Mechanism of Shale Oil Enrichment from the Salt Cyclotherm in Qian3 Member of Qianjiang Sag, Jianghan Basin
-
摘要: 针对潜江组页岩油富集机理方面的研究较为欠缺.利用岩心图像、岩石热解、镜质体反射率、生物标志化合物、干酪根显微组分鉴定、岩石物性、测井及XPT压力试井等资料对韵律层的烃源岩品质、储集性能以及保存条件进行了综合分析.从王场背斜过渡至蚌湖向斜南斜坡,韵律层干酪根类型均以Ⅰ-Ⅱ1型为主,镜质体反射率介于0.51%~0.80%.王场背斜韵律层内岩石与底部盐岩内的夹层白云质泥岩间的C29甾烷成熟度指标存在明显差异,指示存在运移油.储集岩孔隙度介于7.8%~26.3%.韵律层顶底盐岩厚度大(> 6 m)且横向分布稳定,沉积-埋藏期并未发生严重破裂.在保存条件及储集能力优越的基础上,同层深部运移供烃是构造高部位韵律层中页岩油富集的重要因素,而原地生烃滞留则控制着构造低部位页岩油的富集.Abstract: Research on the shale oil enrichment mechanism of Qianjiang Formation is lacking.The data of core image, rock pyrolysis, vitrinite reflectance, biomarkers, maceral composition, rock petrophysics, well logging, and XPT well test were used to analyze the quality of source rock, reservoir property, and preservation condition in this study.The kerogens are predominantly type Ⅰ-Ⅱ1.The vitrinite reflectance ranges from 0.51% to 0.80%.The maturity indicators of C29 sterane in the rocks from the 10th cyclotherm in the Wangchang are obviously different from that of the underlying halite, which indicates that there are migrated oil.The porosity of the reservoir ranges from 7.8% to 26.3%.The halite layers are thick enough (> 6 m) and stable throughout the area distribution; moreover, they did not break during the stage of deposition and burial.With the excellent preservation condition and storage capacity, the hydrocarbon generated from the deeper source rocks within the 10th cyclotherm controlled the shale oil enrichment in higher structural position, while hydrocarbon generated in-situ dominated in the lower structural position.
-
Key words:
- Qianjiang Sag /
- Qian3 Member /
- salt cyclotherm /
- shale oil /
- enrichment /
- petroleum geology
-
图 1 潜江凹陷构造单元(a)和古近系地层简图(b)
据方志雄等(2006)修改
Fig. 1. Structural units (a) and Paleogene stratigraphic map (b) of Qianjiang Sag
表 1 潜江凹陷潜三段10号韵律层岩石热解参数
Table 1. Rock-Eval pyrolysis data of the 10th cyclotherm of the Qian3 Member in the Qianjiang Sag
构造单元 井号 取样深度段(m) 编号 岩性 TOC(%) S1 (mg/g) S2(mg/g) OSI 王场背斜 WNN 1 677.72~1 682.63 1 灰质泥岩 3.75 14.89 9.96 397.07 2 灰质泥岩 2.89 12.86 7.79 444.98 3 灰质泥岩 3.65 12.69 9.58 347.67 4 白云岩 4.51 21.00 13.50 465.63 5 泥质白云岩 4.97 23.87 17.05 480.28 6 白云质泥岩 2.61 9.65 10.17 369.73 WFCS 1 769.90~1 773.70 7 灰质泥岩 2.91 8.71 7.87 299.31 8 灰质泥岩 3.69 9.03 7.93 244.72 9 泥质白云岩 3.46 10.69 6.28 308.96 10 白云质泥岩 3.88 11.50 7.55 296.39 11 白云质泥岩 4.69 16.84 11.51 359.06 12 灰质泥岩 3.91 12.00 10.49 306.91 13 泥质白云岩 5.37 26.04 14.38 484.92 蚌湖向斜南斜坡 BOST 2 815.82~2 821.30 14 泥质白云岩 2.63 8.27 4.48 314.45 15 白云质泥岩 2.89 15.37 4.70 531.83 16 泥质白云岩 4.96 31.54 8.73 635.89 17 泥质灰岩 1.46 4.08 1.68 279.45 18 泥质白云岩 3.56 27.72 4.83 778.65 注:表内样品按对应深度段中深度递增规律排序. 表 2 潜江凹陷潜三段10号韵律层镜质体反射率值
Table 2. Vitrinite reflectance data of the 10th cyclotherm of the Qian3 Member in the Qianjiang Sag
构造单元 井号 取样深度段(m) 编号 岩性 镜质体反射率Ro(%) 测点数 最小值 最大值 均值 王场背斜 WNN 1 680.28 1 白云岩 0.50 0.53 0.51 3 WFCS 1 669.60~1 776.45 2 泥质灰岩 0.48 0.53 0.51 7 3 泥质白云岩 0.50 0.54 0.52 13 4 灰质泥岩 0.52 0.56 0.54 13 蚌湖向斜南斜坡 BOST 2 814.05~2 814.85 5 泥质白云岩 0.75 0.79 0.77 3 6 灰质泥岩 0.75 0.83 0.79 12 7 泥质白云岩 0.77 0.83 0.80 7 注:表内样品按对应深度段中深度递增规律排序. 表 3 潜江凹陷潜江组潜三段10号韵律层干酪根显微组分含量
Table 3. Maceral compositions of the 10th cyclotherm of the Qian3 Member in the Qianjiang Sag
构造单元 井号 取样深度段(m) 编号 岩性 腐泥组(%) 镜质组(%) 干酪根类型 腐泥无定形体 腐泥碎屑体 无结构镜质体 王场背斜 WNN 1 677.72~1 682.63 1 灰质泥岩 69.3 13.7 17.0 Ⅱ1 2 灰质泥岩 72.7 12.3 15.0 Ⅱ1 3 灰质泥岩 81.3 8.0 10.7 Ⅰ 4 白云岩 64.3 10.3 25.3 Ⅱ1 5 泥质白云岩 65.3 11.7 23.0 Ⅱ1 6 白云质泥岩 64.3 13.7 22.0 Ⅱ1 WFCS 1 769.60~1 776.45 7 泥质灰岩 68.7 10.7 20.7 Ⅱ1 8 泥质白云岩 75.3 9.0 15.7 Ⅱ1 9 白云质泥岩 82.0 7.7 10.3 Ⅰ 10 泥质白云岩 85.7 6.3 8.0 Ⅰ 11 白云质泥岩 69.7 8.3 22.0 Ⅱ1 12 灰质泥岩 66.0 9.7 24.3 Ⅱ1 13 泥质白云岩 63.3 10.3 26.3 Ⅱ1 14 灰质泥岩 71.0 8.7 20.3 Ⅱ1 蚌湖向斜南斜坡 BOST 2 813.96~2 814.36 15 泥质白云岩 72.7 6.3 21.0 Ⅱ1 16 泥质白云岩 73.3 8.7 18.0 Ⅱ1 17 白云质泥岩 74.7 9.3 16.0 Ⅱ1 18 灰质泥岩 78.0 8.0 14.0 Ⅱ1 注:表内样品按对应深度段中深度递增规律排序. 表 4 潜江凹陷潜江组潜三段10号韵律层储层孔隙度与渗透率参数
Table 4. Porosity and permeability of reservoir rocks in the 10th cyclotherm of the Qian3 Member of the Qianjiang Sag
构造单元 井号 取样深度段(m) 编号 岩性 孔隙度(%) 气测渗透率(10-3 μm2) 备注 王场背斜 WFCS 1 769.95~1 774.40 1 泥质白云岩 19.3 106.52 见裂缝 2 白云岩 26.3 0.95 3 白云岩 26.0 9.19 见裂缝 WNN 1 681.03 4 泥质白云岩 21.8 19.30 见裂缝 蚌湖向斜南斜坡 BSOT 2 814.36~2 821.34 5 灰质泥岩 7.8 8.65 见裂缝 6 白云质泥岩 10.4 1.19 7 白云质泥岩 11.2 0.42 8 泥质白云岩 14.1 17.30 见裂缝 9 泥质白云岩 16.5 0.29 10 白云质泥岩 12.1 6.34 见裂缝 11 白云质泥岩 11.6 0.61 12 泥质白云岩 12.5 6.95 见裂缝 13 白云岩 20.4 2.24 14 白云岩 23.8 0.36 15 泥质白云岩 12.7 1.85 表 5 国内外页岩油主要产层及勘探层储集岩石孔隙度
Table 5. Statistics of reservoir porosity of the major shale oil production and exploring formation at home and abroad
构造单元 地层 深度(m) 岩性 孔隙度(%) 备注 数据来源 Williston盆地 Bakken 1 257.4~2 292.0 泥岩、钙质/泥质(粉)砂岩 4.1~12 单岩相孔隙度的算术平均值,深度为综合31口井取心段范围读取 Angulo and Buatois (2011) Western Gulf盆地 Eagle Ford 2 430.5~4 012.1 钙质泥页岩,泥灰岩 2.48~20.25 深度为3口井孔隙度与深度关系图上读取 Sondhi (2011) Permian盆地 Wolfcamp 未提供 钙质泥岩,硅质碎屑泥岩 4~10 Rafatian and Capsan (2015) 东营凹陷 沙三下亚段-沙四上亚段 3 050~3 450 灰岩、粉砂岩、混积岩 2.9~12.4 深度为“泥页岩深度与孔隙度关系”图上读取 张顺等(2015) 沾化凹陷 沙三下亚段 2 910~3 130 泥质灰岩、灰质泥岩和含泥质灰岩 1.2~15.3 深度为柱状图上读取 张磊磊等(2016) 马朗凹陷 芦草沟组 1 400~3 000 泥岩、灰质泥岩、云质泥岩 4~12 深度为剖面图上读取 柳波等(2012) 沁阳凹陷 核桃园组 2 390~2 484 灰质页岩,粉砂质页岩 2.73~5.81 深度为柱状图上读取 王敏等(2013) -
Angulo, S., Buatois, L., 2011.Petrophysical Characterization of Sedimentary Facies from the Upper Devonian-Lower Mississippian Bakken Formation in the Williston Basin, Southeastern Saskatchewan.In: Summary of Investigations 2011.Saskatchewan Geological Survey, Saskatchewan Ministry of Energy and Resources, Saskatchewan, 1-16. Cao, Q.Y., 1985.Identification of Microcomponents and Types of Kerogen under Transmitted Light.Petroleum Expoloration and Development, 12(5): 14-23, 81-88 (in Chinese with English abstract). Cobbold, P.R., Rodrigues, N., 2007.Seepage Forces, Important Factors in the Formation of Horizontal Hydraulic Fractures and Bedding-Parallel Fibrous Veins ('Beef' and'Cone-in-Cone').Geofluids, 7(3):313-322. https://doi.org/10.1111/j.1468-8123.2007.00183.x Cobbold, P.R., Zanella, A., Rodrigues, N., et al., 2013.Bedding-Parallel Fibrous Veins (Beef and Cone-in-Cone):Worldwide Occurrence and Possible Significance in Terms of Fluid Overpressure, Hydrocarbon Generation and Mineralization.Marine and Petroleum Geology, 43:1-20. https://doi.org/10.1016/j.marpetgeo.2013.01.010 Downey, M.W., 1984.Evaluating Seals for Hydrocarbon Accumulations.AAPG Bulletin, 68(11):1752-1763. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214981031 Fang, Z.X., Chen, K.Y., Chen, F.L., et al., 2006.The Filling Models of Jianghan Salt Lake Basin.Petroleum Industry Press, Beijing (in Chinese). Hou, Y.G., Wang, F.R., He, S., et al., 2017.Properties and Shale Oil Potential of Saline Lacustrine Shales in the Qianjiang Depression, Jianghan Basin, China.Marine and Petroleum Geology, 86:1173-1190. https://doi.org/10.1016/j.marpetgeo.2017.07.008 Jarvie, D.M., 2012.Shale Resource Systems for Oil and Gas: Part 2: Shale-Oil Resource Systems.In: Breyer, J., ed., Shale Reservoirs-Giant Resources for the 21st.The American Association of Petroleum Geologists, Tulsa. Jiang, S., Tang, X.L., Osborne, S., et al., 2017.Enrichment Factors and Current Misunderstanding of Shale Oil and Gas:Case Study of Shales in U.S., Argentina and China. Earth Science, 42(7):1083-1091 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.087 King, R.R., Smith, T.R., Jarvie, D., et al., 2015.Addressing the Caveats of Source Rock Pyrolysis in the Unconventional World: Modified Methods and Interpretative Ideas.In: Unconventional Resources Technology Conference.Unconventional Resources Technology Conference, San Antonio. Lewis, S., Holness, M., 1996.Equilibrium Halite-H2O Dihedral Angles:High Rock-Salt Permeability in the Shallow Crust? Geology, 24(5):431-434.https://doi.org/10.1130/0091-7613(1996)024<0431:ehhoda>2.3.co;2 doi: 10.1130/0091-7613(1996)024<0431:ehhoda>2.3.co;2 Li, M.W., Chen, Z.H., Cao, T.T., et al., 2018.Expelled Oils and Their Impacts on Rock-Eval Data Interpretation, Eocene Qianjiang Formation in Jianghan Basin, China.International Journal of Coal Geology, 191:37-48. https://doi.org/10.1016/j.coal.2018.03.001 Li, Z.M., Zheng, L.J., Jiang, Q.G., et al., 2018.Simulation of Hydrocarbon Generation and Expulsion for Lacustrine Organic-Rich Argillaceous Dolomite and Its Implications for Shale Oil Exploration. Earth Science, 43(2):566-576 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.024 Liu, B., Chi, Y.A., Huang, Z.L., et al., 2013.Migration Mechanism of the Permian Hydrocarbon and Shale Oil Accumulation in Malang Sag, the Santanghu Basin.Oil & Gas Geology, 34(6):725-730 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201306002 Liu, B., Lü, Y.F., Zhao, R., et al., 2012.Formation Overpressure and Shale Oil Enrichment in the Shale System of Lucaogou Formation, Malang Sag, Santanghu Basin, NW China.Petroleum Exploration and Development, 39(6):699-705 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201206007 Liu, B., Shi, J.X., Fu, X.F., et al., 2018.Petrological Characteristics and Shale Oil Enrichment of Lacustrine Fine-Grained Sedimentary System:A Case Study of Organic-Rich Shale in First Member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China.Petroleum Exploration and Development, 45(5):828-838 (in Chinese with English abstract). Liu, Z., Shao, X.J., Jin, B., et al., 2007.Co-Effect of Depth and Burial Time on the Evolution of Porosity for Classic Rocks during the Stage of Compaction.Geoscience, 21(1):125-132 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200701016 Magara, K., 1980.Comparison of Porosity-Depth Relationships of Shale and Sandstone.Journal of Petroleum Geology, 3(2):175-185. https://doi.org/10.1111/j.1747-5457.1980.tb00981.x Peach, C.J., Spiers, C.J., 1996.Influence of Crystal Plastic Deformation on Dilatancy and Permeability Development in Synthetic Salt Rock.Tectonophysics, 256(1-4):101-128. https://doi.org/10.1016/0040-1951(95)00170-0 Peters, K.E., Cassa, M.R., 1994.Applied Source Rock Geochemistry.In: Magoon, L.B., Dow, W.G., eds., The Petroleum System-From Source to Trap.American Association of Petroleum Geologists, Tulsa. Pitman, J.K., Price, L.C., Lefever, J.A., 2001.Diagenesis and Fracture Development in the Bakken Formation, Williston Basin: Implications for Reservoir Quality in the Middle Member.In: U.S.Geological Survey Professional Paper.U.S.Department of the Interior & U.S.Geological Survey, Denver. Rafatian, N., Capsan, J., 2015.Petrophysical Characterization of the Pore Space in Permian Wolfcamp Rocks.Petrophysics, 56(1):45-57. Rodrigues, N., Cobbold, P.R., Loseth, H., et al., 2009.Widespread Bedding-Parallel Veins of Fibrous Calcite ('Beef') in a Mature Source Rock (Vaca Muerta Fm., Neuquén Basin, Argentina):Evidence for Overpressure and Horizontal Compression.Journal of the Geological Society, 166(4):695-709. https://doi.org/10.1144/0016-76492008-111 Schoenherr, J., Urai, J.L., Kukla, P.A., et al., 2007.Limits to the Sealing Capacity of Rock Salt:A Case Study of the Infra-Cambrian Ara Salt from the South Oman Salt Basin.AAPG Bulletin, 91(11):1541-1557. https://doi.org/10.1306/06200706122 Sondhi, N., 2011.Petrophysical Characterization of Eagle Ford Shale (Dissertation).University of Oklahoma, Norman. Wang, D.F., Wang, S.Z., 1998.Geology of Saline Lacustrine Facies Oilfield.Petroleum Industry Press, Beijing (in Chinese). Wang, F.R., He, S., Zheng, Y.H., et al., 2016.Mineral Composition and Brittleness Characteristics of the Inter-Salt Shale Oil Reservoirs in the Qianjiang Formation, Qianjiang Sag.Petroleum Geology & Experiment, 38(2):211-218 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201602010 Wang, G.L., Yang, Y.Q., Zhang, Y.S., et al., 2004.Sedimentary Microfacies and Evolution of the Qianjiang Formation of Paleogene at Wangchang Area in Qianjiang Sag, Jianghan Basin.Journal of Palaeogeography, 6(2):140-150 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200402002 Wang, M., Chen, X., Yan, Y.X., et al., 2013.Geological Characteristics and Evaluation of Continental Shale Oil in Biyang Sag of Nanxiang Basin.Journal of Palaeogeography, 15(5):663-671 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gdlxb201305009 Wang, Z.X., Zheng, Y.H., Chen, F.L., et al., 2018.Biomarker Geochemistry of Eq34-10 Cyclothem Shale in Qianjiang Depression of the Jianghan Salt Lake Facies Basin.Petroleum Science and Technology, 36(2):148-153. https://doi.org/10.1080/10916466.2017.1411947 Warren, J.K., 2016.Evaporite.Springer Verlag Berlin. Warren, J.K., 2017.Salt Usually Seals, but sometimes Leaks:Implications for Mine and Cavern Stabilities in the Short and Long Term.Earth-Science Reviews, 165:302-341. https://doi.org/10.1016/j.earscirev.2016.11.008 Wu, S.Q., Tang, X.S., Du, X.J., et al., 2013.Geologic Characteristics of Continental Shale Oil in the Qianjiang Depression, Jianghan Salt Lake Basin.Journal of East China Institute of Technology (Natural Science), 36(3):282-286 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb201303006 Xiong, Z.Y., Wu, S.Q., Wang, Y., et al., 2015.Geological Characteristics and Practice for Intersalt Argillaceous Dolomites Reservoir in the Qianjiang Depression of Jianghan Salt Lake Basin.Geological Science and Technology Information, 34(2):181-187 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201502026 Zhang, L.L., Lu, Z.Y., Wang, J., et al., 2016.Microscopic Pore Structure of Shale Oil Reservoirs in the Lower 3rd Member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin.Oil & Gas Geology, 37(1):80-86 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201601011 Zhang, S., Chen, S.Y., Yan, J.H., et al., 2015.Characteristics of Shale Lithofacies and Reservoir Space in the 3rd and 4th Members of Shahejie Formation, the West of Dongying Sag.Natural Gas Geoscience, 26(2):320-332 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201502013 曹庆英, 1985.透射光下干酪根显微组分鉴定及类型划分.石油勘探与开发, 12(5): 14-23, 81-88. http://www.cnki.com.cn/Article/CJFDTotal-SKYK198505002.htm 方志雄, 陈开远, 陈凤玲, 等, 2006.江汉盆地盐湖沉积充填模式.北京:石油工业出版社. 蒋恕, 唐相路, Osborne Steve, 等, 2017.页岩油气富集的主控因素及误辩:以美国、阿根廷和中国典型页岩为例.地球科学, 42(7):1083-1091. https://doi.org/10.3799/dqkx.2017.087 李志明, 郑伦举, 蒋启贵, 等, 2018.湖相富有机质泥质白云岩生排烃模拟及其对页岩油勘探的启示.地球科学, 43(2):566-576. https://doi.org/10.3799/dqkx.2018.024 柳波, 迟亚奥, 黄志龙, 等, 2013.三塘湖盆地马朗凹陷二叠系油气运移机制与页岩油富集规律.石油与天然气地质, 34(6):725-730. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201306002 柳波, 吕延防, 赵荣, 等, 2012.三塘湖盆地马朗凹陷芦草沟组泥页岩系统地层超压与页岩油富集机理.石油勘探与开发, 39(6):699-705. http://d.old.wanfangdata.com.cn/Periodical/syktykf201206007 柳波, 石佳欣, 付晓飞, 等, 2018.陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例.石油勘探与开发, 45(5):828-838. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201805008 刘震, 邵新军, 金博, 等, 2007.压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响.现代地质, 21(1):125-132. doi: 10.3969/j.issn.1000-8527.2007.01.016 王典敷, 汪仕忠, 1998.盐湖油田地质.北京:石油工业出版社. 王芙蓉, 何生, 郑有恒, 等, 2016.江汉盆地潜江凹陷潜江组盐间页岩油储层矿物组成与脆性特征研究.石油实验地质, 38(2):211-218. http://d.old.wanfangdata.com.cn/Periodical/sysydz201602010 王国力, 杨玉卿, 张永生, 等, 2004.江汉盆地潜江凹陷王场地区古近系潜江组沉积微相及其演变.古地理学报, 6(2):140-150. doi: 10.3969/j.issn.1671-1505.2004.02.002 王敏, 陈祥, 严永新, 等, 2013.南襄盆地泌阳凹陷陆相页岩油地质特征与评价.古地理学报, 15(5):663-671. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201305009 吴世强, 唐小山, 杜小娟, 等, 2013.江汉盆地潜江凹陷陆相页岩油地质特征.东华理工大学学报(自然科学版), 36(3):282-286. doi: 10.3969/j.issn.1674-3504.2013.03.006 熊智勇, 吴世强, 王洋, 等, 2015.江汉盐湖盆地盐间泥质白云岩油藏地质特征与实践.地质科技情报, 34(2):181-187. http://d.old.wanfangdata.com.cn/Conference/8177142 张磊磊, 陆正元, 王军, 等, 2016.渤海湾盆地沾化凹陷沙三下亚段页岩油层段微观孔隙结构.石油与天然气地质, 37(1):80-86. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201601011 张顺, 陈世悦, 鄢继华, 等, 2015.东营凹陷西部沙三下亚段-沙四上亚段泥页岩岩相及储层特征.天然气地球科学, 26(2):320-332. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201502017.htm