• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示

    孙渺 陈伟 曲晓明 马旭东 丁吉顺

    孙渺, 陈伟, 曲晓明, 马旭东, 丁吉顺, 2018. 西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示. 地球科学, 43(9): 3234-3251. doi: 10.3799/dqkx.2018.146
    引用本文: 孙渺, 陈伟, 曲晓明, 马旭东, 丁吉顺, 2018. 西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示. 地球科学, 43(9): 3234-3251. doi: 10.3799/dqkx.2018.146
    Sun Miao, Chen Wei, Qu Xiaoming, Ma Xudong, Ding Jishun, 2018. Petrogenesis of the Late Cretaceous Jiangba Volcanic Rocks and Its Indications for the Thinning of the Thickened Crust in Xiongmei Area, Tibet. Earth Science, 43(9): 3234-3251. doi: 10.3799/dqkx.2018.146
    Citation: Sun Miao, Chen Wei, Qu Xiaoming, Ma Xudong, Ding Jishun, 2018. Petrogenesis of the Late Cretaceous Jiangba Volcanic Rocks and Its Indications for the Thinning of the Thickened Crust in Xiongmei Area, Tibet. Earth Science, 43(9): 3234-3251. doi: 10.3799/dqkx.2018.146

    西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示

    doi: 10.3799/dqkx.2018.146
    基金项目: 

    中国地质调查局项目 DD20160026

    详细信息
      作者简介:

      孙渺(1994-), 男, 硕士研究生, 主要从事矿产普查与勘探方面的研究工作

      通讯作者:

      陈伟

    • 中图分类号: P581

    Petrogenesis of the Late Cretaceous Jiangba Volcanic Rocks and Its Indications for the Thinning of the Thickened Crust in Xiongmei Area, Tibet

    • 摘要: 江巴组火山岩是西藏雄梅地区近年来发现的火山岩,但其岩石成因尚不明确.通过开展系统的岩相学、地球化学、同位素定年示踪研究,结果表明英安质火山岩锆石U-Pb年龄为85.1±1.0 Ma,为晚白垩世.安山质和英安质火山岩显示出明显的埃达克质岩特征,主量元素显示出较高的SiO2和Al2O3含量及Mg#值;稀土元素整体呈轻稀土元素富集,重稀土元素强烈亏损,轻重稀土元素分异明显,(La/Yb)N值较高,无明显Eu异常;微量元素具有明显的高Sr,低Y、Yb和高Sr/Y值,相对富集Th、Zr和Hf,亏损Nb、Ta和Ti的特点;英安质火山岩锆石εHft)值均为正值,在+2.7~+7.1之间,指示有亏损地幔物质参与成岩作用;以上表明安山质和英安质火山岩可能形成于加厚新生下地壳拆沉的部分熔融并有亏损地幔物质的加入.流纹质火山岩具相对低的MgO、TiO2含量;LREEs富集、HREEs亏损,但轻重稀土元素分馏明显较安山质和英安质火山岩弱,微量元素富集Rb、Th和K,强烈亏损Eu,Sr,Ba,P和Ti,明显的负Eu异常,表明流纹质火山岩为地壳发生深熔而形成.综合对比江巴组火山岩的地球化学性质,表明班公湖-怒江缝合带中段昂龙岗日-班戈弧地区在晚白垩世期间存在一期板内加厚下地壳拆沉减薄事件.

       

    • 图  1  班公湖-怒江成矿带及邻区构造单元划分(a);研究区地质简图(b)

      图a据耿全如等(2011)修改;图b据曲永贵等(2002)修改;文献数据来源Sun et al.(2015)Chen et al.(2015)Wang et al.(2014)Haider et al.(2013)张硕等(2014)姚晓峰等(2013)余红霞等(2011)马国林和岳雅慧(2010)

      Fig.  1.  Tectonic units of the Bangonghu-Nujiang metallogenic belt and its neighboring areas (a); the geological sketch of studied area (b)

      图  2  江巴组A-A′剖面及火山岩特征

      a.江巴组A-A′剖面;b.江巴组火山岩野外照片;c.(粗面)英安岩手标本;d.(粗面)英安岩镜下(正交偏光);e.英安质含砾岩屑晶屑凝灰岩(正交偏光);f.英安质晶屑凝灰熔岩(正交偏光);g.角闪安山岩(正交偏光).K2jb.江巴组火山岩;K1d.多尼组;Brc.角砾;Qtz.石英;Pl.斜长石;Hbl.角闪石;Bi.黑云母

      Fig.  2.  The A-A′ section and the volcanic rocks characteristics of the Jiangba Fomation

      图  3  江巴组英安质火山岩锆石CL图像及锆石U-Pb年龄谐和图

      Fig.  3.  Cathodoluminescene (CL) images and U-Pb concordia diagrams of the dacitic volcanic rocks from Jiangba Formation

      图  4  江巴组火山岩TAS图解(a)、K2O-SiO2图解(b)、A/NK-A/CNK图解(c)和Mg#-SiO2图解(d)

      图a据Le Maitre et al.(1989);图b据Rickwood(1989)

      Fig.  4.  Total alkalis vs. SiO2 diagram (a), K2O vs. SiO2 diagram (b), A/NK vs. A/CNK diagram (c), Mg# vs. SiO2 diagram (d)

      图  5  江巴组火山岩球粒陨石标准化稀土元素配分模式图解(a)和微量元素原始地幔标准化图解(b)

      球粒陨石值和原始地幔值据Sun and McDonough(1989);俯冲板片熔融成因埃达克质岩数据引自Defant amd Drummond(1990)Kay et al.(1993)Stern and Kilian(1996);中北部拉萨地体拆沉下地壳埃达克质岩数据引自Wang et al.(2014)Sun et al.(2015)Chen et al.(2015)余红霞等(2011)雷鸣等(2015)

      Fig.  5.  Chondrite-normalized REE diagram (a) and primitive mantle-normalized trace element diagram (b) of the Jiangba Formation volcanic rocks

      图  6  Sr/Y-Y图解(a)和(La/Yb)N-YbN图解(b)

      图a据Defant and Drummond(1990);图b中曲线刻度为源区部分熔融程度

      Fig.  6.  Sr/Y vs. Y diagram (a) and (La/Yb)N vs. YbN diagram (b)

      图  7  江巴组火山岩δEu-SiO2图解(a)和Dy/Yb-SiO2图解(b)

      Fig.  7.  Diagrams of δEu vs. SiO2 (a) and Dy/Yb vs. SiO2 (b) for the Jiangba Formation volcanic rocks

      图  8  江巴组英安质火山岩εHf(t)-t图解(a)和εHf(t)频率直方图(b)

      北部拉萨地体新生地壳数据引自Zhu et al.(2011)

      Fig.  8.  εHf(t) vs. t (a) and frequency histogram of εHf(t) (b) for the Jiangba dacitic volcanic rocks from Jiangba Formation

      图  9  江巴组火山岩Mg#-SiO2图解(a)和Cr-SiO2图解(b)

      Wang et al.(2006)

      Fig.  9.  Diagrams of Mg# vs. SiO2 (a) and Cr vs. SiO2 (b) for the Jiangba Formation volcanic rocks

      图  10  江巴组火山岩成岩模式

      SNMZ.狮泉河-纳木错混杂岩带;BNSZ.班公湖-怒江缝合带;据Wang et al.(2006, 2014)修改

      Fig.  10.  Petrogenetic model for the Jiangba Formation volcanic rocks

      表  1  江巴组英安质火山岩LA-ICP-MS锆石U-Pb同位素分析结果

      Table  1.   LA-ICP-MS zircon U-Pb isotope dating results of the dacitic volcanic rocks from Jiangba Formation

      测试点 含量(10-6) Th/U 同位素比值 年龄(Ma)
      Pb Th U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 206Pb/238U ±1σ
      样品:JB16-4(英安岩)
      1 37.31 987 1 312 0.75 0.049 70 0.002 50 0.092 63 0.004 59 0.013 58 0.000 15 86.9 0.9
      2 21.63 587 661 0.89 0.049 20 0.003 21 0.089 72 0.005 03 0.013 57 0.000 22 86.9 1.4
      3 53.26 1 484 1 974 0.75 0.046 00 0.001 75 0.082 39 0.002 89 0.013 11 0.000 15 84.0 0.9
      4 55.11 1 732 1 462 1.18 0.047 15 0.001 76 0.084 06 0.002 95 0.013 04 0.000 15 83.5 1.0
      5 69.56 1 837 2 205 0.83 0.045 80 0.001 68 0.087 79 0.003 23 0.013 84 0.000 11 88.6 0.7
      6 35.29 927 1 251 0.74 0.047 89 0.002 06 0.087 39 0.003 55 0.013 43 0.000 16 86.0 1.0
      7 43.93 1 202 1 720 0.70 0.045 39 0.001 47 0.081 72 0.002 70 0.013 02 0.000 14 83.4 0.9
      8 44.39 1 211 1 655 0.73 0.046 02 0.001 86 0.083 01 0.003 38 0.013 11 0.000 14 83.9 0.9
      9 49.80 1 477 1 505 0.98 0.045 48 0.002 12 0.087 03 0.004 06 0.013 91 0.000 16 89.1 1.0
      10 55.16 1 597 1 831 0.87 0.046 38 0.001 76 0.086 29 0.003 43 0.013 49 0.000 16 86.4 1.0
      11 37.76 975 1 468 0.66 0.045 65 0.001 97 0.083 83 0.003 74 0.013 30 0.000 16 85.2 1.0
      12 29.73 701 1 050 0.67 0.050 19 0.004 42 0.093 96 0.008 12 0.013 75 0.000 28 88.0 1.8
      13 34.88 846 1 375 0.62 0.048 22 0.002 05 0.087 02 0.003 65 0.013 13 0.000 16 84.1 1.0
      14 58.97 1 616 2 271 0.71 0.048 34 0.001 64 0.087 48 0.002 85 0.013 16 0.000 13 84.3 0.8
      15 41.93 1 267 1 273 1.00 0.048 46 0.002 15 0.084 24 0.003 48 0.012 76 0.000 16 81.8 1.0
      16 21.02 552 835 0.66 0.049 28 0.002 72 0.086 38 0.004 45 0.012 76 0.000 18 81.7 1.1
      17 41.96 996 1 879 0.53 0.048 99 0.001 78 0.088 86 0.003 15 0.013 01 0.000 14 83.3 0.9
      18 103.12 3 640 2 424 1.50 0.048 16 0.005 38 0.089 11 0.009 51 0.013 27 0.000 32 85.0 2.0
      19 45.04 1 387 1 328 1.04 0.048 55 0.002 07 0.090 92 0.003 71 0.013 40 0.000 18 85.8 1.1
      20 45.11 1 241 1 456 0.85 0.050 68 0.002 44 0.093 03 0.004 20 0.013 12 0.000 19 84.0 1.2
      下载: 导出CSV

      表  2  江巴组火山岩的全岩主量元素(%)和微量元素(10-6)分析结果

      Table  2.   Whole-rock major (%) and trace (10-6) elements data of the Jiangba Formation volcanic rocks

      样品号 JB16-09 JB16-03 JB16-04 JB16-05 JB16-06 JB16-07 JB16-08 P15GS5-1 P15GS14-1 D2122-1GS1
      岩性 安山质火山岩 英安质火山岩 流纹质火山岩
      SiO2 61.39 66.69 63.07 67.22 69.47 70.81 67.89 74.61 74.98 76.42
      TiO2 0.48 0.64 0.85 0.61 0.47 0.41 0.50 0.14 0.08 0.06
      Al2O3 17.44 15.46 17.40 15.74 13.60 13.42 16.02 13.63 13.12 12.03
      Fe2O3T 3.47 3.76 4.75 3.55 3.54 2.49 3.04 2.32 1.57 0.80
      MnO 0.04 0.05 0.04 0.05 0.05 0.03 0.04 0.07 0.08 0.03
      MgO 1.57 1.58 1.54 2.01 2.81 1.38 1.46 0.45 0.31 0.21
      CaO 7.74 4.02 3.25 3.98 3.28 2.94 3.60 0.34 0.39 0.17
      Na2O 3.64 2.45 4.35 2.97 2.65 2.76 2.90 3.23 2.93 1.83
      K2O 2.06 2.61 2.71 2.09 1.87 2.85 2.95 3.20 4.18 7.22
      P2O5 0.10 0.26 0.41 0.22 0.19 0.17 0.20 0.03 0.03 0.04
      LOI 1.77 2.05 1.85 1.79 2.10 2.04 1.58 1.78 1.99 1.33
      Totol 99.70 99.57 100.22 100.23 100.03 99.30 100.18 99.80 99.66 100.14
      Mg# 47.50 45.66 39.34 53.10 61.35 52.57 48.99 26.26 26.75 32.39
      DI 59.40 68.97 71.95 68.55 69.99 77.57 72.50 89.77 92.02 96.76
      A/CNK 0.78 1.09 1.09 1.09 1.10 1.03 1.10 1.45 1.30 1.08
      K2O+Na2O 5.70 5.06 7.06 5.06 4.52 5.61 5.85 6.43 7.11 9.05
      K2O/Na2O 0.57 1.07 0.62 0.70 0.71 1.03 1.02 0.99 1.43 3.95
      La 25.00 31.40 43.70 35.30 29.60 26.60 37.30 27.30 20.90 33.56
      Ce 48.90 63.50 89.20 70.30 58.80 50.40 72.70 63.90 59.10 74.72
      Pr 5.32 7.15 9.95 7.62 6.54 5.65 7.87 8.18 6.83 9.19
      Nd 19.30 26.60 36.40 28.70 23.10 20.70 28.70 31.80 27.50 29.61
      Sm 3.45 4.42 6.07 4.70 3.74 3.63 4.76 7.37 7.03 7.58
      Eu 1.12 1.35 1.79 1.18 1.01 0.86 1.18 0.37 0.22 0.38
      Gd 2.60 3.37 5.17 3.63 2.67 2.50 3.52 7.31 7.44 6.34
      Tb 0.39 0.46 0.69 0.48 0.34 0.32 0.45 1.16 1.22 1.21
      Dy 2.01 2.35 3.59 2.49 1.83 1.60 2.31 6.98 7.42 7.76
      Ho 0.36 0.46 0.67 0.47 0.34 0.30 0.45 1.31 1.44 1.54
      Er 1.01 1.22 1.84 1.33 0.93 0.86 1.21 3.72 3.92 4.40
      Tm 0.15 0.17 0.26 0.20 0.14 0.13 0.18 0.57 0.63 0.65
      Yb 1.00 1.04 1.62 1.26 0.91 0.78 1.12 3.82 3.98 4.30
      Y 10.8 11.8 19.3 13.4 9.9 8.7 12.5 33.9 37.3 42.8
      Lu 0.16 0.15 0.23 0.20 0.14 0.12 0.17 0.57 0.59 0.62
      Rb 88.9 76.6 104.5 62.2 55.8 89.7 84.2 140.4 222.3 196.3
      Sr 687 700 584 598 423 392 655 103 25 29
      Zr 147 199 212 202 135 136 171 125 94 80
      Nb 6.7 9.4 14.1 10.0 7.8 6.8 9.4 25.9 25.4 28.3
      Ba 441 458 428 598 472 444 581 232 107 133
      Hf 3.8 4.7 5.0 5.1 3.3 3.5 4.4 5.2 4.6 4.0
      Ta 0.40 0.60 0.80 0.70 0.40 0.50 0.70 1.98 1.74 1.95
      Th 7.69 9.63 12.75 12.60 9.33 9.40 13.10 23.90 24.20 15.92
      U 1.28 1.55 3.93 2.51 2.31 2.34 1.70 3.16 2.74 2.43
      Cr 50 40 30 50 30 20 20
      Nb/Ta 16.8 15.7 17.6 14.3 19.5 13.6 13.4 13.1 14.6 14.5
      Zr/Hf 38.7 42.3 42.4 39.6 40.9 38.9 38.9 24.0 20.4 20.0
      ∑REE 110.77 143.64 201.18 157.86 130.09 114.45 161.92 164.36 148.22 181.86
      ∑LREE 103.09 134.42 187.11 147.80 122.79 107.84 152.51 138.92 121.58 155.04
      ∑HREE 7.68 9.22 14.07 10.06 7.30 6.61 9.41 25.44 26.64 26.82
      LREEs/HREEs 13.42 14.58 13.30 14.69 16.82 16.31 16.21 5.46 4.56 5.78
      (La/Yb)N 16.85 20.36 18.19 18.89 21.93 22.99 22.45 4.82 3.54 5.26
      δEu 1.10 1.03 0.95 0.84 0.93 0.83 0.84 0.15 0.09 0.16
      δCe 0.97 0.98 0.99 0.99 0.98 0.94 0.97 1.02 1.19 1.01
      下载: 导出CSV

      表  3  江巴组火山岩英安质火山岩锆石Lu-Hf同位素组成

      Table  3.   Zircon Lu-Hf isotopic compositions of the dacitic volcanic rocks from Jiangba Formation

      测点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ (176Hf/177Hf)i εHf(0) εHf(t) TDM(Ma) TDMC(Ma) fLu/Hf
      JB16-04-01 87 0.044 918 0.001 286 0.282 798 0.000 023 0.282 794 0.9 2.7 652 981 -0.96
      JB16-04-02 87 0.048 156 0.001 334 0.282 897 0.000 024 0.282 893 4.4 6.2 511 758 -0.96
      JB16-04-04 84 0.036 404 0.001 033 0.282 823 0.000 020 0.282 820 1.7 3.5 612 926 -0.97
      JB16-04-05 84 0.034 277 0.000 994 0.282 923 0.000 028 0.282 920 5.3 7.1 469 699 -0.97
      JB16-04-06 89 0.031 000 0.000 904 0.282 816 0.000 021 0.282 812 1.5 3.4 621 940 -0.97
      JB16-04-07 86 0.037 516 0.001 106 0.282 873 0.000 023 0.282 870 3.5 5.3 541 811 -0.97
      JB16-04-08 83 0.032 873 0.000 919 0.282 850 0.000 018 0.282 846 2.7 4.5 572 866 -0.97
      JB16-04-09 84 0.038 518 0.001 142 0.282 877 0.000 022 0.282 873 3.6 5.4 537 805 -0.97
      JB16-04-10 89 0.047 868 0.001 351 0.282 839 0.000 016 0.282 834 2.3 4.2 595 889 -0.96
      JB16-04-11 86 0.041 940 0.001 213 0.282 889 0.000 018 0.282 885 4.1 5.9 521 776 -0.96
      JB16-04-12 85 0.036 215 0.001 038 0.282 900 0.000 020 0.282 896 4.5 6.3 503 751 -0.97
      JB16-04-13 88 0.029 806 0.000 848 0.282 870 0.000 018 0.282 866 3.4 5.3 543 817 -0.97
      JB16-04-14 84 0.029 875 0.000 900 0.282 833 0.000 017 0.282 830 2.1 3.9 596 903 -0.97
      JB16-04-15 84 0.049 580 0.001 333 0.282 911 0.000 016 0.282 907 4.8 6.6 491 728 -0.96
      JB16-04-16 82 0.035 278 0.000 989 0.282 864 0.000 015 0.282 861 3.2 4.9 553 835 -0.97
      JB16-04-17 82 0.044 668 0.001 284 0.282 918 0.000 021 0.282 914 5.1 6.8 480 713 -0.96
      JB16-04-18 83 0.034 115 0.000 989 0.282 888 0.000 019 0.282 885 4.0 5.8 519 779 -0.97
      JB16-04-19 85 0.033 865 0.000 926 0.282 854 0.000 019 0.282 851 2.8 4.7 566 854 -0.97
      JB16-04-20 86 0.038 385 0.001 058 0.282 895 0.000 019 0.282 892 4.3 6.1 510 762 -0.97
      JB16-04-21 84 0.047 163 0.001 342 0.282 866 0.000 022 0.282 862 3.3 5.0 555 830 -0.96
      注:同位素校正公式:εHf(t)=104×{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR(0)-(176Lu/177Hf)CHUR(t)×(eλt-1)]-1},TDM=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]},TDMC=TDM-(TDM-t)×[(fCC-fS)/(fCC-fDM)],fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1,其中λ=1.867×10-11 a-1,据Söderlund et al.(2004);(176Lu/177Hf)S和(176Hf/177Hf)S为样品测量值;(176Lu/177Hf)CHUR(t)=0.033 2,(176Hf/177Hf)CHUR(0)=0.282 772,据Blichert-Toft and Albarède(1997);(176Lu/177Hf)DM=0.038 4,(176Hf/177Hf)DM=0.283 25,(176Hf/177Hf)平均地壳=0.015,据Griffin et al.(2002)fCC=(176Hf/177Hf)平均地壳/(176Lu/177Hf)CHUR-1;fS=fLu/HffDM=(176Lu/177Hf)DM/(176Lu/177Hf)CHUR-1;t为锆石结晶年龄.
      下载: 导出CSV
    • Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Atherton, M.P., Petford, N., 1993.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust.Nature, 362(6416):144-146. https://doi.org/10.1038/362144a0
      Baker, M.B., Hirschmann, M.M., Ghiorso, M.S., et al., 1995.Compositions of Near-Solidus Peridotite Melts from Experiments and Thermodynamic Calculations.Nature, 375(6529):308-311. https://doi.org/10.1038/375308a0
      Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
      Castillo, P.R., Janney, P.E., Solidum, R.U., 1999.Petrology and Geochemistry of Camiguin Island, Southern Philippines:Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting.Contributions to Mineralogy and Petrology, 134(1):33-51. https://doi.org/10.1007/s004100050467
      Chen, J.L., Xu, J.F., Yu, H.X., et al., 2015.Late Cretaceous High-Mg# Granitoids in Southern Tibet:Implications for the Early Crustal Thickening and Tectonic Evolution of the Tibetan Plateau?Lithos, 232:12-22. https://doi.org/10.1016/j.lithos.2015.06.020
      Chen, Y., Zhu, D.C., Zhao, Z.D., et al., 2014.Slab Breakoff Triggered Ca.113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet.Gondwana Research, 26(2):449-463. https://doi.org/10.1016/j.gr.2013.06.005
      Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0
      Deng, J.F., 1987.Phase Equilibria and Petrogenesis.China University of Geosciences Press, Wuhan, 58-67 (in Chinese).
      Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004.Recycling Lower Continental Crust in the North China Craton.Nature, 432(7019):892-897. https://doi.org/10.1038/nature03162
      Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2011.Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet.Geological Bulletin of China, 30(8):1261-1274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201108013.htm
      Green, T.H., 1980.Island Arc and Continent-Building Magmatism—A Review of Petrogenic Models Based on Experimental Petrology and Geochemistry.Tectonophysics, 63(1-4):367-385. https://doi.org/10.1016/0040-1951(80)90121-3
      Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      Guffanti, M., Clynne, M.A., Muffler, L.J.P., 1996.Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Minimum Constraints on Basalt Influx to the Lower Crust.Journal of Geophysical Research:Solid Earth, 101(B2):3003-3013. https://doi.org/10.1029/95jb03463
      Haider, V.L., Dunkl, I., Eynatten, H.V., et al., 2013.Cretaceous to Cenozoic Evolution of the Northern Lhasa Terrane and the Early Paleogene Development of Peneplains at Nam Co, Tibetan Plateau.Journal of Asian Earth Sciences, 70-71:79-98. https://doi.org/10.1016/j.jseaes.2013.03.005
      Hoskin, P.W.O., Black, L.P., 2000.Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon.Journal of Metamorphic Geology, 18(4):423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
      Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7059a89f74309481e845bf409b06dd36&encoded=0&v=paper_preview&mkt=zh-cn
      Ingle, S., Weis, D., Frey, F.A., 2002.Indian Continental Crust Recovered from Elan Bank, Kerguelen Plateau.Journal of Petrology, 43(7):1241-1257. https://doi.org/10.1093/petrology/43.7.1241
      Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2009.Geochemistry of Cretaceous Volcanic Rocks of Duoni Formation in Northem Lhasa Block:Discussion of Tectonic Setting.Earth Science, 34(1):89-104 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2009.01.009
      Kapp, P., DeCelles, P.G., Gehrels, G.E., et al., 2007.Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet.Geological Society of America Bulletin, 119(7-8):917-933. https://doi.org/10.1130/b26033.1
      Kapp, P., Murphy, M.A., Yin, A., et al., 2003.Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet.Tectonics, 22(4):1029. https://doi.org/10.1029/2001tc001332
      Kay, R.W., Kay, S.M., 1993.Delamination and Delamination Magmatism.Tectonophysics, 219(1-3):177-189. https://doi.org/10.1016/0040-1951(93)90295-u
      Kay, S.M., Ramos, V.A., Marquez, M., 1993.Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge-Trench Collision in Southern South America.The Journal of Geology, 101(6):703-714. https://doi.org/10.1086/648269
      Le Maitre, R.W., Bateman, P., Dudek, A., et al., 1989.A Classification of Igneous Rocks and a Glossary of Terms.Blackwell, Oxford.
      Lei, M., Chen, J.L., Xu, J.F., et al., 2015.Geochemistry of Early Late Cretaceous Gaerqiong High-Mg# Diorite Porphyry in Midnorthern Lhasa Terrane:Partial Melting of Delaminated Lower Continental Crust?Geological Bulletin of China, 34(Z1):337-348 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Conference/9135013
      Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      Ma, G.L., Yue, Y.H., 2010.Cretaceous Volcanic Rocks in Northern Lhasa Block:Constraints on the Tectonic Evolution of the Gangdise Arc.Acta Petrologica et Mineralogica, 29(5):525-538 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201005008.htm
      Martin, H., Smithies, R.H., Rapp, R., et al., 2005.An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and some Implications for Crustal Evolution.Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048
      Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution.Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract).
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.oalib.com/paper/1472080
      Qu, X.M., Wang, R.J., Xin, H.B., et al., 2012.Age and Petrogenesis of A-Type Granites in the Middle Segment of the Bangonghu-Nujiang Suture, Tibetan Plateau.Lithos, 146-147:264-275. https://doi.org/10.1016/j.lithos.2012.05.006
      Qu, X.M., Xin, H.B., Du, D.D., et al., 2013.Magma Source of the A-Type Granite and Slab Break-Off in the Middle Segment of the Bangonghu-Nujiang Suture, Tibet Plateau.Acta Geologica Sinica, 87(6):759-772 (in Chinese with English abstract).
      Qu, X.M., Xin, H.B., Xu, W.Y., et al., 2006.Discovery and Singificance of Copper-Bearing Bimodal Rock Series in Coqin Area of Tibet.Acta Petrologica Sinica, 22(3):707-716 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603020.htm
      Qu, X.M., Xin, H.B., Zhao, Y.Y., et al., 2010.Opening Time of Bangong Lake Middle Tethys Oceanic Basin of the Tibet Plateau:Constraints from Petro-Geochemistry and Zircon U-Pb LA-ICPMS Dating of Mafic Ophiolites.Earth Science Frontiers, 17(3):53-63 (in Chinese with English abstract).
      Qu, Y.G., Wang, Y.S., Duan, J.X., et al., 2002.The People's Republic of China Regional Geological Survey Report of Xiongba, 1:250 000.China University of Geosciences Press, Wuhan (in Chinese).
      Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology, 160(4):335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891
      Ratajeski, K., Sisson, T.W., Glazner, A.F., 2005.Experimental and Geochemical Evidence for Derivation of the El Capitan Granite, California, by Partial Melting of Hydrous Gabbroic Lower Crust.Contributions to Mineralogy and Petrology, 149(6):713-734. https://doi.org/10.1007/s00410-005-0677-4
      Ren, J.S., Xiao, L.W., 2004.Lifting the Mysterious Veil of the Tectonics of the Qinghai-Tibet Plateau by 1:250 000 Geological Mapping.Geological Bulletin of China, 23(1):1-11 (in Chinese with English abstract).
      Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Rollison, H.R., 1993.Using Geochemical Data: Evaluation, Presentation, Interpretation.Longman, London.
      Rudnick, R.L., 1995a.Making Continental Crust.Nature, 378(6557):571-578. https://doi.org/10.1038/378571a0
      Rudnick, R.L., Barth, M., Horn, I.I., Mcdonough, W.F., 2000.Rutile-Bearing Refractory Eclogites:Missing Link between Continents and Depleted Mantle.Science, 287(5451):278-281. https://doi.org/10.1126/science.287.5451.278
      Rudnick, R.L., Fountain, D.M., 1995b.Nature and Composition of the Continental Crust:A Lower Crustal Perspective.Reviews of Geophysics, 33(3):267. https://doi.org/10.1029/95rg01302
      Shinjo, R., Kato, Y., 2000.Geochemical Constraints on the Origin of Bimodal Magmatism at the Okinawa Trough, an Incipient Back-Arc Basin.Lithos, 54(3-4):117-137. https://doi.org/10.1016/s0024-4937(00)00034-7
      Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
      Stern, C.R., Kilian, R., 1996.Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone.Contributions to Mineralogy and Petrology, 123(3):263-281. https://doi.org/10.1007/s004100050155
      Sui, Q.L., Wang, Q., Zhu, D.C., et al., 2013.Compositional Diversity of ca.110 Ma Magmatism in the Northern Lhasa Terrane, Tibet:Implications for the Magmatic Origin and Crustal Growth in a Continent-Continent Collision Zone.Lithos, 168-169:144-159. https://doi.org/10.1016/j.lithos.2013.01.012
      Sun, G.Y., Hu, X.M., Zhu, D.C., et al., 2015.Thickened Juvenile Lower Crust-Derived ~90 Ma Adakitic Rocks in the Central Lhasa Terrane, Tibet.Lithos, 224-225:225-239. https://doi.org/10.1016/j.lithos.2015.03.010
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Taylor, S.R., McLennan, S.M., 1985.The continental Crust: Its Compositions and Evolution.Blackwell, Oxford, 27-72.
      Wang, Q., Wyman, D.A., Xu, J.F., et al., 2006.Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China):Implications for Geodynamics and Cu-Au Mineralization.Lithos, 89(3-4):424-446. https://doi.org/10.1016/j.lithos.2005.12.010
      Wang, Q., Zhu, D.C., Zhao, Z.D., et al., 2014.Origin of the ca.90 Ma Magnesia-Rich Volcanic Rocks in SE Nyima, Central Tibet:Products of Lithospheric Delamination Beneath the Lhasa-Qiangtang Collision Zone.Lithos, 198-199:24-37. https://doi.org/10.1016/j.lithos.2014.03.019
      Wang, W.L., Aitchison, J.C., Lo, C.H., et al., 2008.Geochemistry and Geochronology of the Amphibolite Blocks in Ophiolitic Mélanges along Bangong-Nujiang Suture, Central Tibet.Journal of Asian Earth Sciences, 33(1-2):122-138. https://doi.org/10.1016/j.jseaes.2007.10.022
      Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002.Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China:Partial Melting of Delaminated Lower Continental Crust?Geology, 30(12):1111.https://doi.org/10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2 doi: 10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2
      Yao, X.F., Tang, J.X., Li, Z.J., et al., 2013.The Redefinition of the Ore-Forming Porphyry's Age in Gaerqiong Skarn-Type Gold-Copper Deposit, Western Bangong Lake-Nujiang River Metallogenic Belt, Xizang (Tibet).Geological Review, 59(1):193-200 (in Chinese with English abstract).
      Yin, A., 2001.Geologic Evolution of the Himalayan-Tibetan Orogen in the Context of Phanerozoic Continental Growth of Asia.Acta Geoscientica Sinica, 22(3):193-230 (in Chinese with English abstract).
      Yu, H.X., Chen, J.L., Xu, J.F., et al., 2011.Geochemistry and Origin of Late Cretaceous (~90 Ma) Ore-Bearing Porphyry of Balazha in Mid-Northern Lhasa Terrane, Tibet.Acta Petrologica Sinica, 27(7):2011-2022 (in Chinese with English abstract).
      Zhang, L.L., Zhu, D.C., Zhao, Z.D., et al., 2011.Early Cretaceous Granitoids in Xainza, Tibet:Evidence of Slab Break-Off.Acta Petrologica Sinica, 27(7):1938-1948 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003
      Zhang, S., Shi, H.F., Hao, H.J., et al., 2014.Geochronology, Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake, Tibet.Earth Science, 39(5):509-524 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.049
      Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023
      Zhu, D.C., Mo, X.X., Niu, Y.L., et al., 2009a.Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse Throughout the Central Lhasa Terrane, Tibet.Chemical Geology, 268(3-4):298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008
      Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009b.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction?Journal of Asian Earth Sciences, 34(3):298-309. https://doi.org/10.1016/j.jseaes.2008.05.003
      Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008.Tempo-Spatial Variations of Mesozoic Magmatic Rocks in the Gangdise Belt, Tibet, China, with a Discussion of Geodynamic Setting-Related Issues.Geological Bulletin of China, 27(9):1535-1550 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200809015.htm
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012.Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane.Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract).
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      邓晋福, 1987.岩石相平衡与岩石成因.武汉:武汉地质学院出版社, 58-67.
      耿全如, 潘桂棠, 王立全, 等, 2011.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报, 30(8): 1261-1274. doi: 10.3969/j.issn.1671-2552.2011.08.013
      侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      康志强, 许继峰, 王保弟, 等, 2009.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境.地球科学, 34(1): 89-104. http://www.earth-science.net/WebPage/Article.aspx?id=1789
      雷鸣, 陈建林, 许继峰, 等, 2015.拉萨地体中北部尕尔穷晚白垩世早期高镁闪长玢岩地球化学特征指示:加厚下地壳的拆沉?地质通报, 34(Z1): 337-348. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201502011
      马国林, 岳雅慧, 2010.西藏拉萨地块北部白垩纪火山岩及其对冈底斯岛弧构造演化的制约.岩石矿物学杂志, 29(5): 525-538. doi: 10.3969/j.issn.1000-6524.2010.05.008
      莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3): 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3): 521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      曲晓明, 辛洪波, 杜德道, 等, 2013.西藏班公湖-怒江缝合带中段A-型花岗岩的岩浆源区与板片断离.地质学报, 87(6): 759-772. doi: 10.3969/j.issn.0001-5717.2013.06.002
      曲晓明, 辛洪波, 徐文艺, 等, 2006.藏西措勤含铜双峰岩系的发现及其意义.岩石学报, 22(3): 707-716. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603020
      曲晓明, 辛洪波, 赵元艺, 等, 2010.西藏班公湖中特提斯洋盆的打开时间:镁铁质蛇绿岩地球化学与锆石U-Pb LAICPMS定年结果.地学前缘, 17(3): 53-63. http://d.old.wanfangdata.com.cn/Periodical/dxqy201003005
      曲永贵, 王永胜, 段建祥, 等, 2002.中华人民共和国区域地质调查报告1:250 000雄巴幅.武汉:中国地质大学出版社.
      任纪舜, 肖黎薇, 2004.1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱.地质通报, 23(1): 1-11. doi: 10.3969/j.issn.1671-2552.2004.01.006
      姚晓峰, 唐菊兴, 李志军, 等, 2013.班公湖-怒江带西段尕尔穷矽卡岩型铜金矿含矿母岩成岩时代的重新厘定及其地质意义.地质论评, 59(1): 193-200. doi: 10.3969/j.issn.0371-5736.2013.01.021
      尹安, 2001.喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长.地球学报, 22(3): 193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001
      余红霞, 陈建林, 许继峰, 等, 2011.拉萨地块中北部晚白垩世(约90 Ma)拔拉扎含矿斑岩地球化学特征及其成因.岩石学报, 27(7): 2011-2022. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201107010
      张亮亮, 朱弟成, 赵志丹, 等, 2011.西藏申扎早白垩世花岗岩类:板片断离的证据.岩石学报, 27(7): 1938-1948. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003
      张硕, 史洪峰, 郝海健, 等, 2014.青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义.地球科学, 39(5): 509-524. http://www.earth-science.net/WebPage/Article.aspx?id=2860
      朱弟成, 潘桂棠, 王立全, 等, 2008.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报, 27(9): 1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013
      朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1): 1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  3851
    • HTML全文浏览量:  1704
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-15
    • 刊出日期:  2018-09-15

    目录

      /

      返回文章
      返回