite in the System CaO-Al2O3-MgO-SiO2-Na2O-CO2 to 32 GPa and Carbonatite Liquid in the Deep Mantle.Earth and Planetary Science Letters, 295(1-2):115-126. doi: 10.1016/j.epsl.2010.03.030 Liu, F.L., Zhang, L.F., Li, X.L., et al., 2017.The Metamorphic Evolution of Paleoproterozoic Eclogites in Kuru-Vaara, Northern Belomorian Province, Russia:Constraints from P-T Pseudosections and Zircon Dating.Precambrian Research, 289:31-47. doi: 10.1016/j.precamres.2016.11.011 Maruyama, S., Liou, J.G., Terabayashi, M., 1996.Blueschists and Eclogites of the World and Their Exhumation.International Geology Review, 38(6):485-594. doi: 10.1080/00206819709465347 McCammon, C., 2005.The Paradox of Mantle Redox.Science, 308(5723):807-808. https://doi.org/10.1126/science.1110532 Mints, M.V., Belousova, E.A., Konilov, A.N., et al., 2010.Mesoarchean Subduction Processes:2.87 Ga Eclogites from the Kola Peninsula, Russia.Geology, 38(8):739-742. doi: 10.1130/G31219.1 Moyen, J.F., Martin, H., 2012.Forty Years of TTG Research.Lithos, 148(148):312-336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7fd75643f9219d8289ed37b5662b384e Nakatsuka, A., Yoshiasa, A., Yamanaka, T., et al., 1999.Symmetry Change of Majorite Solid-Solution in the System Mg3Al2Si3O12-MgSiO3.American Mineralogist, 84(7-8):1135-1143. doi: 10.2138/am-1999-7-816 Nelson, D.R., Chivas, A.R., Chappell, B.W., et al., 1988.Geochemical and Isotopic Systematics in Carbonatites and Implications for the Evolution of Ocean-Island Sources.Geochimica et Cosmochimica Acta, 52(1):1-17. doi: 10.1016/0016-7037(88)90051-8 Palin, R.M., White, R.W., Green, E.C.R., 2016.Partial Melting of Metabasic Rocks and the Generation of Tonalitic-Trondhjemitic-Granodioritic (TTG) Crust in the Archaean:Constraints from Phase Equilibrium Modelling.Precambrian Research, 287:73-90. https://doi.org/10.1016/j.precamres.2016.11.001 Powell, R., Holland, T., Worley, B., 1998.Calculating Phase Diagrams Involving Solid Solutions via Non-Linear Equations, with Examples Using THERMOCALC.Journal of Metamorphic Geology, 16(4):577-588. doi: 10.1111/jmg.1998.16.issue-4 Rapp, R.P., Shimizu, N., Norman, M.D., 2003.Growth of Early Continental Crust by Partial Melting of Eclogite.Nature, 425(6958):605-609. doi: 10.1038/nature02031 Rohrbach, A., Ballhaus, C., Golla-Schindler, U., et al., 2007.Metal Saturation in the Upper Mantle.Nature, 449(7161):456-458. doi: 10.1038/nature06183 Scambelluri, M., Pettke, T., van Roermund, H.L.M., 2008.Majoritic Garnets Monitor Deep Subduction Fluid Flow and Mantle Dynamics.Geology, 36(1):59-62. doi: 10.1130/G24056A.1 Shirey, S.B., Richardson, S.H., 2011.Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle.Science, 333(6041):434-436. doi: 10.1126/science.1206275 Smithies, R.H., 2000.The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite.Earth and Planetary Science Letters, 182(1):115-125. doi: 10.1016/S0012-821X(00)00236-3 Stein, M., Hofmann, A.W., 1994.Mantle Plumes and Episodic Crustal Growth.Nature, 372(6501):63-68. doi: 10.1038/372063a0 Stern, R.J., 2005.Evidence from Ophiolites, Blueschists, and Ultrahigh-Pressure Metamorphic Terranes That the Modern Episode of Subduction Tectonics Began in Neoproterozoic Time.Geology, 33(7):557-560. doi: 10.1130/G21365.1 Sweeney, R.J., 1994.Carbonatite Melt Compositions in the Earth's Mantle.Earth and Planetary Science Letters, 128(3-4):259-270. doi: 10.1016/0012-821X(94)90149-X Tang, M., Chen, K., Rudnick, R.L., 2016.Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics.Science, 351(6271):372-375. doi: 10.1126/science.aad5513 Tao, R.B., Fei, Y.W., Bullock, E.S., et al., 2018.Experimental Investigation of Fe3+-Rich Majoritic Garnet and Its Effect on Majorite Geobarometer.Geochimica et Cosmochimica Acta, 225:1-16. doi: 10.1016/j.gca.2018.01.008 Thomson, A.R., Walter, M.J., Kohn, S.C., et al., 2016.Slab Melting as a Barrier to Deep Carbon Subduction.Nature, 529(7584):76-79. doi: 10.1038/nature16174 Tomkins, H.S., Powell, R., Ellis, D.J., 2007.The Pressure Dependence of the Zirconium-in-Rutile Thermometer.Journal of Metamorphic Geology, 25(6):703-713. doi: 10.1111/jmg.2007.25.issue-6 Trap, P., Faure, M., Lin, W., et al., 2009.The Zanhuang Massif, the Second and Eastern Suture Zone of the Paleoproterozoic Trans-North China Orogen.Precambrian Research, 172(1-2):80-98. doi: 10.1016/j.precamres.2009.03.011 Treiman, A.H., Schedl, A., 1983.Properties of Carbonatite Magma and Processes in Carbonatite Magma Chambers.The Journal of Geology, 91(4):437-447. https://doi.org/10.1086/628789 van der Hist, R., Engdahl, R., Spakman, W., et al., 1991.Tomographic Imaging of Subducted Lithosphere below Northwest Pacific Island Arcs.Nature, 353(6339):37-43. https://doi.org/10.1038/353037a0 van Hunen, J., Moyen, J.F., 2012.Archean Subduction:Fact or Fiction?.Annual Review of Earth and Planetary Sciences, 40(1):195-219. https://doi.org/10.1146/annurev-earth-042711-105255 van Thienen, P., Vlaar, N.J., van den Berg, A.P., 2004.Plate Tectonics on the Terrestrial Planets.Physics of the Earth and Planetary Interiors, 142(1-2):61-74. https://doi.org/10.1016/j.pepi.2003.12.008 Walter, M.J., Bulanova, G.P., Armstrong, L.S., et al., 2008.Primary Carbonatite Melt from Deeply Subducted Oceanic Crust.Nature, 454(7204):622-625. https://doi.org/10.1038/nature07132 Waters, D.J., Martin, H.N., 1993.Geobarometry of Phengite-Bearing Eclogites.Terra Abstracts, 5:410-411. http://cn.bing.com/academic/profile?id=6174123f308df636f644f1ff2449fa5a&encoded=0&v=paper_preview&mkt=zh-cn Wilson, J.T., 1966.Did the Atlantic Close and Then Re-Open?.Nature, 211(5050):676-681. doi: 10.1038/211676a0 Wood, B.J., Kiseeva, E.S., Matzen, A.K., 2013.Garnet in the Earth's Mantle.Elements, 9(6):421-426. https://doi.org/10.2113/gselements.9.6.421 Woolley, A.R., Kjarsgaard, B.A., 2008.Carbonatite Occurrences of the World: Map and Database.Geological Survey of Canada, Open File, 5796. Wyllie, P.J., 1989.Origin of Carbonatites: Evidence from Phase Equilibrium Studies.In: Bell, K., ed., Carbonatites: Genesis and Evolution.Unwin Hyman, London, 500-545. Xiong, X.L., 2006.Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite.Geology, 34(11):945-948.https://doi.org/10.1130/g22711a.1 doi: 10.1130/G22711A.1 Xu, C., Chakhmouradian, A.R., Taylor, R.N., et al., 2014.Origin of Carbonatites in the South Qinling Orogen:Implications for Crustal Recycling and Timing of Collision between the South and North China Blocks.Geochimica et Cosmochimica Acta, 143:189-206. https://doi.org/10.1016/j.gca.2014.03.041 Xu, C., Kynick, J., Song, W.L., et al., 2018.Cold Deep Subduction Recorded by Remnants of a Paleoproterozoic Carbonated Slab.Nature Communications, 9:2790. https://doi.org/10.1038/s41467-018-05140-5 Xu, C., Kynick, J., Tao, R.B., et al., 2017.Recovery of an Oxidized Majorite Inclusion from Earth's Deep Asthenosphere.Science Advances, 3(4):e1601589. https://doi.org/10.1126/sciadv.1601589 Xu, C., Zeng, L., Song, W.L., et al., 2017.Orogenic Carbonatite Petrogenesis and Deep Carbon Recycle.Bulletin of Mineralogy, Petrology and Geochemistry, 36(2):213-221, 183 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201702004 Zack, T., Moraes, R., Kronz, A., 2004.Temperature Dependence of Zr in Rutile:Empirical Calibration of a Rutile Thermometer.Contributions to Mineralogy and Petrology, 148(4):471-488. https://doi.org/10.1007/s00410-004-0617-8 Zeng, L., Xu, C., Li, Y.X., et al., 2017.Petrogenesis and Tectonic Implication of Paleoproterozoic Granites and Granulites in the Fengzhen Area of North China Craton.Precambrian Research, 302:298-311. https://doi.org/10.1016/j.precamres.2017.10.015 Zhang, Q., Zhai, M.G., 2012.What is the Archean TTG? Acta Petrologica Sinica, 28(11):3446-3456 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211002 Zhao, G.C., Sun, M., Wilde, S.A., et al., 2004.A Paleo-Mesoproterozoic Supercontinent:Assembly, Growth and Breakup.Earth-Science Reviews, 67(1-2):91-123. https://doi.org/10.1016/j.earscirev.2004.02.003 Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited.Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002 Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001.Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution.Precambrian Research, 107(1):45-73.doi: 10.1016/S0301-9268(00)00154-6 Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2002.SHRIMP U-Pb Zircon Ages of the Fuping Complex:Implications for Late Archean to Paleoproterozoic Accretion and Assembly of the North China Craton.American Journal of Science, 302(3):191-226. https://doi.org/10.2475/ajs.302.3.191 Zhou, L.G., Zhai, M.G., Lu, J.S., et al., 2017.Paleoproterozoic Metamorphism of High-Grade Granulite Facies Rocks in the North China Craton:Study Advances, Questions and New Issues.Precambrian Research, 303:520-547. https://doi.org/10.1016/j.precamres.2017.06.025 郭敬辉, 翟明国, 张毅刚, 等, 1993.怀安蔓菁沟早前寒武纪高压麻粒岩混杂岩带地质特征、岩石学和同位素年代学.岩石学报, 9(4):329-341. doi: 10.3321/j.issn:1000-0569.1993.04.007 李三忠, 戴黎明, 张臻, 等, 2015.前寒武纪地球动力学(Ⅲ):前寒武纪地质基本特征.地学前缘, 22(6):27-45. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201506005.htm 许成, 曾亮, 宋文磊, 等, 2017.造山带碳酸岩起源与深部碳循环.矿物岩石地球化学通报, 36(2):213-221, 183. doi: 10.3969/j.issn.1007-2802.2017.02.004 张旗, 翟明国, 2012.太古宙TTG岩石是什么含义?岩石学报, 28(11):3446-3456. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211002