• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高通量试验堆(HFETR)辐照40Ar-39Ar定年样品条件初探

    李军杰 刘汉彬 张佳 金贵善 张建锋 韩娟 石晓

    李军杰, 刘汉彬, 张佳, 金贵善, 张建锋, 韩娟, 石晓, 2019. 高通量试验堆(HFETR)辐照40Ar-39Ar定年样品条件初探. 地球科学, 44(3): 727-737. doi: 10.3799/dqkx.2019.006
    引用本文: 李军杰, 刘汉彬, 张佳, 金贵善, 张建锋, 韩娟, 石晓, 2019. 高通量试验堆(HFETR)辐照40Ar-39Ar定年样品条件初探. 地球科学, 44(3): 727-737. doi: 10.3799/dqkx.2019.006
    Li Junjie, Liu Hanbin, Zhang Jia, Jin Guishan, Zhang Jianfeng, Han Juan, Shi Xiao, 2019. Primary Research of High Flux Engineering Test Reactor(HFETR) for Irradiation of 40Ar-39Ar Dating Samples. Earth Science, 44(3): 727-737. doi: 10.3799/dqkx.2019.006
    Citation: Li Junjie, Liu Hanbin, Zhang Jia, Jin Guishan, Zhang Jianfeng, Han Juan, Shi Xiao, 2019. Primary Research of High Flux Engineering Test Reactor(HFETR) for Irradiation of 40Ar-39Ar Dating Samples. Earth Science, 44(3): 727-737. doi: 10.3799/dqkx.2019.006

    高通量试验堆(HFETR)辐照40Ar-39Ar定年样品条件初探

    doi: 10.3799/dqkx.2019.006
    基金项目: 

    国家重点研发计划项目 2017YFC0602600

    详细信息
      作者简介:

      李军杰(1986-), 男, 工程师, 博士研究生, 主要从事40Ar-39Ar同位素定年技术方法研究

      通讯作者:

      刘汉彬

    • 中图分类号: P597

    Primary Research of High Flux Engineering Test Reactor(HFETR) for Irradiation of 40Ar-39Ar Dating Samples

    • 摘要: 国内目前用于40Ar-39Ar定年样品辐照的反应堆较少且开堆频率低,样品辐照周期长,且不同类型样品辐照条件缺乏系统研究.首次对高通量试验堆(HFETR)用于40Ar-39Ar定年样品的辐照工作进行了研究.通过辐照一定质量的黑云母标准物质ZBH-25,确定了辐照孔道39ArK产率,为不同年龄和不同含钾量样品的辐照时间提供了参考依据.辐照孔道轴向中子通量梯度仅为3.3%/cm,且均呈二次曲线特征分布(R2>0.99),中子通量在径向上存在差异,最大差异达到7.1%/cm;通过辐照纯的钾盐和钙盐,得出辐照孔道内校正因子(36Ar/37Ar)Ca的值为(3.52±0.11)×10-4,且在样品辐照罐内不同位置基本一致,而校正因子(40Ar/39Ar)K和(39Ar/37Ar)Ca的值在辐照样品罐内存在明显的差异;Cd皮对于降低校正因子(40Ar/39Ar)K的影响在样品罐底部更加明显,而在样品罐顶部几乎没有影响,这可能是由辐照孔道内中子能谱的差异造成的;以FCs透长石为中子通量监测物质,对标准物质ZBH-25黑云母和BSP-1角闪石进行了年龄测定,ZBH-25黑云母获得了理想的坪年龄,证明此反应堆满足40Ar-39Ar定年样品辐照的要求;BSP-1角闪石的坪年龄准确度和精度较差,与样品本身异常老的年龄和较低的K/Ca比有关,对于此类样品,准确确定干扰校正因子并合理延长照射时间对获得高精度40Ar-39Ar定年结果非常重要.

       

    • 图  1  石英管内辐照样品位置示意图

      Fig.  1.  The position of the irradiated sample in the quartz tube

      图  2  铝板平面图(a)和辐照样品罐结构(b)

      Fig.  2.  Ichnography of the aluminum plate (a) and structure of the irradiated sample vessel (b)

      图  3  39ArK产率曲线(a)和不同年龄样品的辐照时间与40Ar*/39ArK值关系(b)

      Fig.  3.  The 39ArK production efficiency (a) and relationship of the 40Ar*/39ArK value and irradiation time to the samples with different age (b)

      图  4  不同径向位置的轴向方向中子通量梯度变化曲线

      Fig.  4.  Curves about the neutron flux gradient along with the axial direction at different radial positions

      图  5  中子通量径向平面分布

      Fig.  5.  The position of the irradiated sample in the quartz tube

      图  6  辐照孔道不同位置校正因子变化

      Fig.  6.  The interference factor changes at different position of the irradiation channel

      图  7  ZBH-25黑云母和BSP-1角闪石坪年龄谱图

      Fig.  7.  Plateau age of biotite ZBH-25 and hornblende BSP-1

      表  1  不同类型辐照样品测试的接收器配置

      Table  1.   The detector configuration for the different kinds of irradiated samples

      接收器 H2 H1 AX L1 L2 CDD
      钙盐 40Ar 39Ar 38Ar 37Ar 36Ar -
      - 40Ar 39Ar 38Ar 37Ar 36Ar
      - - - - - 39Ar
      钾盐 40Ar 39Ar 38Ar 37Ar 36Ar -
      - 40Ar 39Ar 38Ar 37Ar 36Ar
      监测物质 40Ar 39Ar 38Ar 37Ar 36Ar -
      - 40Ar 39Ar 38Ar 37Ar 36Ar
      - - - - - 37Ar
        注:H2、H1、AX、L1和L2为法拉第杯, 其中H2放大器高阻为1011 Ω,其余4个法拉第杯的放大器高阻为1012 Ω;CDD为二次电子倍增器.采用表中加粗的接收杯强度值.
      下载: 导出CSV

      表  2  BSP-1角闪石40Ar-39Ar年龄测试数据

      Table  2.   The 40Ar-39Ar dating data of hornblende BSP-1

      温度(℃) $ {{\left(\frac{^{40}\text{Ar}}{^{39}\text{Ar}} \right)}_{\text{m}}}$ $ {{\left(\frac{^{36}\text{Ar}}{^{39}\text{Ar}} \right)}_{\text{m}}}$ ${{\left(\frac{^{37}\text{Ar}}{^{39}\text{Ar}} \right)}_{\text{m}}} $ 39ArK×10mol-14 $ \frac{^{40}\text{A}{{\text{r}}^{*}}}{^{39}\text{Ar}}$ 39ArK(%) $ \frac{\text{K}}{\text{Ca}}\pm 1\sigma $ 视年龄(Ma, 1σ)
      900 577.126 0.152 0.484 0.085 532.370 0.43 0.20±0.03 2 176.83±10.48
      1 000 1 795.387 0.070 0.374 0.083 1 775.423 0.45 0.22±0.04 3 936.52±10.58
      1 100 613.571 0.063 1.121 0.152 595.495 0.81 0.08±0.01 2 321.51±7.05
      1 200 474.078 0.009 0.954 6.360 471.955 34.69 0.10±0.01 2 026.69±6.15
      1 300 453.681 0.004 0.961 1.050 452.899 57.68 0.09±0.01 1 976.65±6.05
      1 400 427.166 0.105 0.937 0.109 424.479 5.95 0.09±0.01 1 899.36±5.94
        注:表中下标m表示测试值,下标mol表示摩尔值.样品质量为0.02 g,辐照参数J=0.004 33±0.000 02.
      下载: 导出CSV
    • Brereton, N. R., 1970.Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method.Earth and Planetary Science Letters, 8(6):427-433. https://doi.org/10.1016/0012-821x(70)90146-9
      Clauer, N., Zwingmann, H., Liewig, N., et al., 2012.Comparative 40Ar/39Ar and K-Ar Dating of Illite-Type Clay Minerals:A Tentative Explanation for Age Identities and Differences.Earth-Science Reviews, 115(1-2):76-96. https://doi.org/10.1016/j.earscirev.2012.07.003
      Coble, M.A., Grove, M., Calvert, A.T., 2011.Calibration of Nu-Instruments Noblesse Multicollector Mass Spectrometers for Argon Isotopic Measurements Using a Newly Developed Reference Gas.Chemical Geology, 290(1-2):75-87. https://doi.org/10.1016/j.chemgeo.2011.09.003
      Dalrymple, G.B., Alexander, E.C., Lamphere, M.A., et al., 1981.Irradiation of Samples for 40Ar/39Ar Dating Using the Geological Survey TRIGA Reactor.U.S.Geological Survey, Professional Papers 1176, 18.
      Dalrymple, G.B., Lanphere, M.A., 1971.40Ar/39Ar Technique of K-Ar Dating:A Comparison with the Conventional Technique.Earth and Planetary Science Letters, 12(3):300-308. https://doi.org/10.1016/0012-821x(71)90214-7
      Kellett, D., Joyce, N., 2014.Analytical Details of Single-and Multi-Collection 40Ar/39Ar Measurements for Conventional Step-Heating and Total-Fusion Age Calculation Using the Nu Noblesse at the Geological Survey of Canada.Geological Survey of Canada, Technical Note 8, 1-21.
      Koppers, A.A.P., 2002.ArArCALC-Software for 40Ar/39Ar Age Calculations.Computers & Geosciences, 28(5):605-619. https://doi.org/10.1016/s0098-3004(01)00095-4
      Mark, D.F., Barfod, D., Stuart, F.M., et al., 2009.The ARGUS Multi-Collector Noble Gas Mass Spectrometer:Performance for 40Ar/39Ar Geochronology.Geochemistry, Geophysics, Geosystems, 10, Q0AA02. https://doi.org/10.1029/2009gc002643
      Mei, S.L., Zhang, K.X., Wardlaw, B.R., 1998.A Refined Succession of Changhsingian and Griesbachian Neogondolellid Conodonts from the Meishan Section, Candidate of the Global Stratotype Section and Point of the Permian-Triassic Boundary.Palaeogeography, Palaeoclimatology, Palaeoecology, 143(4):213-226. https://doi.org/10.1016/s0031-0182(98)00112-6
      Merrihue, C., Turner, G., 1966.Potassium-Argon Dating by Activation with Fast Neutrons.Journal of Geophysical Research, 71(11):2852-2857. https://doi.org/10.1029/jz071i011p02852
      Mitchell, J.G., 1968.The Argon-40/Argon-39 Method for Potassium-Argon Age Determination.Geochimica et Cosmochimica Acta, 32(7):781-790. https://doi.org/10.1016/0016-7037(68)90012-4
      Podosek, F.A., 1971.Neutron-Activation Potassium-Argon Dating of Meteorites.Geochimica et Cosmochimica Acta, 35(2):157-173. https://doi.org/10.1016/0016-7037(71)90055-x
      Renne, P.R., Balco, G., Ludwig, K.R., et al., 2011.Response to the Comment by W.H.Schwarz et al. on "Joint Determination of 40K Decay Constants and 40Ar*/40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology" by P.R.Renne et al. (2010).Geochimica et Cosmochimica Acta, 75(17): 5097-5100.https://doi.org/ 10.1016/j.gca.2011.06.021
      Renne, P.R., Knight, K.B., Nomade, S., et al., 2005.Application of Deuteron-Deuteron (D-D) Fusion Neutrons to 40Ar/39Ar Geochronology.Applied Radiation and Isotopes, 62(1):25-32. https://doi.org/10.1016/j.apradiso.2004.06.004
      Renne, P.R., Swisher, C.C., Deino, A.L., et al., 1998.Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating.Chemical Geology, 145(1-2):117-152. https://doi.org/10.1016/s0009-2541(97)00159-9
      Rutte, D., Pfänder, J.A., Koleška, M., et al., 2015.Radial Fast-Neutron Fluence Gradients during Rotating 40Ar/39Ar Sample Irradiation Recorded with Metallic Fluence Monitors and Geological Age Standards.Geochemistry, Geophysics, Geosystems, 16(1):336-345. https://doi.org/10.1002/2014gc005611
      Sang, H.Q., Wang, F., He, H.Y., et al., 2006.Intercalibration of ZBH-25 Biotite Reference Material Untilized for K-Ar and 40Ar-39Ar Age Determination.Acta Petrologica Sinica, 22(12):3059-3078 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200612022
      Scaillet, S., 2000.Numerical Error Analysis in 40Ar-39Ar Dating.Chemical Geology, 162(3-4):269-298. https://doi.org/10.1016/s0009-2541(99)00149-7
      Stacey, J.S., Sherrill, N.D., Dalrymple, G.B., et al., 1981.A Five-Collector System for the Simultaneous Measurement of Argon Isotope Ratios in a Static Mass Spectrometer.International Journal of Mass Spectrometry and Ion Physics, 39(2):167-180. https://doi.org/10.1016/0020-7381(81)80031-9
      Turner, G., 1971.Argon 40-Argon 39 Dating:The Optimization of Irradiation Parameters.Earth and Planetary Science Letters, 10(2):227-234. https://doi.org/10.1016/0012-821x(71)90010-0
      Vermeesch, P., 2015.Revised Error Propagation of 40Ar/39Ar Data, Including Covariances.Geochimica et Cosmochimica Acta, 171:325-337. https://doi.org/10.1016/j.gca.2015.09.008
      Wang, H., Xiang, Y.X., Xu, T.Z., et al., 2017.Verification of Neutron Flux Calculation Method for HFETR.Nuclear Power Engineering, 38(S1):154-156 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdlgc2017z1037
      Wang, S.S., Hu, S, L., Sang, H.Q., et al., 1992.BSP-1 Hornblende, a 2 Ga Age Standard as Flux Monitor of 40Ar-39Ar Dating.Acta Petrologica Sinica, 8(2):103-127 (in Chinese with English abstract).
      Yang, L.K., Wang, F., He, H.Y., et al., 2009.Achievements and Limitations of 40Ar/39Ar Dating on Young Volcanic Rocks.Seismology and Geology, 31(1):174-185 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200901016
      桑海清, 王非, 贺怀宇, 等, 2006.K-Ar法地质年龄国家一级标准物质ZBH-25黑云母的研制.岩石学报, 22(12):3059-3078. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200612022
      王皓, 向玉新, 徐涛忠, 等, 2017.高通量工程试验堆(HFETR)材料辐照中子注量率计算方法验证.核动力工程, 38(S1):154-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdlgc2017z1037
      王松山, 胡世玲, 桑海清, 等, 1992.氩-氩定年法国际标准物质BSP-1角闪石的研制.岩石学报, 8(2):103-127. doi: 10.3321/j.issn:1000-0569.1992.02.001
      杨列坤, 王非, 贺怀宇, 等, 2009.年轻火山岩氩同位素体系定年技术最新进展及问题.地震地质, 31(1):174-185. doi: 10.3969/j.issn.0253-4967.2009.01.016
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  5062
    • HTML全文浏览量:  2041
    • PDF下载量:  82
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-16
    • 刊出日期:  2019-03-15

    目录

      /

      返回文章
      返回