Formation Age and Tectonic Setting of Iron-Bearing Formation in Huai'an Complex, North China Craton
-
摘要: 华北克拉通北部的怀安杂岩中分布着一些呈团块状、透镜状或似层状产出的含BIF岩石组合.相对于华北克拉通绿岩带,研究区内的含BIF岩石组合具有规模小、岩性复杂多样以及后期叠加强烈的变质-变形改造等特点,其研究程度较低.在野外地质填图的基础上,通过岩石学、同位素年代学、地球化学研究表明:(1)天镇-怀安地区的含BIF岩石组合主要由条带状(含辉石/角闪)磁铁石英岩、变质基性火山岩(二辉麻粒岩/含辉石斜长角闪岩/高压麻粒岩)、石榴黑云斜长片麻岩和少量石榴石英岩条带或团块组成,这些岩石彼此呈夹层或互层状伴生产出;天镇-怀安地区BIF矿体规模小、与变质火山岩密切共生等特征表明其属于Algoma型.(2)条带状(含辉石/角闪)磁铁石英岩中残留的中-基性火成岩锆石年龄(2 489±19 Ma)可代表含BIF岩石组合的形成时代,并经历了1 800~1 850 Ma变质作用叠加改造.(3)含BIF岩石组合中火山岩地球化学特征显示Rb、Ba、U、Pb等元素富集和Nb、Ta等元素亏损,结合微量元素蛛网图和稀土配分模式对比认为其产出构造背景为弧后盆地,铁矿石PAAS标准化稀土配分图解具有明显Eu正异常,表明与海底热液活动密切相关.Abstract: Iron-bearing formations (BIFs) in lumpy, lenticular or stratified forms frequently occur in the Huai'an Complex, North China Craton. Compared with BIFs in greenstone belts on North China Craton, the iron-bearing formation with characteristics of small scale, complicated lithology, and high-grade metamorphism-deformation in the study area has rarely been studied. Petrology, geochronology and geochemical studies on the basis of field survey have been conducted, and it is concluded:(1) The iron-bearing formations in Tianzhen-Huai'an area are comprised of banded (perilla/amphibole) magnetic quartzite, metamorphic basic volcanic rock (two-pyroxene granulite/plagioclase amphibolites/high-pressure granulite), garnet-biotite-plagiogneiss, and a few garnet-quartzite strips or lumps, and these rocks are intercalated or symbiotic with each other. Characteristics of being small in scale, closely symbiotic with metamorphic volcanic rocks suggesting BIF ore in Tianzhen-Huai'an area belongs to Algoma type. (2) The age (2 489±19 Ma) of residual intermediate-basic igneous zircons in banded (perilla/amphibole) magnetic quartzite may represent the formation age of the BIFs in Tianzhen-Huai'an area, which afterwards underwent the 1 800-1 850 Ma metamorphism. (3) The geochemical characteristics of metamorphic volcanic rocks of iron-bearing formations show enrichment in elements Rb, Ba, U, Pb, and depletion in elements Nb and Ta. It is concluded the iron-bearing formations are closely related to seabed hydrothermal activity formed in back-arc basin according to the patterns of trace elements and rare earth distribution of metamorphic volcanic rocks and positive anomality of Eu in PAAS normalized rare earth elements distribution pattern of iron ore.
-
Key words:
- Tianzhen-Huai'an area /
- iron-bearing formation /
- U-Pb dating /
- geochemistry /
- petrology
-
图 1 天镇-怀安地区地质简图
图据Han et al.(2017)和张家辉等(2019)修改
Fig. 1. Geological sketch of the Tianzhen-Huai'an area
图 2 BIF在TTG围岩中的产出形态以及BIF岩石组合的主要岩石特征
a.条带状磁铁石英岩呈透镜体产出;b.条带状磁铁石英岩呈似层状产出;c.残留的长条状铁矿采坑;d.石榴黑云斜长片麻岩中夹层状BIF铁矿;e.二辉麻粒岩的“石香肠”构造;f.含BIF岩石组合与围岩的构造接触界线;g.条带状磁铁石英岩;h.二辉麻粒岩;i.高压麻粒岩;j.石榴黑云斜长片麻岩;k.磁铁石英岩中角闪石呈填隙状分布于磁铁矿条带中;l.磁铁石英岩中的紫苏辉石
Fig. 2. Occurrence of BIF in TTG and petrographic characteristics of the main lithology of BIF-bearing assemblage
图 6 与铁矿共生的变质火山岩Nb/Yb-Zr/TiO2图解(a)、Fe2O3T/TiO2-Al2O3-MgO图解(b)以及原始地幔标准化微量元素蛛网图(c)、球粒陨石标准化稀土元素配分图解(d)
图a据Winchester and Floyd(1977);图b据Jensen(1976);图c据Sun and McDonough(1989);图d据Sun and McDonough(1989)
Fig. 6. Nb/Yb-Zr/TiO2 diagram (a), Fe2O3T/TiO2-Al2O3-MgO diagram (b), primitive mantle-normalized spidergrams (c) and chondrite-normalized REE patterns (d) for the metamorphic volcanic rocks of BIF-bearing rock assemblage
图 7 铁矿石稀土元素PAAS标准化配分图解
PAAS标准化值据McLennan(1989)
Fig. 7. PAAS-normalized REE patterns for the ores of BIF-bearing rock assemblage
图 9 与铁矿共生的变质火山岩样品Th/Yb-Ta/Yb图解(a)和Y/15-La/10-Nb/8图解(b)
图a据Pearce(1982);图b据Cabanis and Lecolle(1989)
Fig. 9. Th/Yb-Ta/Yb diagram (a) and Y/15-La/10-Nb/8 diagram (b) for the metamorphic volcanic rocks of BIF-bearing rock assemblage
-
Barley, M.E., Pickard, A.L., Sylvester, P.J., 1997.Emplacement of a Large Igneous Province as a Possible Cause of Banded Iron Formation 2.45 Billion Years Ago.Nature, 385(6611):55-58. https://doi.org/10.1038/385055a0 Bau, M., 1996.Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems:Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect.Contributions to Mineralogy and Petrology, 123(3):323-333. https://doi.org/10.1007/s004100050159 Bau, M., Dulski, P., 1996.Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa.Precambrian Research, 79(1-2):37-55. https://doi.org/10.1016/0301-9268(95)00087-9 Bekker, A., Krapez, B., Slack, J.F., et al., 2010.Iron Formation:The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes-A Reply.Economic Geology, 107(2):379-380. https://doi.org/10.2113/econgeo.107.2.379 Cabanis, B., Lecolle, M., 1989.Le Diagramme La/10-Y/15-Nb/8:Unoutil Pour la Discrimination des Series Volcaniques et la Mise en Evidence des Processus de Melange et/ou de Contamination Crustale.Comptes Rendus de l'Academie des Sciences, Seri 2, Mecanique, Physique, Chimie, Sciences de l'Univers, Sciences de la Terre, 309:2023-2029. Cai, J., Liu, P.H., Ji, L., et al., 2017.Zircon Geochronology of the Paleoproterozoic High-Grade Supracrustal Rocks from the Huai'an Terrane, Northwestern Hebei.Acta Petrologica Sinica, 33(9):2811-2826 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201709011 Campbell, A.C., Palmer, M.R., Klinkhammer, G.P., et al., 1988.Chemistry of Hot Springs on the Mid-Atlantic Ridge.Nature, 335(6190):514-519. doi: 10.1038/335514a0 Cannon, W.F., Schulz, K.J., Horton, J.W., et al., 2010.The Sudbury Impact Layer in the Paleoproterozoic Iron Ranges of Northern Michigan, USA.Geological Society of America Bulletin, 122(1-2):50-75. https://doi.org/10.1130/b26517.1 Dai, Y.P., Zhu, Y.D., Zhang, L.C., et al., 2016.An Overview of Studies on Precambrian Banded Iron Formations (BIFs) in China and Abroad.Geological Review, 62(3):735-757 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201603016 Geng, Y.S., Lu, S.N., 2014.Advances in the Study of Precambrian Chronostratigraphy in China:A Review.Earth Science Frontiers, 21(2):102-118 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201402009 Gross, G.A., 1980.A Classification of Iron-Formations Based on Depositional Environments.Canadian Mineralogist, 18(1):215-222. http://canmin.geoscienceworld.org/content/18/2.toc Guo, J.H., Sun, M., Chen, F.K., et al., 2005.Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton:Timing of Paleoproterozoic Continental Collision.Journal of Asian Earth Sciences, 24(5):629-642. https://doi.org/10.1016/j.jseaes.2004.01.017 Guo, J.H., Zhai, M.G., Zhang, Y.G., et al., 1993.Early Precambrian Manjinggou Highpressure Granulite Melange Belt on the South Edge of the Huaian Complex, North China Craton:Geological Features, Petrology and Isotopic Geochronology.Acta Petrologica Sinica, 9(4):329-341 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199304001.htm Han, C.M., Xiao, W.J., Su, B.X., et al., 2017.Neoarchean Algoma-Type Banded Iron Formation from the Northern Shanxi, the Trans-North China Orogen:SIMS U-Pb Age, Origin and Tectonic Setting.Precambrian Research, 303:548-572. https://doi.org/10.1016/j.precamres.2017.06.023 Hawkins, J.W., Lonsdale, P.F., Macdougall, J.D., et al., 1990.Petrology of the Axial Ridge of the Mariana Trough Backarc Spreading Center.Earth and Planetary Science Letters, 100(1-3):226-250. https://doi.org/10.1016/0012-821x(90)90187-3 Huston, D.L., Logan, G.A., 2004.Barite, BIFs and Bugs:Evidence for the Evolution of the Earth's Early Hydrosphere.Earth and Planetary Science Letters, 220(1-2):41-55. https://doi.org/10.1016/s0012-821x(04)00034-2 Jensen, L.S., 1976.A New Plot for Classifying Subalkalic Volcanic Rocks.Ontario Division of Mines Miscellaneous Paper, 1-66. Klein, C., 2005.Some Precambrian Banded Iron-Formations (BIFs) from around the World:Their Age, Geologic Setting, Mineralogy, Metamorphism, Geochemistry, and Origins.American Mineralogist, 90(10):1473-1499. https://doi.org/10.2138/am.2005.1871 Klein, E.M., Langmuir, C.H., 1987.Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth and Crustal Thickness.Journal of Geophysical Research Solid Earth, 92(B8):8089-8115. doi: 10.1029/JB092iB08p08089 Kröner, A., Wilde, S.A., Li, J.H., et al., 2005.Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China.Journal of Asian Earth Sciences, 24(5):577-595. https://doi.org/10.1016/j.jseaes.2004.01.001 Li, H.M., Zhang, Z.J., Li, L.X., et al., 2014.Types and General Characteristics of the BIF-Related Iron Deposits in China.Ore Geology Reviews, 57:264-287. https://doi.org/10.1016/j.oregeorev.2013.09.014 Liu, F., Guo, J.H., Peng, P., et al., 2012.Zircon U-Pb Ages and Geochemistry of the Huai'an TTG Gneisses Terrane:Petrogenesis and Implications for~2.5 Ga Crustal Growth in the North China Craton.Precambrian Research, 212-213:225-244. https://doi.org/10.1016/j.precamres.2012.06.006 Liu, L., Zhang, L.C., Dai, Y.P., et al., 2012.Formation Age, Geochemical Signatures and Geological Significance of the Sanheming BIF-Type Iron Deposit in the Guyang Greenstone Belt, Inner Mongolia.Acta Petrologica Sinica, 28(11):3623-3637 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211014 Lu, L.Z., Xu, X.C., Liu, F.L., et al., 1996.Early Precambrian Khondalite Series in the North China.Changchun Press, Changchun, 16-118 (in Chinese). Martin, H., Moyen, J.F., 2002.Secular Changes in Tonalite-Trondhjemite-Granodiorite Composition as Markers of the Progressive Cooling of Earth.Geology, 30(4):319-322.https://doi.org/10.1130/0091-7613(2002)030<0319:scittg>2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0319:scittg>2.0.co;2 Mclennan, S.M., 1989.Rare Earth Elements in Sedimentary Rocks:Influence of Provenance and Sedimentary Processes.Reviews in Mineralogy, 21(8):169-200. Pearce, J.A., 1982.Trace Element Characteristics of Lavas from Destructive Plate Boundaries.In: Thorpe, R.S., ed., Andesites: Orogenic Andesites and Related Rocks.Willy, Chichester, 528-548. Rao, T.G., Naqvi, S.M., 1995.Geochemistry, Depositional Environment and Tectonic Setting of the BIF's of the Late Archaean Chitradurga Schist Belt, India.Chemical Geology, 121(1-4):217-243. https://doi.org/10.1016/0009-2541(94)00116-p Shi, Z.Q., Shi, Y.R., 2016.SHRIMP U-Pb Ages of Zircons from Banded Magnetite Quartzite of Shachang Formation in Miyun Area of Beijing and Their Significance.Journal of Earch Sciences and Environment, 38(4):547-557 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201604010 Smithies, R.H., 2000.The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite.Earth and Planetary Science Letters, 182(1):115-125. https://doi.org/10.1016/s0012-821x(00)00236-3 Su, Y.P., Zheng, J.P., Griffin, W.L., et al., 2014.Zircon U-Pb Ages and Hf Isotope of Gneissic Rocks from the Huai'an Complex:Implications for Crustal Accretion and Tectonic Evolution in the Northern Margin of the North China Craton.Precambrian Research, 255:335-354. https://doi.org/10.1016/j.precamres.2014.10.007 Sun, S.S., Mcdonough, W.F., 1989, Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society London Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2012.Formation Ages of Early Precambrian BIFs in the North China Craton:SHRIMP Zircon U-Pb Dating.Acta Geologica Sinica, 86(9):1447-1478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201209010.htm Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2018.Formation Age of BIF-Bearing Anshan Group Supracrustal Rocks in Anshan-Benxi Area:New Evidence from SHRIMP U-Pb Zircon Dating.Earth Science, 43 (1):57-81 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.004 Wan, Y.S., Liu, D.Y., 1993.Ages of Zircons from Mid-Archaean Gneissic Granite and Fuchsite Quartzite in the Gongchangling Area, Liaoning.Geological Review, 39(2):124-129 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000371972 Wan, Y.S., Song, B., Liu, D.Y., et al., 2006.SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton:Evidence for a Major Late Palaeoproterozoic Tectonothermal Event.Precambrian Research, 149(3-4):249-271. https://doi.org/10.1016/j.precamres.2006.06.006 Wang, H.C., Kang, J.L., Xiao, Z.B., et al., 2018.Neoarchean Subduction in North China Craton:New Evidence from the Metamorphic High-Mg Igneous Assemblage in Yunzhognshan Area, Shanxi Province.Acta Petrologica Sinica, 34(4):1099-1118 (in Chinese with English abstract). Wang, Z.H., Wilde, S.A., Wang, K.Y., et al., 2004.A MORB-Arc Basalt-Adakite Association in the 2.5 Ga Wutai Greenstone Belt:Late Archean Magmatism and Crustal Growth in the North China Craton.Precambrian Research, 131(3-4):323-343. https://doi.org/10.1016/j.precamres.2003.12.014 Wilde, S.A., Cawood, P.A., Wang, K.Y., et al., 2005.Granitoid Evolution in the Late Archean Wutai Complex, North China Craton.Journal of Asian Earth Sciences, 24(5):597-613. https://doi.org/10.1016/j.jseaes.2003.11.006 Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20(4):325-343. doi: 10.1016-0009-2541(77)90057-2/ Yang, J., Wang, J.R., Zhang, Q., et al., 2016.Back-Arc Basin Basalt (BABB) Data Mining:Comparison with MORB and IAB.Advances in Earth Science, 31(1):66-77 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201601006 Zhai, M.G., Santosh, M., 2011.The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview.Gondwana Research, 20(1):6-25. https://doi.org/10.1016/j.gr.2011.02.005 Zhai, M.G., Windley, B.F., 1990.The Archaean and Early Proterozoic Banded Iron Formations of North China:Their Characteristics, Geotectonic Relations, Chemistry and Implications for Crustal Growth.Precambrian Research, 48(3):267-286. https://doi.org/10.1016/0301-9268(90)90012-f Zhang, H.F., Wang, H.Z., Santosh, M., et al., 2016.Zircon U-Pb Ages of Paleoproterozoic Mafic Granulites from the Huai'an Terrane, North China Craton (NCC):Implications for Timing of Cratonization and Crustal Evolution History.Precambrian Research, 272:244-263. https://doi.org/10.1016/j.precamres.2015.11.004 Zhang, H.F., Zhai, M.G., Santosh, M., et al., 2011.Geochronology and Petrogenesis of Neoarchean Potassic Meta-Granites from Huai'an Complex:Implications for the Evolution of the North China Craton.Gondwana Research, 20(1):82-105. https://doi.org/10.1016/j.gr.2011.01.009 Zhang, J.H., Tian, H., Wang, H.C., et al., 2019.Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton:Evidences from Petrology and Zircon U-Pb Geochronology.Earth Science, 44(1):1-22 (in Chinese with English abstract) Zhang, L.C., Zhai, M.G., Wan, Y.S., et al., 2012.Study of the Precambrian BIF-Iron Deposits in the North China Craton:Progresses and Questions.Acta Petrologica Sinica, 28(11):3431-3445 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211001 Zhang, L.C., Zhai, M.G., Zhang, X.J., et al., 2012.Formation Age and Tectonic Setting of the Shirengou Neoarchean Banded Iron Deposit in Eastern Hebei Province:Constraints from Geochemistry and SIMS Zircon U-Pb Dating.Precambrian Research, 222-223:325-338. https://doi.org/10.1016/j.precamres.2011.09.007 Zhang, Z.C., Hou, T., Santosh, M., et al., 2014.Spatio-Temporal Distribution and Tectonic Settings of the Major Iron Deposits in China:An Overview.Ore Geology Reviews, 57:247-263. https://doi.org/10.1016/j.oregeorev.2013.08.021 Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited.Journal of Asian Earth Sciences, 24(5):519-522. http://dx.doi.org/10.1016/j.precamres.2004.10.002 Zhao, G.C, Wilde, S.A., Sun, M., et al., 2008.SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex:Constraints on Late Archean to Paleoproterozoic Magmatic and Metamorphic Events in the Trans-North China Orogen.American Journal of Science, 308(3):270-303. https://doi.org/10.2475/03.2008.04 蔡佳, 刘平华, 冀磊, 等, 2017.冀西北怀安地体高级变质表壳岩的锆石年代学研究.岩石学报, 33(9):2811-2826. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201709011 代堰锫, 朱玉娣, 张连昌, 等, 2016.国内外前寒武纪条带状铁建造研究现状.地质论评, 62(3):735-757. http://d.old.wanfangdata.com.cn/Periodical/dzlp201603016 耿元生, 陆松年, 2014.中国前寒武纪地层年代学研究的进展和相关问题.地学前缘, 21(2):102-118. http://d.old.wanfangdata.com.cn/Periodical/dxqy201402009 郭敬辉, 翟明国, 张毅刚, 等, 1993.怀安蔓菁沟早前寒武纪高压麻粒岩混杂岩带地质特征、岩石学和同位素年代学.岩石学报, 9(4):329-341. doi: 10.3321/j.issn:1000-0569.1993.04.007 刘利, 张连昌, 代堰锫, 等, 2012.内蒙古固阳绿岩带三合明BIF型铁矿的形成时代、地球化学特征及地质意义.岩石学报, 28(11):3623-3637. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211014 卢良兆, 徐学纯, 刘福来, 1996.中国北方早前寒武纪孔兹岩系.长春:长春出版社, 16-118. 史志强, 石玉若, 2016.北京密云地区沙厂组条带状磁铁石英岩SHRIMP锆石U-Pb年龄及其地质意义.地球科学与环境学报, 38(4):547-557. doi: 10.3969/j.issn.1672-6561.2016.04.010 万渝生, 董春艳, 颉颃强, 等, 2012.华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP锆石U-Pb定年.地质学报, 86(9):1447-1478. doi: 10.3969/j.issn.0001-5717.2012.09.008 万渝生, 董春艳, 颉颃强, 等, 2018.鞍山-本溪地区鞍山群含BIF表壳岩形成时代新证据:锆石SHRIMP U-Pb定年.地球科学, 43(1):57-81. http://www.earth-science.net/WebPage/Article.aspx?id=3727 万渝生, 刘敦一, 1993.辽宁弓长岭中太古代片麻状花岗岩和铬云母石英岩的锆石年龄.地质论评, 39(2):124-129. doi: 10.3321/j.issn:0371-5736.1993.02.005 王惠初, 康健丽, 肖志斌, 等, 2018.华北克拉通新太古代板块俯冲作用:来自山西云中山地区变质高镁火成岩组合的证据.岩石学报, 34(4):1099-1118. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201804013 杨婧, 王金荣, 张旗, 等, 2016.弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比.地球科学进展, 31(1):66-77. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201601006 张家辉, 田辉, 王惠初, 等, 2019.华北克拉通怀安杂岩中早前寒武纪两期表壳岩的重新厘定:岩石学及锆石U-Pb年代学证据.地球科学, 44(1):1-22. http://www.earth-science.net/WebPage/Article.aspx?id=4103 张连昌, 翟明国, 万渝生, 等, 2012.华北克拉通前寒武纪BIF铁矿研究:进展与问题.岩石学报, 28(11):3431-3445. http://d.old.wanfangdata.com.cn/Conference/7895390 -
dqkxzx-44-1-37-附表123.doc