A New Technology of Basin Fluid Geochronology: In-Situ U-Pb Dating of Calcite
-
摘要: 流体活动是沉积盆地内最活跃的地质营力,与盆地内油气的生成、运移和成藏关系密切,精确确定流体活动历史一直是具有挑战性和前沿性的研究方向.前期对流体活动历史的研究主要依附于流体包裹体分析,该方法很难完整恢复盆地经历的所有流体事件,更无法确定流体事件活动年代.方解石是盆地流体的直接产物,对其开展年代学研究可以准确揭示盆地流体活动历史,然而目前较为成熟的同位素稀释法方解石U-Pb等时线定年成功率较低、耗时较长.近些年研发成功的方解石激光原位U-Pb定年技术可以精确确定U含量低至10×10-9的方解石的年代,具有空间分辨率高、测试效率高的优势.该技术已成功确定多个含油气盆地流体活动历史,显示其在盆地流体研究领域具有光明的应用前景.在详细的微观鉴定和成岩观察基础上,选取不同期次的方解石样品开展方解石激光原位U-Pb定年分析,并结合C-O同位素、微量元素研究,查明盆地流体特征及其演化历史,将是未来盆地流体研究领域的重要发展方向.Abstract: Basin fluid is the most active geological agent in sedimentary basins, having a close relationship with the generation, migration and accumulation of hydrocarbon resources.Accurate determination of fluid flow history has been a challenging and frontier research topic.In general, the previous studies of basin fluids mainly rely on the analysis of fluid inclusions, which is difficult to successfully reconstruct the events of basin fluids.More seriously, this method is unable to determine the timing of fluid flow events.Authigenic calcite is the direct product of basin fluids.Thus, accurate dating of authigenic calcite provides a new approach to determine the history of fluid flow events.In the field of calcite geochronology, the most widely used dating method was the isotope dilution U-Pb dating approach.However, this approach is time-consuming, and has a low success rate.In recent years, laser ablation technology has greatly facilitated U-Pb dating of accessory minerals (including calcite) because of its high spatial resolution and rapid data acquisition.It has been confirmed that the newly-developed in-situ U-Pb dating method is able to accurately determine the age of calcite with U content less than 10×10-9.This method has successfully reconstructed the history of fluid flow events in the sedimentary basins, suggesting that it has a good application prospect in the field of basin fluid geochronology.In the future, it can be expected that the application of in-situ U-Pb dating of calcite together with C-O isotope and rare earth element analysis will be a significant development direction in the field of basin fluid studies.It is worth noting that the determination of stage of authigenic calcite through systematic microscopic identification and diagenetic observation is the premise of application success.
-
Key words:
- basin fluid /
- calcite /
- U-Pb dating /
- fluid history /
- laser ablation ICP-MS /
- geochronology
-
图 1 同位素稀释法方解石U-Pb测年典型实例
Fig. 1. The typical example of calcite ages using isotope dilution U-Pb isochrones approach
图 3 运用激光原位方解石U-Pb定年成功确定盆地断层活动带流体活动历史典型实例
Fig. 3. The typical example showing the application of in-situ U-Pb dating method to reconstruct the history of fluid flow events in the sedimentary basin
表 1 盆地流体年代学主要研究方法介绍
Table 1. The main methods of basin fluid flow history
研究方法 主要特点 测试仪器 代表性文献 流体包裹体法 在盆地流体研究领域中应用最为广泛, 主要用于流体期次研究, 但该方法容易受到继承性包裹体的影响, 很难准确确定流体活动时间 偏光显微镜 Worden et al. (1999) 自生伊利石定年法 主要有K-Ar、Ar-Ar及Rb-Sr等时线3种定年手段, 分选出纯净的伊利石是该方法的难点, 仅适用于碎屑岩盆地 GV Instrument 5400、Helix-MC稀有气体质谱仪及TIMS/MC-ICPMS Uysal et al. (2001) 自生钾长石加大边定年法 通常采用激光显微探针Ar-Ar定年手段, 样品需求量小, 测试精度高, 但满足测试需求的样品较少 GV Instrument 5400和Helix-MC稀有气体质谱仪 Mark et al. (2005) 同位素稀释法方解石U-Pb测年法 在方解石年代学研究领域应用较为广泛, 但测试周期长、成功率并不高 MC-ICPMS、TIMS Smith et al. (1991) 方解石激光原位ICP-MS U-Pb定年法 发展迅速, 测试精度高, 具有空间分辨率高、测试效率高的优势, 尚有一些技术问题需要解决 LA-HR- ICPMS、LA-MC-ICPMS Roberts and Walker (2016); Nuriel et al. (2017) 方解石U-Th定年法 测试精度高, 但仅能测量50万年以内的样品年龄 MC-ICPMS、TIMS Zhao et al. (2009) 方解石ESR年代学 测年的年限较长, 可从几千年到几百万年, 但主要用于断层带研究, 获得可靠的古剂量值是得到准确年龄的前提 电子顺磁(自旋)共振波谱仪 王鹏昊等(2013) 表 2 同位素稀释法方解石U-Pb测年代表性数据汇总
Table 2. Representative data of calcite using isotope dilution U-Pb isochrone approach
U-Pb年龄(Ma) 误差(Ma) 加权平均方差 U最大含量(10-6) 238U/204Pb 样品类型 文献 0.83 0.05 0.86 0.003 18 638~226 350 洞穴方解石 Polyak et al. (2008) 2.11 0.06 2.8 0.49 20 000~120 000 方解石 Walker et al. (2006) 2.17 0.06 7.9 1.34 3 000~90 000 方解石 Walker et al. (2006) 2.19 0.47 1.6 0.001 5 849~13 744 洞穴方解石 Polyak et al. (2008) 2.24 0.08 85 1.71 6 000~50 000 方解石 Walker et al. (2006) 2.68 0.49 0.53 0.001 3 056~5 420 洞穴方解石 Polyak et al. (2008) 3.43 0.43 2.3 0.004 186~940 洞穴方解石 Polyak et al. (2008) 3.77 0.09 0.66 1.2 52 485~224 120 石笋方解石 Woodhead et al. (2006) 3.83 0.11 0.17 1.44 36 026~1 480 200 石笋方解石 Woodhead et al. (2006) 4.09 0.12 2.1 2.02 33 511~170 230 石笋方解石 Woodhead et al. (2006) 14.81 0.39 2.8 169 1 961~6 510 石灰岩方解石 Cole et al. (2005) 15.30 0.25 2.9 175 2 707~5 891 石灰岩方解石 Cole et al. (2005) 16.14 0.40 31 30.7 123.5~427.2 石灰岩方解石 Cole et al. (2005) 16.24 0.23 15 162 401~2584 石灰岩方解石 Cole et al. (2005) 80.9 11 30 0.6 22~122 方解石 Wang et al. (1998) 91.7 1.9 126 2 7.3~3 725 洞穴方解石 Lundberg et al. (2000) 211.9 2.1 2.67 2.7 114~617 方解石 Wang et al. (1998) 212.4 3.4 3.5 2.5 7.4~364 方解石 Wang et al. (1998) 271 19 877 33 637~1615 方解石 Becker (2001) 292.3 6.5 83 16.3 356~792 方解石 Becker (2001) 表 3 激光原位方解石l > Pb定年设备LA-ICPIVIS和LA-MOICPMS格度对比数据
Table 3. he comi > arison l > etwecn in-situ LA-ICPMS and LA-MC-ICPMS U-Ph calcite data
样品名 U(10-6) 238U/206Pb 207Pb/206Pb t(Ma) ±2σ 误差率 加权平均力差 点数 数据来源 仪器类型 SFN-1 0.600 23~406 0.07~0.81 15.83 0.4 3% 1.6 26 Nuriel et al.(2017) LV-MC-ICPMS SFN-4 0.130 17~422 0.11~0.83 13.65 0.5 4% 1.2 16 Nuriel et al.(2017) LV-MC-ICPMS YG3 0.350 4.4~358 0.09~0.77 16.97 0.6 4% 2.3 48 Nuriel et al.(2017) LV-MC-ICPMS YF4c 1.200 1.3~266 0.33~0.82 15.53 0.5 3% 0.89 47 Nuriel et al.(2017) LV-MC-ICPMS AHX-1 0.140 0.50~32 0.08~0.86 209.2 0.83 < 1% 3.2 85 未发表数据 LV-MC-ICPMS 595B-2R1-84-95 0.013 0.92~8.71 0.71~0.85 115 16 14% 1.5 18 Coogan et al.(2016) LV-HR-ICPMS 595B-3R2-12-18 0.019 2.71~20.5 0.62~0.83 86 14 16% 6.6 41 Coogan et al.(2016) LV-HR-ILTMS 543-16R6-114.5-118 0.050 1.51~43.9 0.41~0.85 91.3 4.9 5% 1.5 42 Coogan et al.(2016) LV-HR-ICPMS 417D-27R4-61 0.124 0.96~58.4 0.09~0.82 103.9 3.1 3% 0.31 18 Coogan et al.(2016) LV-HR-ICPMS 418A-15R3-144 0.534 0.43~49.4 0.09~0.82 121.9 3.8 3% 4.8 28 Coogan et al.(2016) LV-HR-ICPMS 417D-31R4-8 2.460 18.7~52.4 0.06~0.54 127.5 4.7 4% 5.3 53 Coogan et al.(2016) LV-HR-ILTMS TJN-6-1 0.108 121~162 0.12~0.28 37.7 1.9 5% 2.4 35 Roberts and Walker (2016) LV-HR-ICPMS MOL-1-2 0.037 22.2~144 0.05~0.40 40.1 4.8 12% 5.3 29 Roberts and Walker (2016) LV-HR-ICPMS -
Babinski, M., Chemale, F., van Schmus, W.R., 1995.The Pb/Pb Age of the Minas Supergroup Carbonate Rocks, Quadrilátero Ferrífero, Brazil.Precambrian Research, 72(3-4):235-245. https://doi.org/10.1016/0301-9268(94)00091-5 Becker, M.L., 2001.Evaluation of U Distributions and U-Pb Dating of Authigenic Sedimentary Materials: Correlation of Terrestrial and Marine Sedimentary Sequences (Dissertation).State University of New York, Stony Brook. Becker, M.L., Rasbury, E.T., Meyers, W.J., et al., 2002.U-Pb Calcite Age of the Late Permian Castile Formation, Delaware Basin:A Constraint on the Age of the Permian-Triassic Boundary (?).Earth and Planetary Science Letters, 203(2):681-689. https://doi.org/10.1016/s0012-821x(02)00877-4 Chew, D.M., Petrus, J.A., Kamber, B.S., 2014.U-Pb LA-ICPMS Dating Using Accessory Mineral Standards with Variable Common Pb.Chemical Geology, 363:185-199. https://doi.org/10.1016/j.chemgeo.2013.11.006 Cole, J.M., Rasbury, E.T., Hanson, G.N., et al., 2005.Using U-Pb Ages of Miocene Tufa for Correlation in a Terrestrial Succession, Barstow Formation, California.Geological Society of America Bulletin, 117(3):276-287. https://doi.org/10.1130/B25553.1 Coogan, L.A., Parrish, R.R., Roberts, N.M.W., 2016.Early Hydrothermal Carbon Uptake by the Upper Oceanic Crust:Insight from in-situ U-Pb Dating.Geology, 44(2):147-150. https://doi.org/10.1130/g37212.1 Davies, G.R., Smith, L.B., 2006.Structurally Controlled Hydrothermal Dolomite Reservoir Facies:An Overview.AAPG Bulletin, 90(11):1641-1690. https://doi.org/10.1306/05220605164 Godeau, N., Deschamps, P., Guihou, A., et al., 2018.U-Pb Dating of Calcite Cement and Diagenetic History in Microporous Carbonate Reservoirs:Case of the Urgonian Limestone, France.Geology, 46(3):247-250. https://doi.org/10.1130/g39905.1 Goodfellow, B.W., Viola, G., Bingen, B., et al., 2017.Palaeocene Faulting in SE Sweden from U-Pb Dating of Slickenfibre Calcite.Terra Nova, 29(5):321-328. https://doi.org/10.1111/ter.12280 Gu, J.Y., Fan, T.Z., Fang, H., et al., 2001.Fluid Migration and Oil Reservoirs in the Tarim Basin.Geological Review, 47(2):201-206(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005997 Guo, K., Zeng, J.H., Li, Y.H., et al., 2013.Geochemical Characteristics of Tectonic Fracture-Filling Calcite in Yanchang Formation of Longdong Area and Its Relationship with Hydrocarbon Fluid Flow.Journal of China University of Petroleum (Edition of Natural Science), 37(2):36-42(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201302006 Han, J.F., Wang, Z.M., Pan, W.Q., et al., 2006.Petroleum Controlling Theory of Lunnan Paleohigh and Its Buried Hill Pool Exploration Technology, Tarim Basin.Petroleum Exploration and Development, 33(4):448-453(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200604011 Hansman, R.J., Albert, R., Gerdes, A., et al., 2018.Absolute Ages of Multiple Generations of Brittle Structures by U-Pb Dating of Calcite.Geology, 46(3):207-210. https://doi.org/10.1130/g39822.1 Hiess, J., Condon, D.J., McLean, N., et al., 2012.238U/235U Systematics in Terrestrial Uranium-Bearing Minerals.Science, 335(6076):1610-1614. https://doi.org/10.1126/science.1215507 Hu, S.Y., Shi, S.Y., Wang, T.S., et al., 2016.Effect of Gypsum-Salt Environment on Hydrocarbon Generation, Reservoir-Forming and Hydrocarbon Accumulation in Carbonate Strata.China Petroleum Exploration, 21(2):20-27(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201602003 Israelson, C., Halliday, A.N., Buchardt, B., 1996.U-Pb Dating of Calcite Concretions from Cambrian Black Shales and the Phanerozoic Time Scale.Earth and Planetary Science Letters, 141(1):153-159. https://doi.org/10.1016/0012-821x(96)00071-4 Jahn, B.M., Cuvellier, H., 1994.Pb-Pb and U-Pb Geochronology of Carbonate Rocks:An Assessment.Chemical Geology, 115(1-2):125-151. https://doi.org/10.1016/0009-2541(94)90149-x Jahn, B.M., Simonson, B.M., 1995.Carbonate Pb-Pb Ages of the Wittenoom Formation and Carawine Dolomite, Hamersley Basin, Western Australia (with Implications for Their Correlation with the Transvaal Dolomite of South Africa).Precambrian Research, 72(3):247-261. https://doi.org/10.1016/0301-9268(94)00092-6 Jiang, H., Zhang, Y.Q., Pan, W.Q., et al., 2013.Carbonate Reservoir Features and Karst Mode in the Yingmai-2 Well Field of Tabei Uplift.Acta Petrolei Sinica, 34(2):232-238(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201302004 Jin, Z.J., Zhang, L.P., Yang, L., et al., 2002.Primary Study of Geochemical Features of Deep Fluids and Their Effectiveness on Oil/Gas Reservoir Formation in Sedimental Basins.Earth Science, 27(6):659-665(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200206001 Jin, Z.J., Zhu, D.Y., Meng, Q.Q., et al., 2013.Hydrothermal Activites and Influences on Migration of Oil and Gas in Tarim Basin.Acta Petrologica Sinica, 29(3):1048-1058(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303025 Li, M.C., Li, J., Wan, Y.J., et al., 2001.Fluids in the Sedimenary Basin.Acta Petrolei Sinica, 22(4):13-17(in Chinese with English abstract). Li, Q., Parrish, R.R., Horstwood, M.S.A., et al., 2014.U-Pb Dating of Cements in Mesozoic Ammonites.Chemical Geology, 376:76-83. https://doi.org/10.1016/j.chemgeo.2014.03.020 Li, Z., 2016.Research Frontiers of Fluid-Rock Interaction and Oil-Gas Formation in Deep-Buried Basins.Bulletin of Mineralogy, Petrology and Geochemistry, 35(5):807-816(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201605004 Liu, D.H., 1995.Fluid Inclusion Studies-An Effective Means for Basin Fluid Investigation.Earth Science Frontiers, 2(4):149-154(in Chinese with English abstract). Liu, E.T., Wang, H., Shen, N.P., et al., 2017.Formation of Authigenic Clay Minerals in Hydrothermal Events Developed Regions:A Case Study from the Fushan Depression, Beibuwan Basin.Bulletin of Mineralogy, Petrology and Geochemistry, 36(1):59-66(in Chinese with English abstract). Liu, E.T., Wang, H., Uysal, I.T., et al., 2017.Paleogene Igneous Intrusion and Its Effect on Thermal Maturity of Organic-Rich Mudstones in the Beibuwan Basin, South China Sea.Marine and Petroleum Geology, 86:733-750. https://doi.org/10.1016/j.marpetgeo.2017.06.026 Liu, S.G., Li, G.R., Li, J.C., et al., 2005.Fluid Cross Formation Flow and Gas Explosion Accumulation in Western Sichuan Foreland Basin, China.Acta Geologica Sinica, 79(5):690-699(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200505014 Lu, H.Z., 1997.Ore-Forming Fluid.China Science and Technology Press, Beijing (in Chinese). Lu, Z.Y., Chen, H.H., Feng, Y., et al., 2015.Evidences of Multi-Episodically Paleo-Fluid Flow and Its Significance in Ordovician of Guchengxu Uplift, Tarim Basin.Earth Science, 40(9):1529-1537(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.137 Luczaj, J.A., Goldstein, R.H., 2000.Diagenesis of the Lower Permian Krider Member, Southwest Kansas, U.S.A.:Fluid-Inclusion, U-Pb, and Fission-Track Evidence for Reflux Dolomitization during Latest Permian Time.Journal of Sedimentary Research, 70(3):762-773. https://doi.org/10.1306/2dc40936-0e47-11d7-8643000102c1865d Lundberg, J., Ford, D.C., Hill, C.A., 2000.A Preliminary U-Pb Date on Cave Spar, Big Canyon, Guadalupe Mountains, New Mexico, USA.Journal of Cave and Karst Studies, 62:144-148. Ma, Y.S., Cai, X.Y., Zhao, P.R., 2011.The Research Status and Advances in Porosity Evolution and Diagenesis of Deep Carbonate Reservoir.Earth Science Frontiers, 18(4):181-192(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201104015 Mark, D.F., Green, P.F., Parnell, J., et al., 2008.Late Palaeozoic Hydrocarbon Migration through the Clair Field, West of Shetland, UK Atlantic Margin.Geochimica et Cosmochimica Acta, 72(10):2510-2533. https://doi.org/10.1016/j.gca.2007.11.037 Mark, D.F., Parnell, J.P., Kelley, S.P., et al., 2005.Dating of Multistage Fluid Flow in Sandstones.Science, 309(5743):2048-2051. https://doi.org/10.1126/science.1116034 Mark, D.F., Parnell, J., Kelley, S.P., et al., 2007.Resolution of Regional Fluid Flow Related to Successive Orogenic Events on the Laurentian Margin.Geology, 35(6):547. https://doi.org/10.1130/g23388a.1 Moorbath, S., Taylor, P.N., Orpen, J.L., et al., 1987.First Direct Radiometric Dating of Archaean Stromatolitic Limestone.Nature, 326(6116):865-867. https://doi.org/10.1038/326865a0 Neymark, L.A., Amelin, Y., Paces, J.B., et al., 2002.U-Pb Ages of Secondary Silica at Yucca Mountain, Nevada:Implications for the Paleohydrology of the Unsaturated Zone.Applied Geochemistry, 17(6):709-734. https://doi.org/10.1016/s0883-2927(02)00032-x Nuriel, P., Weinberger, R., Kylander-Clark, A.R.C., et al., 2017.The Onset of the Dead Sea Transform Based on Calcite Age-Strain Analyses.Geology, 45(7):587-590. https://doi.org/10.1130/g38903.1 Pagel, M., Bonifacie, M., Schneider, D.A., et al., 2018.Improving Paleohydrological and Diagenetic Reconstructions in Calcite Veins and Breccia of a Sedimentary Basin by Combining Δ47 Temperature, δ18O Water and U-Pb Age.Chemical Geology, 481:1-17. https://doi.org/10.1016/j.chemgeo.2017.12.026 Pisapia, C., Deschamps, P., Battani, A., et al., 2017.U/Pb Dating of Geodic Calcite:New Insights on Western Europe Major Tectonic Events and Associated Diagenetic Fluids.Journal of the Geological Society, 175(1):60-70. https://doi.org/10.1144/jgs2017-067 Polyak, V., Hill, C., Asmerom, Y., 2008.Age and Evolution of the Grand Canyon Revealed by U-Pb Dating of Water Table-Type Speleothems.Science, 319(5868):1377-1380. https://doi.org/10.1126/science.1151248 Rasbury, E.T., Cole, J.M., 2009.Directly Dating Geologic Events:U-Pb Dating of Carbonates.Reviews of Geophysics, 47(3):RG3001. https://doi.org/10.1029/2007rg000246 Rasbury, E.T., Hanson, G.N., Meyers, W.J., et al., 1997.Dating of the Time of Sedimentation Using U-Pb Ages for Paleosol Calcite.Geochimica et Cosmochimica Acta, 61(7):1525-1529. https://doi.org/10.1016/s0016-7037(97)00043-4 Rasbury, E.T., Ward, W.B., Hemming, N.G., et al., 2004.Concurrent U-Pb Age and Seawater 87Sr/86Sr Value of a Marine Cement.Earth and Planetary Science Letters, 221:355-371. https://doi.org/10.1016/S0012-821X(04)00105-0 Richards, D.A., Bottrell, S.H., Cliff, R.A., et al., 1998.U-Pb Dating of a Speleothem of Quaternary Age.Geochimica et Cosmochimica Acta, 62(23-24):3683-3688. https://doi.org/10.1016/s0016-7037(98)00256-7 Ring, U., Gerdes, A., 2016.Kinematics of the Alpenrhein-Bodensee Graben System in the Central Alps:Oligocene/Miocene Transtension Due to Formation of the Western Alps Arc.Tectonics, 35(6):1367-1391. https://doi.org/10.1002/2015tc004085 Roberts, N.M.W., Rasbury, E.T., Parrish, R.R., et al., 2017.A Calcite Reference Material for LA-ICP-MS U-Pb Geochronology.Geochemistry, Geophysics, Geosystems, 18(7):2807-2814. https://doi.org/10.1002/2016gc006784 Roberts, N.M.W., Walker, R.J., 2016.U-Pb Geochronology of Calcite-Mineralized Faults:Absolute Timing of Rift-Related Fault Events on the Northeast Atlantic Margin.Geology, 44(7):531-534. https://doi.org/10.1130/g37868.1 Seewald, J.S., 1994.Evidence for Metastable Equilibrium between Hydrocarbons under Hydrothermal Conditions.Nature, 370(6487):285-287. https://doi.org/10.1038/370285a0 Shi, S.Y., Hu, S.Y., Liu, W., et al., 2015.Distinguishing Paleokarst Period by Integrating Carbon-Oxygen Isotopes and Fluid Inclusion Characteristics.Natural Gas Geoscience, 26(2):208-217(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201502002 Smith, P.E., Farquhar, R.M., Hancock, R.G., 1991.Direct Radiometric Age Determination of Carbonate Diagenesis Using U-Pb in Secondary Calcite.Earth and Planetary Science Letters, 105(4):474-491. https://doi.org/10.1016/0012-821x(91)90186-l Uysal, I.T., Feng, Y.X., Zhao, J.X., et al., 2011.Seismic Cycles Recorded in Late Quaternary Calcite Veins:Geochronological, Geochemical and Microstructural Evidence.Earth and Planetary Science Letters, 303(1-2):84-96. https://doi.org/10.1016/j.epsl.2010.12.039 Uysal, I.T., Golding, S.D., Thiede, D.S., 2001.K-Ar and Rb-Sr Dating of Authigenic Illite-Smectite in Late Permian Coal Measures, Queensland, Australia:Implication for Thermal History.Chemical Geology, 171(3-4):195-211. https://doi.org/10.1016/s0009-2541(00)00247-3 Walker, J., Cliff, R.A., Latham, A.G., 2006.U-Pb Isotopic Age of the StW 573 Hominid from Sterkfontein, South Africa.Science, 314(5805):1592-1594. https://doi.org/10.1126/science.1132916 Wang, G., Qin, Y., Shen, J., et al., 2018.Dynamic-Change Laws of the Porosity and Permeability of Low-to Medium-Rank Coals under Heating and Pressurization Treatments in the Eastern Junggar Basin, China.Journal of Earth Science, 29(3):607-615. https://doi.org/10.1007/s12583-017-0908-4 Wang, J., Zhang, J., Zhong, W.B., et al., 2018.Sources of Ore-Forming Fluids from Tianbaoshan and Huize Pb-Zn Deposits in Yunnan-Sichuan-Guizhou Region, Southwest China:Evidence from Fluid Inclusions and He-Ar Isotopes.Earth Science, 43(6):2076-2099(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.601 Wang, P.H., Tang, L.J., Qiu, H.J., et al., 2013.Chronology Evidence of ESR Dating for the Late Movements of the Piqiang Fault in the Tarim Basin and Its Geological Implication.Oil & Gas Geology, 34(1):107-111(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201301014 Wang, Z.S., Rasbury, E.T., Hanson, G.N., et al., 1998.Using the U-Pb System of Calcretes to Date the Time of Sedimentation of Clastic Sedimentary Rocks.Geochimica et Cosmochimica Acta, 62(16):2823-2835. https://doi.org/10.1016/s0016-7037(98)00201-4 Woodhead, J., Hellstrom, J., Maas, R., et al., 2006.U-Pb Geochronology of Speleothems by MC-ICPMS.Quaternary Geochronology, 1(3):208-221. https://doi.org/10.1016/j.quageo.2006.08.002 Woodhead, J., Pickering, R., 2012.Beyond 500 ka:Progress and Prospects in the U-Pb Chronology of Speleothems, and Their Application to Studies in Palaeoclimate, Human Evolution, Biodiversity and Tectonics.Chemical Geology, 322-323:290-299. https://doi.org/10.1016/j.chemgeo.2012.06.017 Worden, R.H., Coleman, M.L., Matray, J.M., 1999.Basin Scale Evolution of Formation Waters:A Diagenetic and Formation Water Study of the Triassic Chaunoy Formation, Paris Basin.Geochimica et Cosmochimica Acta, 63(17):2513-2528. https://doi.org/10.1016/s0016-7037(99)00121-0 Xie, X.N., Cheng, J.M., Meng, Y.L., 2009.Basin Fluid Flow and Associated Diagenetic Processes.Acta Sedimentologica Sinica, 27(5):863-871(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzxb-e201801017 Zhang, W.D., Wu, X.B., Deng, X.H., et al., 2018.Fluid Inclusions Constraints on the Origin of the Xiaorequanzi Deposit in Eastern Tianshan.Earth Science, 43(9):3036-3048(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.150 Zhao, J.X., Yu, K.F., Feng, Y.X., 2009.High-Precision 238U-234U-230Th Disequilibrium Dating of the Recent Past:A Review.Quaternary Geochronology, 4(5):423-433. https://doi.org/10.1016/j.quageo.2009.01.012 Zhao, W.Z., Hu, S.Y., Wang, Z.C., et al., 2018.Petroleum Geological Conditions and Exploration Importance of Proterozoic to Cambrian in China.Petroleum Exploration and Development, 45(1):1-13(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201801001 Zhao, Z.J., Luo, J.H., Zhang, Y.B., et al., 2011.Lithofacies Paleogeography of Cambrian Sequences in the Tarim Basin.Acta Petrolei Sinica, 32(6):937-948(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201106003 Zheng, R.C., Peng, J., Gao, H.C., et al., 2003.Analysis of Fracture Active Stages, Heat Fluid Nature and the Process of Forming Reservoir in Western Sichuan Sag.Journal of Chengdu University of Technology (Science & Technology Edition), 30(6):551-558(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200306001 顾家裕, 范土芝, 方辉, 等, 2001.塔里木盆地流体与油气藏.地质论评, 47(2):201-206. doi: 10.3321/j.issn:0371-5736.2001.02.014 郭凯, 曾溅辉, 李元昊, 等, 2013.陇东地区延长组构造裂缝方解石脉特征及其与烃类流体活动的关系.中国石油大学学报(自然科学版), 37(2):36-42. doi: 10.3969/j.issn.1673-5005.2013.02.006 韩剑发, 王招明, 潘文庆, 等, 2006.轮南古隆起控油理论及其潜山准层状油气藏勘探.石油勘探与开发, 33(4):448-453. doi: 10.3321/j.issn:1000-0747.2006.04.011 胡素云, 石书缘, 王铜山, 等, 2016.膏盐环境对碳酸盐岩层系成烃、成储和成藏的影响.中国石油勘探, 21(2):20-27. doi: 10.3969/j.issn.1672-7703.2016.02.003 姜华, 张艳秋, 潘文庆, 等, 2013.塔北隆起英买2井区碳酸盐岩储层特征及岩溶模式.石油学报, 34(2):232-238. http://d.old.wanfangdata.com.cn/Periodical/syxb201302004 金之钧, 张刘平, 杨雷, 等, 2002.沉积盆地深部流体的地球化学特征及油气成藏效应.地球科学, 27(6):659-665. doi: 10.3321/j.issn:1000-2383.2002.06.001 金之钧, 朱东亚, 孟庆强, 等, 2013.塔里木盆地热液流体活动及其对油气运移的影响.岩石学报, 29(3):1048-1058. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303025 李明诚, 李剑, 万玉金, 等, 2001.沉积盆地中的流体.石油学报, 22(4):13-17. doi: 10.3321/j.issn:0253-2697.2001.04.003 李忠, 2016.盆地深层流体-岩石作用与油气形成研究前沿.矿物岩石地球化学通报, 35(5):807-816. doi: 10.3969/j.issn.1007-2802.2016.05.001 刘德汉, 1995.包裹体研究——盆地流体追踪的有力工具.地学前缘, 2(4):149-154. doi: 10.3321/j.issn:1005-2321.1995.04.003 刘恩涛, 王华, 沈能平, 等, 2017.热事件发育地区自生黏土矿物形成过程分析:以北部湾盆地福山凹陷为例.矿物岩石地球化学通报, 36(1):59-66. doi: 10.3969/j.issn.1007-2802.2017.01.007 刘树根, 李国蓉, 李巨初, 等, 2005.川西前陆盆地流体的跨层流动和天然气爆发式成藏.地质学报, 79(5):690-699. doi: 10.3321/j.issn:0001-5717.2005.05.014 卢焕章, 1997.成矿流体.北京:中国科学技术出版社. 鲁子野, 陈红汉, 丰勇, 等, 2015.塔里木盆地古城墟隆起奥陶系多期古流体活动证据及意义.地球科学, 40(9):1529-1537. https://doi.org/10.3799/dqkx.2015.137 马永生, 蔡勋育, 赵培荣, 2011.深层、超深层碳酸盐岩油气储集层形成机理研究综述.地学前缘, 18(4):181-192. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201104014.htm 石书缘, 胡素云, 刘伟, 等, 2015.综合运用碳氧同位素和包裹体信息判别古岩溶形成期次.天然气地球科学, 26(2):208-217. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201502002 王健, 张均, 仲文斌, 等, 2018.川滇黔地区天宝山、会泽铅锌矿床成矿流体来源初探:来自流体包裹体及氦氩同位素的证据.地球科学, 43(6):2076-2099. https://doi.org/10.3799/dqkx.2018.601 王鹏昊, 汤良杰, 邱海峻, 等, 2013.塔里木盆地皮羌断裂晚期活动ESR年代学证据及其地质意义.石油与天然气地质, 34(1):107-111. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201301014 解习农, 成建梅, 孟元林, 2009.沉积盆地流体活动及其成岩响应.沉积学报, 27(5):863-871. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200905010 张文东, 吴湘滨, 邓小华, 等, 2018.东天山小热泉子矿床流体包裹体及矿床成因.地球科学, 43(9):3036-3048. https://doi.org/10.3799/dqkx.2018.150 赵文智, 胡素云, 汪泽成, 等, 2018.中国元古界-寒武系油气地质条件与勘探地位.石油勘探与开发, 45(1):1-13. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201801002.htm 赵宗举, 罗家洪, 张运波, 等, 2011.塔里木盆地寒武纪层序岩相古地理.石油学报, 32(6):937-948. http://d.old.wanfangdata.com.cn/Periodical/syxb201106003 郑荣才, 彭军, 高红灿, 等, 2003.川西坳陷断裂活动期次、热流体性质和油气成藏过程分析.成都理工大学学报(自然科学版), 30(6):551-558. doi: 10.3969/j.issn.1671-9727.2003.06.001