• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    涪陵焦石坝地区页岩气赋存特征定量表征及其主控因素

    王进 包汉勇 陆亚秋 柳筠 张梦吟

    王进, 包汉勇, 陆亚秋, 柳筠, 张梦吟, 2019. 涪陵焦石坝地区页岩气赋存特征定量表征及其主控因素. 地球科学, 44(3): 1001-1011. doi: 10.3799/dqkx.2018.388
    引用本文: 王进, 包汉勇, 陆亚秋, 柳筠, 张梦吟, 2019. 涪陵焦石坝地区页岩气赋存特征定量表征及其主控因素. 地球科学, 44(3): 1001-1011. doi: 10.3799/dqkx.2018.388
    Wang Jin, Bao Hanyong, Lu Yaqiu, Liu Yun, Zhang Mengyin, 2019. Quantitative Characterization and Main Controlling Factors of Shale Gas Occurrence in Jiaoshiba Area, Fuling. Earth Science, 44(3): 1001-1011. doi: 10.3799/dqkx.2018.388
    Citation: Wang Jin, Bao Hanyong, Lu Yaqiu, Liu Yun, Zhang Mengyin, 2019. Quantitative Characterization and Main Controlling Factors of Shale Gas Occurrence in Jiaoshiba Area, Fuling. Earth Science, 44(3): 1001-1011. doi: 10.3799/dqkx.2018.388

    涪陵焦石坝地区页岩气赋存特征定量表征及其主控因素

    doi: 10.3799/dqkx.2018.388
    基金项目: 

    国家科技重大专项 2016ZX05060-001

    详细信息
      作者简介:

      王进(1986-), 男, 高级工程师, 硕士, 从事页岩气地质研究工作

    • 中图分类号: P618.13

    Quantitative Characterization and Main Controlling Factors of Shale Gas Occurrence in Jiaoshiba Area, Fuling

    • 摘要: 为解决页岩气开发过程中,单井实测含气量与测试产量存在明显矛盾的问题,系统开展了测井解释含气量和实测含气量的对比研究,认为在焦石坝地区使用测井解释含气量来代替实测含气量是可行的.在详细对比有机质丰度、有机质成熟度、孔隙结构、地层温度和压力等对页岩含气量影响的基础上,明确孔隙结构是控制页岩气赋存特征的主要因素.对涪陵焦石坝地区而言,由于纵向有机质丰度差异而带来的孔径和孔隙度等孔隙结构的不同是导致上、下部气层赋存状态变化的主要原因.对中国南方海相页岩开发选区评价而言,在今后的开发选区过程中,应更加注重开展页岩孔隙结构对赋存状态的影响研究.

       

    • 图  1  涪陵焦石坝地区焦页A井五峰-龙马溪组孔隙特征柱状图

      Fig.  1.  Stratigraphic column of pore characteristics from Wufeng-Longmaxi Formation of Well JY A in Jiaoshiba area, Fuling

      图  2  涪陵焦石坝地区单井实测含气量与单井测试产量相关关系

      Fig.  2.  Correlation between measured gas content of single well and single well test yield in Jiaoshiba area, Fuling

      图  3  涪陵焦石坝地区不同钻井时期单井实测含气量直方图

      Fig.  3.  Histogram of measured gas content in single well in different drilling periods in Jiaolingba area, Fuling

      图  4  焦页B井TOC与吸附气含量交会图

      Fig.  4.  Intersection diagram between TOC and adsorbed gas content of Well JY B

      图  5  涪陵地区探井测试产量与测井解释含气量相关关系

      Fig.  5.  Correlation between test yield and gas content in exploratory well logging in Fuling area

      图  6  焦石坝地区取心井实测有机质丰度纵向分布

      Fig.  6.  Longitudinal distribution of measured organic matter abundance in the core well of Jiaoshiba area

      图  7  涪陵地区焦页K井五峰-龙马溪组上、下部气层孔隙类型

      a.纳米级有机质孔隙,下部气层;b.纳米级微裂隙,上部气层

      Fig.  7.  Pore types of the upper and lower gas layers of Wufeng-Longmaxi Formation of Well JY K in Fuling area

      图  8  焦石坝地区埋深与有机质成熟度相关关系

      Fig.  8.  Correlation between buried depth and organic matter maturity in Jiaoshiba area

      图  9  焦页A井孔隙度与总含气量相关关系

      Fig.  9.  Correlation between porosity and total gas content in Well JY A

      图  10  焦页A井各小层孔径分布曲线

      ⑨2 530.6 m, TOC=0.62%, Vsh=60.97%;⑧2 552.7 m, TOC=1.61%, Vsh=48.97%;⑦2 565.9 m, TOC=1.52%, Vsh=39.38%;⑥2 574.0 m, TOC=1.58%, Vsh=39.81%;⑤2 584.7 m, TOC=2.49%, Vsh=37.31%;④2 594.7 m, TOC=2.48%, Vsh=32.63%;③2 607.0 m, TOC=3.53%, Vsh=29.90%;①2 618.8 m, TOC=4.22%, Vsh=23.65%

      Fig.  10.  Pore size distribution curves of each small layer of Well JY A

      图  11  焦页A井不同小层比表面积和孔体积对比

      Fig.  11.  Comparison of specific surface area and pore volume of different layers of Well JY A

      图  12  焦页A井比表面积与吸附气含量相关关系

      Fig.  12.  Correlation of specific surface area and adsorbed gas of Well JY A

      图  13  孔径与孔体积变化率的相关关系

      Fig.  13.  Correlation between aperture and change rate of the pore volume

      图  14  游离气含量与孔隙体积相关关系

      Fig.  14.  Correlation between free gas content and pore volume

      表  1  涪陵焦石坝地区取心井优质页岩段实测含气量

      Table  1.   Statistical data of measured gas content in high-quality shale of core wells in Jiaoshiba area, Fuling

      井号 层位 实测含气量
      (m3/t)
      解析气量
      (m3/t)
      损失气量
      (m3/t)
      测井解释
      (m3/t)
      单井测试产量
      (104m3/d)
      焦页A井 五峰-龙马溪组①~⑤小层 3.33 1.00 2.33 5.03 10.5
      焦页B井 2.84 1.00 1.84 5.80 20.3
      焦页C井 2.33 0.97 1.36 6.46 33.7
      焦页D井 2.47 1.02 1.45 5.32 10.1
      焦页E井 3.00 1.02 1.98 6.51 27.9
      焦页F井 3.73 1.05 2.68 4.37 6.6
      焦页G井 3.61 1.03 2.58 5.27 20.8
      焦页H井 4.32 1.54 2.78 5.18 8.9
      焦页Ⅰ井 3.05 1.98 1.07 4.27 0.1
      焦页J井 5.19 1.11 4.08 5.93 21.1
      下载: 导出CSV

      表  2  焦页B井等温吸附试验数据

      Table  2.   Isothermal adsorption test data of Well JY B

      样品编号 井深
      (m)
      层位 实测
      TOC
      (%)
      方法一(校正)计算吸附气量(m3/t) 方法二计算吸附气量(m3/t)
      1 2 330.46 龙马溪组 1.11 1.01 0.93
      2 2 355.13 龙马溪组 1.62 1.35 1.32
      3 2 363.40 龙马溪组 1.47 1.18 1.20
      4 2 385.42 龙马溪组 3.59 2.77 2.83
      5 2 397.13 龙马溪组 3.46 2.45 2.73
      6 2 414.88 五峰组 4.97 3.32 3.48
      下载: 导出CSV

      表  3  焦页A、B、C井含气页岩段测井解释含气量分段统计

      Table  3.   Statistical data of log interpretation of gas content of gas-bearing shale section in wells JYA, JYB, JYC

      井号 小层号 顶深(m) 底深(m) 厚度(m) 总气量(m3/t) 吸附气(m3/t) 游离气(m3/t) 吸附气:游离气
      焦页A井 ⑧、⑨ 2 519.2 2 563.3 44.1 1.7 0.9 0.8 53:47
      ⑥、⑦ 2 563.3 2 579.5 16.2 2.9 1.2 1.7 41:59
      ④、⑤ 2 579.5 2 599.5 20.0 4.3 1.8 2.6 40:60
      ①、②、③ 2 599.5 2 622.0 22.5 7.2 2.7 4.5 37:63
      焦页B井 ⑧、⑨ 2 326.5 2 353.5 27.0 2.4 1.2 1.2 50:50
      ⑥、⑦ 2 353.5 2 377.5 24.0 3.4 1.4 2.0 41:59
      ④、⑤ 2 377.5 2 398.0 20.5 5.6 2.2 3.5 39:61
      ①、②、③ 2 398.0 2 415.5 17.5 8.7 3.1 5.6 36:64
      焦页C井 ⑧、⑨ 2 476.8 2 511.2 34.4 2.2 1.0 1.2 45:55
      ⑥、⑦ 2 511.2 2 534.6 23.4 3.1 1.3 1.8 42:58
      ④、⑤ 2 534.6 2 554.7 20.1 5.1 1.9 3.2 37:63
      ①、②、③ 2 554.7 2 575.0 20.3 7.4 2.7 4.7 36:64
      下载: 导出CSV

      表  4  涪陵焦石坝地区焦页A井五峰-龙马溪组龙一段页岩孔径分布数据

      Table  4.   Pore size data of Long 1 Member of Wufeng-Longmaxi Formation in Well JY A in Jiaoshiba area, Fuling

      井深(m) 层位 不同孔径孔隙所占总孔隙体积 峰值孔隙直径(nm)
      <2 nm 2~50 nm >50 nm
      2 530.80 17.26 74.01 8.73 3.56
      2 546.08 1.74 95.43 2.83 3.59
      2 566.09 16.16 79.22 4.62 3.65
      2 574.31 15.76 80.38 3.86 3.68
      2 582.19 / 95.18 4.82 3.97
      2 596.02 12.68 84.25 3.07 4.15
      2 608.70 / 97.78 2.22 4.92
      2 620.66 / 97.91 2.09 5.92
      下载: 导出CSV
    • Chalmers, G.R.L., Bustin, R.M., 2008a.Lower Cretaceous Gas Shales in Northeastern British Columbia, Part Ⅰ:Geological Controls on Methane Sorption Capacity.Bulletin of Canadian Petroleum Geology, 56(1):1-21. https://doi.org/10.2113/gscpgbull.56.1.1
      Chalmers, G.R.L., Bustin, R.M., 2008b.Lower Cretaceous Gas Shales in Northeastern British Columbia, Part Ⅱ:Evaluation of Regional Potential Gas Resources.Bulletin of Canadian Petroleum Geology, 56(1):22-61. https://doi.org/10.2113/gscpgbull.56.1.22
      Curtis, J.B., 2002.Fractured Shale-Gas Systems.AAPG Bulletin, 86(11):1921-1938. https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d
      Dai, F.Y., Hao, F., Hu, H.Y., et al., 2017.Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin.Earth Science, 42(7):1185-1194 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.096
      Fan, M., Yu, L.J., Xu, E.S., et al., 2018.Preservation Mechanism of Fuling Shale Gas.Petroleum Geology & Experiment, 40(1):126-132 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201801018
      Gasparik, M.G.A., Bertier, P., Krooss, B.M., et al., 2012.High-Pressure Methane Sorption Isotherms of Black Shales from the Netherlands.Energy & Fuels, 26(8):4995-5004. https://doi.org/10.1021/ef300405g
      Hou, Y.G., He, S., Yi, J.Z., et al., 2014.Effect of Pore Structure on Methane Sorption Capacity of Shales.Petroleum Exploration and Development, 41(2):248-256 (in Chinese with English abstract).
      Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499. https://doi.org/10.1306/12190606068
      Jiang, Z.X., Tang, X.L., Li, Z., et al., 2016.The Whole-Aperture Pore Structure Characteristics and Its Effect on Gas Content of the Longmaxi Formation Shale in the Southeastern Sichuan Basin.Earth Science Frontiers, 23(2):126-134 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201602013
      Lin, J.F., Hu, H.Y., Li, Q., 2017.Geochemical Characteristics and Implications of Shale Gas in Jiaoshiba, Eastern Sichuan, China.Earth Science, 42(7):1124-1133 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.091
      Liu, Y., Xia, X.H., Li, W., et al., 2015.Pore Characteristics and Relation with Shale Gas in the Longmaxi Formation Shale Reservoir.Natural Gas Geoscience, 26(8):1596-1603 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201508020
      Nie, H.K., Tang, X., Bian, R.K., 2009.Controlling Factors for Shale Gas Accumulation and Prediction of Potential Development Area in Shale Gas Reservoir of South China.Acta Petrolei Sinica, 30(4):484-491 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200904002
      Pu, B.L., Jiang, Y.L., Wang, Y., et al., 2010.Reservoir-Forming Conditions and Favorable Exploration Zones of Shale Gas in Lower Silurian Longmaxi Formation of Sichuan Basin.Acta Petrolei Sinica, 31(2):225-230 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201002008
      Tang, Y., Li, L.Z., Jiang, S.X., 2014.A Logging Interpretation Methodology of Gas Content in Shale Reservoirs and Its Application.Natural Gas Industry, 34(12):46-54 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201412006
      Tang, Y., Zhang, J.C., Liu, Z.J., et al., 2011.Use and Improvement of the Desorption Method in Shale Gas Content Tests.Natural Gas Industry, 31(10):108-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG201110032.htm
      Tian, H., Zhang, S.C., Liu, S.B., et al., 2012.Determination of Organic-Rich Shale Pore Features by Mercury Injection and Gas Adsorption Methods.Acta Petrolei Sinica, 33(3):419-427 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201203011
      Tian, H., Zhang, S.C., Liu, S.B., et al., 2016.The Dual Influence of Shale Composition and Pore Size on Adsorption Gas Storage Mechanism of Organic-Rich Shale.Natural Gas Industry, 27(3):494-502 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201603011
      Wan, J.B., He, Y.F., Liu, M., et al., 2015.Shale Gas Content Measurement and Calculation Method.Well Logging Technology, 39(6):756-761 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/sysydz201406015
      Wang, F.Y., Guan, J., Feng, W.P., et al., 2013.Evolution of Overmature Marine Shale Porosity and Implication to the Free Gas Volume.Petroleum Exploration and Development, 40(6):764-768 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201306019
      Wang, F.Y., He, Z.Y., Meng, X.H., et al., 2011.Occurrence of Shale Gas and Prediction of Original Gas In-Place(OGIP).Natural Gas Geoscience, 22(3):501-510 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201103018
      Wang, H.Y., Liu, Y.Z., Dong, D.Z., et al., 2013.Scientific Issues on Effective Development of Marine Shale Gas in Southern China.Petroleum Exploration and Development, 40(5):574-579 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201305009
      Wang, J., 2017.Genetic Analysis of Shale Gas of Wufeng-Longmaxi Formation in Fuling Jiaoshiba Area.Jianghan Petroleum Science and Technology, 27(3):1-4 (in Chinese with English abstract).
      Xie, Q.M., Cheng, L.J., Liu, J.F., et al., 2014.Well Logging Interpretation and Evaluation of Gas Shale Reservoir at Longmaxi Formation in Qianjiang Area of Southeast of Chongqing Area.Progress in Geophysics, 29 (3):1312-1318 (in Chinese with English abstract).
      Xu, Z., Shi, W.Z., Zhai, G.Y., et al., 2017.Relationship Differences and Causes between Porosity and Organic Carbon in Black Shales of the Lower Cambrian and the Lower Silurian in Yangtze Area.Earth Science, 42(7):1223-1234 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.099
      Zhang, J.C., Nie, H.K., Xu, B., et al., 2008.Geological Condition of Shale Gas Accumulation in Sichuan Basin.Natural Gas Industry, 28(2):151-156 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdzdc201804003
      戴方尧, 郝芳, 胡海燕, 等, 2017.川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素.地球科学, 42(7):1185-1194. https://doi.org/10.3799/dqkx.2017.096
      范明, 俞凌杰, 徐二社, 等, 2018.页岩气保存机制探讨.石油实验地质, 40(1):126-132. http://d.old.wanfangdata.com.cn/Periodical/sysydz201801018
      侯宇光, 何生, 易积正, 等, 2014.页岩孔隙结构对甲烷吸附能力的影响.石油勘探与开发, 41(2):248-256. http://d.old.wanfangdata.com.cn/Periodical/syktykf201402017
      姜振学, 唐相路, 李卓, 等, 2016.川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制.地学前缘, 23(2):126-134. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602013
      林俊峰, 胡海燕, 黎祺, 2017.川东焦石坝地区页岩气特征及其意义.地球科学, 42(7):1124-1133. https://doi.org/10.3799/dqkx.2017.091
      刘宇, 夏筱红, 李伍, 等, 2015.重庆綦江地区龙马溪组页岩孔隙特征与页岩气赋存关系探讨.天然气地球科学, 26(8):1596-1603. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201508020
      聂海宽, 唐玄, 边瑞康, 2009.页岩气成藏控制因素及中国南方页岩气发育有利区预测.石油学报, 30(4):484-491. doi: 10.3321/j.issn:0253-2697.2009.04.002
      蒲泊伶, 蒋有录, 王毅, 等, 2010.四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析.石油学报, 31(2):225-230. doi: 10.3969/j.issn.1001-8719.2010.02.011
      唐颖, 李乐忠, 蒋时馨, 等, 2014.页岩储层含气量测井解释方法及其应用研究.天然气工业, 34(12):46-54. doi: 10.3787/j.issn.1000-0976.2014.12.006
      唐颖, 张金川, 刘珠江, 等, 2011.解吸法测量页岩含气量及其方法的改进.天然气工业, 31(10):108-112. doi: 10.3787/j.issn.1000-0976.2011.10.026
      田华, 张水昌, 柳少波, 等, 2012.压汞法和气体吸附法研究富有机质页岩孔隙特征.石油学报, 33(3):419-427. http://d.old.wanfangdata.com.cn/Periodical/syxb201203011
      田华, 张水昌, 柳少波, 等, 2016.富有机质页岩成分与孔隙结构对吸附气赋存的控制作用.天然气地球科学, 27(3):494-502. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201603011
      万金彬, 何羽飞, 刘淼, 等, 2015.页岩含气量测定及计算方法研究.测井技术, 39(6):756-761. http://d.old.wanfangdata.com.cn/Periodical/cjjs201506017
      王飞宇, 关晶, 冯伟平, 等, 2013.过成熟海相页岩孔隙度演化特征和游离气量.石油勘探与开发, 40(6):764-768. http://d.old.wanfangdata.com.cn/Periodical/syktykf201306019
      王飞宇, 贺志勇, 孟晓辉, 等, 2011.页岩气赋存形式和初始原地气量(OGIP)预测技术.天然气地球科学, 22(3):501-510. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201103018
      王红岩, 刘玉章, 董大忠, 等, 2013.中国南方海相页岩气高效开发的科学问题.石油勘探与开发, 40(5):574-579. http://d.old.wanfangdata.com.cn/Periodical/syktykf201305009
      王进, 2017.涪陵焦石坝地区五峰组-龙马溪组页岩气成因分析.江汉石油科技, 27(3):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172018010300055522
      谢庆明, 程礼军, 刘俊峰, 等, 2014.渝东南黔江地区龙马溪组页岩气储层测井解释评价研究.地球物理学进展, 29(3):1312-1318. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201403043.htm
      徐壮, 石万忠, 翟刚毅, 等, 2017.扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因.地球科学, 42(7):1223-1234. https://doi.org/10.3799/dqkx.2017.099
      张金川, 聂海宽, 徐波, 等, 2008.四川盆地页岩气成藏地质条件.天然气工业, 28(2):151-156. doi: 10.3787/j.issn.1000-0976.2008.02.045
    • 加载中
    图(14) / 表(4)
    计量
    • 文章访问数:  4499
    • HTML全文浏览量:  2282
    • PDF下载量:  62
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-12
    • 刊出日期:  2019-03-15

    目录

      /

      返回文章
      返回