Geochronology, Geochemistry and Geological Significance of the Late Carboniferous Bimodal Volcanic Rocks in the Balikun Area, Eastern Tianshan
-
摘要: 新疆东天山博格达-哈尔里克造山带巴里坤地区晚石炭世双峰式火山岩很好地记录了中亚造山带西南缘晚古生代时期洋陆转换阶段复杂的岩浆作用过程,对该过程的详细剖析能更好地理解中亚造山带的地质历史.通过对晚石炭统二道沟组火山岩详细的岩石学、地球化学、锆石U-Pb年代学和Sr-Nd同位素组成的研究,结合区域上已有的研究成果,获得了如下认识:(1)东天山博格达-哈尔里克造山带晚石炭统二道沟组火山岩形成于晚石炭世早期(308~312 Ma),为陆相喷发的产物.火山岩具明显的双峰式组合特征,基性火山岩端元由高钾-钾玄岩系列的玄武岩、粗面玄武岩、玄武粗安岩及同成分的火山碎屑岩组成;酸性火山岩端元由粗面岩、流纹岩组成.(2)岩石地球化学和同位素特征显示,该套双峰式火山岩具有相似的地球化学特征,是相同源区岩浆演化的产物,为深部受到俯冲流体交代的软流圈上涌(尖晶石-石榴石橄榄岩5%~25%部分熔融)形成具有明显Nb、Ta亏损的基性火山岩,岩浆经过结晶分异作用形成酸性火山岩,进而形成晚石炭世双峰式火山岩组合.(3)该套双峰式火山岩是早石炭世双峰式火山岩的延续,代表了该区域弧后盆地基础上的持续裂开.Abstract: The bimodal volcanic rocks distributed in the Balikun area are important to study on the timing of oceanic closure and the tectonic transition process of the Central Asian orogenic belt (CAOB), which are critical to deciphering the geological history of CAOB. In this paper, data on major and trace elements and Sr-Nd isotopes of whole rocks, and in-situ U-Pb age of zircons are reported for Carboniferous volcanic rocks in the Balikun area, in order to investigate their sources, petrogenesis and implications for the Carboniferous evolution of study area. The main results are obtained as follows:(1) Late Carboniferous volcanic rocks from Erdaogou Formation, mainly basalts, trachybasalts, basaltic-trachyandesite, trachyte rhyolitic and volcaniclastics, are bimodal volcanic rocks. The zircon U-Pb age of the Erdaogou basaltic-trachyandesite and trachybasalt and rhyolite yield a early Late Carboniferous age (312±4 Ma, 312±3 Ma and 308±3 Ma respectively). (2) The basaltic volcanic rocks and the acidic volcanic rocks from Erdaogou Formation show the same magma source. The Erdaogou basaltic volcanic rocks were derived from mantle which were modified by slab fluids at an rifting stage. The magma was derived by partial melting (5%-25%) of asthenosphere mantle. The acid rocks were generated from the direct fractional crystallization of basaltic magma. (3) Two episodes of Late Paleozoic bimodal suites have been identified and it is proposed that the essentially bimodal character of the complex reflects the features of back-arc rifting magmatism in Balikun area.
-
Key words:
- bimodal volcanic rocks /
- Late Carboniferous /
- eastern Tianshan /
- geochemistry /
- petrology
-
图 1 中亚及邻区构造简图(a),东天山及其邻区构造简图(b),东天山巴里坤地区晚古生代岩浆岩分布(c)
图b据Xiao et al.(2010);图c据孙桂华(2007)
Fig. 1. Tectonic sketch of Central Asian and adjacent regions (a), tectonic sketch of eastern Tianshan and its adjacent areas (b), and the distribution of Late Paleozoic volcanic rocks in the Balikun area, eastern Tianshan (c)
图 6 东天山巴里坤地区石炭纪火山岩TAS图解(a)和SiO2-K2O图解(b)
图a据Winchester and Floyd(1977);图b据Peccerillo and Taylor(1976)
Fig. 6. TAS diagram (a) and SiO2 vs. K2O diagram (b) for the classification of the Carboniferous volcanic rocks in the Balikun area, eastern Tianshan
图 7 东天山巴里坤地区石炭纪火山岩微量元素原始地幔标准化配分图解及稀土元素球粒陨石标准化配分图解
Fig. 7. Primitive mantle normalized multi-element patterns and chondrite-normalized rare earth element (REE) patterns for the volcanic rocks from Late Carboniferous Erdaogou Formation in the Balikun area, eastern Tianshan
图 8 东天山巴里坤地区石炭纪火山岩初始Sr-Nd同位素图解
地幔数据来自Zindler and Hart(1986);二叠纪塔里木玄武岩数据来自Tang et al.(2011);东西准噶尔数据来自Su et al.(2012)、夏林圻等(2008);阿尔泰数据来自Long et al.(2011)
Fig. 8. Initial Sr-Nd isotope data for the Carboniferous volcanic rocks in the Balikun area, eastern Tianshan
图 9 东天山巴里坤地区石炭纪火山岩Ba/Nb-Ba/La图解(a),Nb/Zr vs. Th/Zr图解(b),Th/Yb-Ta/Yb图解(c),Ba/Nb-La/Nb图解(d)
图c据Pearce et al.(1990);图d据Jahn et al.(1999);MORB,OIB,原始地幔据Sun and McDonough(1989);地壳平均值据Taylor and McLennan(1985)、Condie(1993);沉积物平均值据Condie(1993)
Fig. 9. Plots of Ba/Nb vs. Ba/La diagram (a), Nb/Zr vs. Th/Zr diagram (b), Th/Yb vs. Ta/Yb diagram (c) and Ba/Nb vs. La/Nb diagram (d) for the Carboniferous volcanic rocks in the Balikun area, eastern Tianshan
图 10 东天山巴里坤地区石炭纪火山岩Sm/Yb-Sm变化图解
Fig. 10. Plots of Sm/Yb-Sm diagram for the Carboniferous volcanic rocks in the Balikun area, eastern Tianshan
图 11 东天山巴里坤地区石炭纪火山岩(a)Hf/3-Th-Ta和(b)Rb-Y+Nb构造判别图解
A.N型大洋中脊玄武岩;B.E型大洋中脊玄武岩和板内玄武岩;C.板内碱性玄武岩;D.钙碱性玄武岩;E.岛弧拉斑玄武岩;ORG.大洋中脊花岗岩;Syn-ColG.同碰撞花岗岩;VAG.岛弧花岗岩;WPG.板内花岗岩;据Pearce et al.(1984)、Pearce and Peate(1995)
Fig. 11. Tectonic discrimination diagrams of Hf/3-Th-Ta (a) and Rb vs. Y+Nb (b) for the Carboniferous volcanic rocks in the Balikun area, eastern Tianshan
表 1 东天山巴里坤地区晚石炭世二道沟组火山岩锆石LA-ICP-MS U-Pb定年分析结果
Table 1. Analysis results of zircon U-Pb age from the volcanic rocks from Late Carboniferous Erdaogou Formation in the Balikun area, eastern Tianshan
点号 232Th/238U Pb(10-6) 232Th(10-6) 238U(10-6) 同位素比值 年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ D9481-4 0.68 117 616 906 0.0674 0.0043 0.4529 0.0284 0.0493 0.0008 20 310 5 351 D9481-6 0.61 70 801 1324 0.0565 0.0038 0.3681 0.0232 0.0491 0.0009 17 309 5 317 D9481-7 0.47 55 148 316 0.0605 0.0041 0.3973 0.0261 0.0490 0.0010 19 308 6 331 D9481-9 0.53 466 1349 2522 0.0675 0.0061 0.4316 0.0327 0.0486 0.0009 23 306 5 345 D9481-10 0.86 175 485 566 0.0690 0.0040 0.4576 0.0259 0.0491 0.0008 18 309 5 376 D9481-13 0.72 758 8865 12263 0.0642 0.0039 0.4236 0.0245 0.0490 0.0009 17 309 6 329 D9481-15 0.80 180 609 760 0.0619 0.0041 0.4283 0.0313 0.0491 0.0008 22 309 5 335 D9481-16 0.72 1412 643 894 0.0645 0.0039 0.4258 0.0239 0.0492 0.0008 17 309 5 343 D9481-18 0.61 179 757 1244 0.0692 0.0046 0.4552 0.0309 0.0490 0.0011 22 309 7 342 D9481-21 0.82 137 558 683 0.0696 0.0051 0.4533 0.0311 0.0488 0.0009 22 307 5 359 D9481-22 0.67 356 966 1437 0.0666 0.0039 0.4364 0.0238 0.0484 0.0008 17 305 5 349 D9481-24 0.74 238 788 1067 0.0591 0.0030 0.4295 0.0205 0.0532 0.0009 15 334 5 360 8687-2-1 0.60 97 418 696 0.0524 0.0061 0.3592 0.0426 0.0495 0.0016 32 311 10 314 8687-2-3 1.00 321 1605 1602 0.0538 0.0039 0.3684 0.0258 0.0494 0.0010 19 311 6 302 8687-2-4 0.49 115 475 972 0.0526 0.0051 0.3516 0.0326 0.0489 0.0015 24 308 9 324 8687-2-5 0.74 153 700 948 0.0526 0.0047 0.3579 0.0325 0.0491 0.0012 24 309 8 313 8687-2-6 0.61 184 795 1305 0.0564 0.0048 0.3820 0.0318 0.0491 0.0013 23 309 8 311 8687-2-7 0.84 527 2586 3072 0.0530 0.0032 0.3615 0.0229 0.0492 0.0012 17 310 7 293 8687-2-8 0.71 162 739 1048 0.0539 0.0055 0.3603 0.0342 0.0491 0.0014 26 309 8 305 8687-2-9 1.05 289 1413 1348 0.0533 0.0044 0.3593 0.0295 0.0492 0.0013 22 310 8 308 8687-2-10 0.63 171 794 1266 0.0496 0.0044 0.3363 0.0279 0.0494 0.0014 21 311 9 305 8687-2-11 0.90 270 1306 1450 0.0568 0.0059 0.3886 0.0345 0.0502 0.0014 25 316 9 309 8687-2-12 1.26 386 2305 1834 0.0554 0.0044 0.3890 0.0321 0.0503 0.0016 23 316 10 268 8687-2-13 0.92 397 1957 2118 0.0514 0.0040 0.3585 0.0289 0.0502 0.0016 22 316 10 317 8687-2-14 0.65 180 811 1250 0.0479 0.0042 0.3319 0.0293 0.0498 0.0014 22 313 9 323 8687-2-15 0.88 175 889 1005 0.0492 0.0048 0.3440 0.0354 0.0497 0.0015 27 313 9 315 8687-2-16 0.59 285 1142 1928 0.0551 0.0043 0.3880 0.0323 0.0502 0.0013 24 316 8 344 8687-2-17 1.04 343 1709 1645 0.0531 0.0038 0.3655 0.0255 0.0497 0.0011 19 313 7 306 CN12-12-1-3 0.49 32 68 139 0.0597 0.0042 0.4029 0.0275 0.0500 0.0010 20 315 6 310 CN12-12-1-4 0.34 128 230 675 0.0526 0.0036 0.3455 0.0222 0.0495 0.0010 17 312 6 321 CN12-12-1-7 0.85 178 405 476 0.0631 0.0035 0.4561 0.0276 0.0507 0.0009 19 319 5 358 CN12-12-1-8 0.77 38 134 174 0.0535 0.0028 0.3697 0.0199 0.0496 0.0007 15 312 4 310 CN12-12-1-11 0.69 30 248 359 0.0601 0.0047 0.4091 0.0325 0.0494 0.0009 23 311 6 322 CN12-12-1-13 0.53 70 152 285 0.0572 0.0033 0.3794 0.0212 0.0492 0.0007 16 310 5 303 CN12-12-1-14 0.35 182 68 193 0.0606 0.0037 0.4040 0.0241 0.0491 0.0008 17 309 5 329 CN12-12-1-15 1.04 111 281 271 0.0595 0.0034 0.4064 0.0227 0.0499 0.0008 16 314 5 296 CN12-12-1-22 0.70 34 75 107 0.0477 0.0029 0.3187 0.0192 0.0495 0.0008 15 311 5 322 CN12-12-1-23 0.68 73 172 253 0.0553 0.0031 0.3757 0.0207 0.0496 0.0006 15 312 4 307 CN12-12-1-24 0.75 34 140 187 0.0660 0.0045 0.4374 0.0288 0.0494 0.0010 20 311 6 309 CN12-8-1-1 0.63 88 207 329 0.0503 0.0025 0.3314 0.0159 0.0480 0.0006 12 302 4 297 CN12-8-1-4 0.32 16 33 105 0.0543 0.0023 0.3672 0.0164 0.0490 0.0008 12 309 5 300 CN12-8-1-5 0.56 112 186 331 0.0678 0.0080 0.4282 0.0338 0.0494 0.0011 24 311 6 366 CN12-8-1-6 1.03 116 326 317 0.0620 0.0042 0.4115 0.0287 0.0510 0.0014 21 321 9 339 CN12-8-1-7 0.80 54 280 350 0.0548 0.0028 0.3623 0.0179 0.0488 0.0009 13 307 5 306 CN12-8-1-8 0.55 74 351 637 0.0582 0.0028 0.3890 0.0178 0.0492 0.0007 13 310 4 322 CN12-8-1-9 0.67 35 165 246 0.0679 0.0039 0.4489 0.0250 0.0491 0.0009 18 309 5 306 CN12-8-1-10 0.51 78 353 689 0.0560 0.0031 0.3829 0.0213 0.0490 0.0007 16 308 4 336 CN12-8-1-11 0.55 85 389 713 0.0600 0.0028 0.4019 0.0187 0.0490 0.0006 14 308 4 311 CN12-8-1-12 0.51 83 377 745 0.0647 0.0084 0.4021 0.0292 0.0494 0.0008 21 311 5 339 CN12-8-1-13 0.80 54 280 350 0.0553 0.0025 0.3695 0.0170 0.0488 0.0007 13 307 5 299 CN12-8-1-14 0.53 140 202 385 0.0558 0.0029 0.3700 0.0207 0.0477 0.0007 15 300 4 287 表 2 东天山巴里坤地区晚石炭世二道沟组火山岩主量元素、微量元素分析测试结果
Table 2. Analysis results of major elements and trace elements of volcanic rocks from Late Carboniferous Erdaogou Formation in the Balikun area, eastern Tianshan
岩性 粗面玄武岩 玄武岩 玄武质粗安岩 玄武安山岩 流纹岩 年龄 312Ma 308Ma 样品 8687-2 12-7-2 D8687-1H D9480-2H D9480-6H D7391-1H 8166-1 D8166-1H D8677-1H D8324-1H 8677-2 12-6-1 D9480-1H PM12-11-1H PM12-8-1 PM12-9-2 PM12-12-1 PM12-14-2 12-10-2 12-12-2 12-12-3 9481-2 9481 D9480-5 D9480-7 D9481-3 主量元素(%) SiO2 46.9 50.2 46.9 50.8 51.7 52.0 51.5 51.4 51.1 54.5 55.6 54.6 55.1 56.8 71.4 73.1 72.5 72.4 72.7 72.9 71.2 70.5 72.0 70.5 70.0 74.5 Al2O3 16.45 17.75 17.35 16.80 16.90 15.20 17.85 17.95 17.80 17.20 14.80 16.30 16.80 16.15 14.00 13.80 13.85 14.10 13.55 12.70 13.95 14.15 14.20 13.65 14.35 12.20 BaO 0.07 0.14 0.10 0.05 0.05 0.04 0.17 0.17 0.19 0.18 0.14 0.06 0.06 0.11 0.07 0.07 0.04 0.07 0.03 0.05 0.05 0.04 0.05 0.06 0.06 0.06 CaO 7.80 7.03 6.29 8.62 6.66 9.12 5.78 5.79 6.75 4.92 5.48 7.15 2.83 2.71 0.49 0.20 0.45 0.14 0.64 0.28 0.32 0.31 0.08 1.08 0.88 0.57 Fe2O3 11.13 8.96 9.98 9.69 9.65 7.84 8.88 8.94 8.75 8.71 9.43 9.22 8.48 9.27 2.56 2.50 2.67 2.74 2.74 3.45 3.53 3.38 2.96 2.76 2.92 2.62 K2O 1.67 2.79 1.18 1.18 1.00 1.24 4.33 4.34 3.47 4.50 3.13 1.84 2.97 4.37 4.10 5.37 3.49 5.53 3.28 4.67 4.56 3.58 5.18 4.55 4.58 4.83 Na2O 3.74 3.66 3.25 2.42 3.36 3.75 3.25 3.18 3.19 4.12 3.36 3.54 4.96 4.56 5.17 4.45 5.70 4.44 5.84 4.34 5.11 5.82 4.80 4.95 5.33 3.84 MgO 5.99 4.79 7.22 6.50 4.98 2.87 3.42 3.44 4.43 3.01 3.83 2.81 3.21 1.96 0.23 0.33 0.29 0.39 0.04 0.34 0.41 0.37 0.09 0.20 0.18 0.26 MnO 0.17 0.20 0.09 0.18 0.14 0.13 0.14 0.14 0.12 0.10 0.10 0.15 0.19 0.14 0.05 0.05 0.04 0.05 0.02 0.06 0.06 0.05 0.05 0.04 0.04 0.05 P2O5 0.15 0.34 0.28 0.18 0.27 0.37 0.55 0.54 0.35 0.51 0.50 0.42 0.47 0.52 0.04 0.03 0.04 0.04 0.05 0.04 0.05 0.05 0.01 0.04 0.04 0.04 SrO 0.07 0.08 0.06 0.04 0.04 0.05 0.10 0.11 0.10 0.08 0.06 0.04 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <0.01 0.01 <0.01 0.01 TiO2 0.90 1.02 1.02 0.98 1.26 1.16 1.22 1.24 0.99 1.18 0.83 1.16 1.60 1.82 0.33 0.32 0.29 0.35 0.31 0.26 0.29 0.32 0.28 0.34 0.35 0.27 LOI 4.46 2.53 5.58 2.66 4.52 5.59 2.49 2.35 1.75 1.66 2.70 3.23 2.83 1.79 0.59 0.43 0.49 0.33 0.65 0.29 0.43 0.38 0.31 0.87 0.64 0.66 FeOt 10.01 8.06 8.97 8.71 8.68 7.05 7.98 8.04 7.87 7.83 8.48 8.29 7.62 8.33 2.30 2.25 2.40 2.46 2.46 3.10 3.17 3.04 2.66 2.48 2.63 2.36 微量元素(10-6) La 7.5 16.5 13.0 8.1 13.7 15.5 29.5 28.5 18.8 28.6 14.7 21.6 28.2 29.8 23.3 30.8 29.7 33.7 24.8 28.4 33.3 33.3 29.5 33.8 26.6 29.7 Ce 17.8 35.2 26.4 19.5 31.6 34.3 60.4 58.0 38.9 58.1 30.6 44.8 63.8 72.1 55.0 67.6 66.7 74.7 65.5 68.1 77.9 79.4 60.0 74.7 59.6 67.2 Pr 2.31 4.36 3.10 2.72 4.16 4.32 7.18 6.86 4.71 6.77 3.76 5.35 8.05 9.75 7.05 8.72 7.89 8.97 7.04 8.46 9.70 9.40 7.76 8.61 7.69 7.72 Nd 11.2 18.1 12.5 11.9 17.6 18.1 28.7 26.9 18.5 26.4 15.4 22.4 33.0 40.2 26.4 32.4 30.8 33.0 26.7 35.4 40.2 37.7 31.5 31.6 27.7 29.3 Sm 2.92 4.20 2.72 3.39 4.47 4.31 6.45 5.66 3.83 5.42 3.63 5.10 8.14 9.58 5.97 7.18 6.83 6.66 6.73 8.43 9.02 8.93 7.68 7.24 6.64 6.90 Eu 0.97 1.16 0.89 0.98 1.44 1.33 1.44 1.62 1.31 1.57 0.93 1.41 2.19 2.74 1.07 0.98 0.64 1.09 1.18 0.75 0.87 0.87 0.61 1.16 1.11 0.64 Gd 3.20 3.94 2.79 3.72 4.96 4.71 5.48 5.17 3.94 5.60 3.56 4.66 8.54 10.85 6.48 8.03 8.06 7.25 7.19 8.46 9.39 9.65 7.57 7.53 7.20 7.58 Tb 0.57 0.61 0.41 0.62 0.81 0.69 0.81 0.76 0.60 0.73 0.50 0.72 1.28 1.78 1.09 1.38 1.42 1.37 1.34 1.56 1.74 1.86 1.35 1.31 1.35 1.35 Dy 3.32 3.70 2.19 4.18 5.30 3.91 4.79 4.54 3.47 4.54 2.90 4.24 8.02 10.60 7.24 9.13 9.43 8.25 8.17 9.71 10.60 12.20 8.76 8.79 8.78 8.53 Ho 0.72 0.73 0.55 0.87 1.09 0.76 0.94 0.90 0.74 0.92 0.64 0.86 1.66 2.15 1.45 1.97 2.02 1.85 1.69 2.06 2.24 2.60 1.98 1.91 1.83 1.90 Er 1.99 2.20 1.45 2.70 3.28 2.28 2.84 2.58 2.12 2.46 1.77 2.61 4.49 6.19 4.26 5.79 5.88 5.45 5.10 6.42 6.95 7.96 6.55 5.53 5.73 5.65 Tm 0.30 0.34 0.28 0.36 0.48 0.73 0.44 0.43 0.35 0.39 0.27 0.39 0.68 0.94 0.72 0.94 0.94 0.94 0.83 1.06 1.12 1.34 1.05 0.82 0.88 0.88 Yb 1.82 2.08 1.52 2.43 3.10 2.03 2.64 2.62 1.91 2.44 1.83 2.55 4.43 5.78 4.78 5.88 6.09 5.89 5.12 6.72 7.09 8.55 6.71 5.66 5.54 5.67 Lu 0.33 0.32 0.22 0.40 0.49 0.29 0.45 0.40 0.27 0.35 0.29 0.40 0.68 0.83 0.67 0.81 0.86 0.85 0.82 1.05 1.19 1.34 1.13 0.90 0.89 0.82 Y 18.1 19.7 12.5 24.7 29.9 22.2 26.4 26.7 19.8 26.7 16.8 23.1 46.1 62.5 39.9 54.6 54.4 51.0 46.4 55.6 61.3 69.4 54.6 54.2 54.1 53.7 Rb 30.4 55.7 27.8 23.1 22.2 36.2 91.0 89.7 52.5 132.0 72.6 29.3 62.0 147.5 94.9 136.5 75.6 142.5 53.9 107.0 102.5 78.7 100.5 122.5 110.0 104.0 Ba 702 1315 881 452 433 399 1635 1620 1785 1695 1325 565 561 1020 589 596 367 623 257 435 493 322 506 528 500 474 Th 1.49 4.98 4.66 1.30 2.76 3.14 9.97 9.29 5.23 8.62 4.24 6.73 5.11 6.27 10.05 12.30 8.70 12.50 11.30 9.45 10.15 11.45 10.50 12.50 12.15 8.21 U 0.46 1.56 1.54 0.37 0.88 1.17 3.22 3.08 1.37 2.91 1.46 2.13 2.26 2.06 4.05 3.65 2.80 4.20 3.80 2.61 3.06 3.38 3.36 3.21 3.57 3.06 Nb 1.7 4.1 3.5 2.8 4.8 5.2 7.2 7.2 4.6 7.1 3.5 4.9 9.1 11.0 13.4 16.4 12.3 16.5 13.5 11.5 12.6 14.2 14.8 14.9 14.8 11.3 Ta 0.1 0.3 0.4 0.2 0.4 0.6 0.5 0.6 0.5 0.6 1.0 0.4 0.6 0.9 1.2 1.4 1.2 1.5 1.2 1.0 1.1 1.3 1.2 1.1 1.0 1.3 Zr 53 109 107 102 151 125 186 192 123 188 93 134 304 460 452 472 477 511 461 430 484 538 509 545 552 444 Hf 1.6 2.9 2.7 2.6 4.1 3.0 4.7 4.6 3.1 4.4 2.4 3.4 7.6 9.9 10.8 11.5 11.3 12.2 11.1 11.3 11.8 14.0 12.4 13.6 13.9 10.4 Sr 623 739 562 360 375 495 984 959 951 687 520 296 143.0 266 90.4 32.2 38.6 45.0 36.2 27.8 44.4 35.2 27.6 43.0 28.9 41.3 Cr 170 90 580 160 110 30 50 40 110 30 120 10 10 20 20 10 60 40 70 20 10 90 80 20 10 20 Ni 32.2 42.9 148.0 48.4 39.3 12.2 23.1 23.3 39.2 21.3 50.8 5.6 15.6 4.9 0.8 0.5 1.3 1.1 1.2 3.0 1.4 2.1 1.6 0.9 1.3 0.9 Co 32.1 32.4 43.8 34.4 29.5 18.8 21.9 22.8 27.6 22.6 31.4 20.3 20.5 17.1 1.5 1.3 1.2 1.6 0.9 1.7 1.4 1.9 1.2 1.6 2.0 1.5 V 304 301 351 287 288 212 330 335 273 309 218 317 163 187 27 10 20 12 <5 20 7 20 11 20 45 14 Cs 1.60 2.40 4.47 0.82 2.34 1.36 3.25 3.17 1.09 2.08 1.22 0.30 0.90 0.76 0.83 0.76 0.37 0.65 0.25 0.46 0.31 0.47 0.36 0.52 0.33 0.45 Pb 4.2 14.4 7.4 3.4 11.3 5.4 23.6 24.0 16.7 23.3 16.6 15.4 11.4 8.0 10.3 10.3 14.0 14.5 14.3 12.3 15.8 14.3 8.6 12.6 9.2 12.1 Ti 5140 6130 5710 5450 7130 6700 7200 6850 5600 6460 4880 6510 9220 10000 1790 1750 1650 1910 1850 1600 1750 1970 1710 1970 2130 1530 表 3 东天山巴里坤地区晚石炭统二道沟组火山岩Sr-Nd同位素分析数据
Table 3. Analysis results of Sr-Nd isotopes of volcanic rocks from Late Carboniferous Erdaogou Formation in the Balikun area, eastern Tianshan
岩性 基性火山岩 酸性火山岩 年龄 312Ma 308Ma 样品 12-7-2 12-6-3 9480-2 9480-6 8687-1 8687-2 7391-1 12-10-2 12-12-2 12-12-3 87Rb/86Sr 0.218253 0.071330 0.185805 0.171424 0.141298 0.143238 0.211764 4.311508 11.145200 6.684823 87Sr/86Sr 0.705002 0.704377 0.704741 0.704681 0.704656 0.704614 0.705246 0.721127 0.749926 0.732665 (87Sr/86Sr)i 0.704033 0.704060 0.703916 0.703920 0.704029 0.703978 0.704306 0.702229 0.701075 0.703364 (87Sr/86Sr)CHUR(t) 0.704133 0.704133 0.704133 0.704133 0.704133 0.704133 0.704133 0.704138 0.704138 0.704138 147Sm/144Nd 0.140771 0.131657 0.172821 0.154077 0.158164 0.132008 0.144458 0.152914 0.144466 0.136120 143Nd/144Nd 0.512801 0.512818 0.512952 0.512910 0.512781 0.512899 0.512809 0.512897 0.512927 0.512911 εNd(t) 5.412316 6.107609 7.082188 7.009665 4.328323 7.674911 5.421479 6.779782 7.697956 7.714132 TDM1Nd(Ga) 0.729979 0.617509 0.738810 0.614251 1.012592 0.469086 0.751172 0.635089 0.491713 0.470332 TDM2Nd(Ga) 0.630504 0.573926 0.494141 0.500249 0.718391 0.446100 0.629715 0.515698 0.440889 0.439596 注:误差为2σ.同位素校正公式:(87Sr/86Sr)i=(87Sr/86Sr)样品+87Rb/86Sr(eλt-1),λRb=1.42×10-11·a-1;εNd(t)=[(143Nd/144Nd)样品/(143Nd/144Nd)CHUR(t)-1]×104,(143Nd/144Nd)CHUR(t)= 0.512638-0.1967×(eλt-1).λSm=6.54×10-12·a-1;亏损地幔的Sm-Nd同位素组成采用(143Nd/144Nd)CHUR=0.51315,(147Sm/144Nd)CHUR=0.2137. -
Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., et al., 2000.Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey.Journal of Volcanology and Geothermal Research, 102(1-2):67-95. https://doi.org/10.1016/s0377-0273(00)00182-7 Badarch, G., Cunningham, W.D., Windley, B.F., 2002.A New Terrane Subdivision for Mongolia:Implications for the Phanerozoic Crustal Growth of Central Asia.Journal of Asian Earth Sciences, 21(1):87-110. https://doi.org/10.1016/s1367-9120(02)00017-2 Bonin, B., 2004.Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review.Lithos, 78(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.042 Brophy, J.G., 1991.Composition Gaps, Critical Crystallinity, and Fractional Crystallization in Orogenic (Calc-Alkaline) Magmatic Systems.Contributions to Mineralogy and Petrology, 109(2):173-182. https://doi.org/10.1007/bf00306477 Buslov, M.M., Watanabe, T., Fujiwara, Y., et al., 2004.Late Paleozoic Faults of the Altai Region, Central Asia:Tectonic Pattern and Model of Formation.Journal of Asian Earth Sciences, 23(5):655-671. https://doi.org/10.1016/s1367-9120(03)00131-7 Cai, K., Sun, M., Xiao, W., et al., 2014.Zircon U-Pb Geochronology and Hf Isotopic Composition of Granitiods in Russian Altai Mountain, Central Asian Orogenic Belt.American Journal of Science, 314(2):580-612. https://doi.org/10.2475/02.2014.05 Chao, W.D., Li, Y.J., Wang, R., 2015.Lagged Arc Magmatism in Western Junggar:Evidence from Early Permian Intermediate to Mafic Dyke Swarms in Urho Area, East of Western Junggar.Acta Petrologica et Mineralogica, 34(2):171-183 (in Chinese with English abstract). Chen, N.H., Dong, J.J., Li, Z.L., et al., 2013.Permian Crustal Extension of Beishan Area in Xinjiang, NW China:Estimation from the Statistical Thickness of Exposed Mafic Dyke Swarms.Acta Petrologica Sinica, 29(10):3540-3546 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201310017 Chen, X.J., Shu, L.S., Santosh, M., 2011.Late Paleozoic Post-Collisional Magmatism in the Eastern Tianshan Belt, Northwest China:New Insights from Geochemistry, Geochronology and Petrology of Bimodal Volcanic Rocks.Lithos, 127(3-4):581-598. https://doi.org/10.1016/j.lithos.2011.06.008 Cheng, S.D., Wang, G.R., Yang, S.D., 1986.The Paleoplate Tectonic of Xinjiang.Xinjiang Geology, 4(2):1-26 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003368310 Coleman, R.G., 1989.Continental Growth of Northwest China.Tectonics, 8(3):621-635. https://doi.org/10.1029/tc008i003p00621 Condie, K.C., 1993.Chemical Composition and Evolution of the Upper Continental Crust:Contrasting Results from Surface Samples and Shales.Chemical Geology, 104(1-4):1-37. https://doi.org/10.1016/0009-2541(93)90140-e Dobretsov, N.L., Berzin, N.A., Buslov, M.M., 1995.Opening and Tectonic Evolution of the Paleo-Asian Ocean.International Geology Review, 37(4):335-360. https://doi.org/10.1080/00206819509465407 Ellam, R.M., 1992.Lithospheric Thickness as a Control on Basalt Geochemistry.Geology, 20(2):153-156.https://doi.org/10.1130/0091-7613(1992)020<0153:ltaaco>2.3.co; 2 doi: 10.1130/0091-7613(1992)020<0153:ltaaco>2.3.co;2 Gao, J., Long, L.L., Klemd, R., et al., 2009.Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China:Geochemical and Age Constraints of Granitoid Rocks.International Journal of Earth Sciences, 98(6):1221-1238. https://doi.org/10.1007/s00531-008-0370-8 Gao, J.G., Li, W.Y., Liu, J.C., et al., 2014.Geochemistry, Zircon U-Pb Age and Hf Isotopes of Late Carboniferous Rift Volcanic in the Sepikou Region, Eastern Bogda, Xinjiang.Acta Petrologica Sinica, 30(12):3539-3552 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201412006 Geist, D., Howard, K.A., Larson, P., 1995.The Generation of Oceanic Rhyolites by Crystal Fractionation:The Basalt-Rhyolite Association at Volcán Alcedo, Galápagos Archipelago.Journal of Petrology, 36(4):965-982. https://doi.org/10.1093/petrology/36.4.965 Grove, T.L., Donnelly-Nolan, J.M., 1986.The Evolution of Young Silicic Lavas at Medicine Lake Volcano, California:Implications for the Origin of Compositional Gaps in Calc-Alkaline Series Lavas.Contributions to Mineralogy and Petrology, 92(3):281-302. https://doi.org/10.1007/bf00572157 Gu, L.X., Hu, S.X., Yu, C.S., et al., 2000.Carboniferous Volcanites in the Bogda Orogenic Belt of Eastern Tianshan:Their Tectonic Implications.Acta Petrologica Sinica, 16(3):305-316 (in Chinese with English abstract). Gu, L.X., Hu, S.X., Yu, C.S., et al., 2001.Initiation and Evolution of the Bogda Subduetion-Torn-Type Rift.Acta Petrologica Sinica, 17(4):585-597 (in Chinese with English abstract). He, X.X., Xiao, L., Wang, G.C., et al., 2015.Petrogenesis and Geological Implications of Late Paleozoic Intermediate-Basic Dyke Swarms in Western Junggar.Earth Science, 40(5):777-796 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.064 Jahn, B.M., 2001.The Third Workshop of IGCP-420 (Continental Growth in the Phanerozoic:Evidence from Central Asia).Episodes, 24:272-273. Jahn, B.M., Wu, F.Y., Lo, C.H., et al., 1999.Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China.Chemical Geology, 157(1-2):119-146. https://doi.org/10.1016/s0009-2541(98)00197-1 Khain, E., Bibikova, E.V., Salnikova, E.B., et al., 2003.The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic:New Geochronologic Data and Palaeotectonic Reconstructions.Precambrian Research, 122(1-4):329-358. https://doi.org/10.1016/s0301-9268(02)00218-8 Li, J.Y., 2004.Late Neoproterozoic and Paleozoic Tectonic Framework and Evolutionof Eastern Xinjiang, NW China.Geological Review, 50(3):304-322 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005407 Lin, Y., Tang, Q.Y., Zhang, M.J., et al., 2014.Magmatism and Dynamic Settings of Permian Mafic Dyke Swarms in the Northern of Xinjiang.Journal of Earth Sciences and Environment, 36(3):73-82 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201403010 Liu, W., Liu, X.J., Xiao, W.J., 2012.Massive Granitoid Production without Massive Continental-Crust Growth in the Chinese Altay:Insight into the Source Rock of Granitoids Using Integrated Zircon U-Pb Age, Hf-Nd-Sr Isotopes and Geochemistry.American Journal of Science, 312(6):629-684. https://doi.org/10.2475/06.2012.02 Long, L.L., Gao, J., Klemd, R., et al., 2011.Geochemical and Geochronological Studies of Granitoid Rocks from the Western Tianshan Orogen:Implications for Continental Growth in the Southwestern Central Asian Orogenic Belt.Lithos, 126(3-4):321-340. https://doi.org/10.1016/j.lithos.2011.07.015 Ludwig, K.R., 2003.Users Manual for Isoplot 3.0:A Aeochronological Toolkit for Microsoft Exccel.Berkeley Geochronology Center, Berkeley, 1-74. Luo, T., 2016.Carboniferous Volcanic Rocks in Southwestern Central Asian Orogenic Belt: Petrogenesis, Temporal and Spatial Eevolution and Associated Geodynamic Processes (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). Luo, T., Chen, S., Liao, Q.A., et al., 2016.Geochronology, Geochemistry and Geological Significance of the Late Carboniferous Bimodal Volcanic Rocks in the Eastern Junggar.Earth Science, 41(11):1845-1862 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.128 Pearce, J.A., Bender, J.F., De Long, S.E., et al., 1990.Genesis of Collision Volcanism in Eastern Anatolia, Turkey.Journal of Volcanology and Geothermal Research, 44(1-2):189-229. https://doi.org/10.1016/0377-0273(90)90018-b Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 Pearce, J.A., Peate, D.W., 1995.Tectonic Implications of the Composition of Volcanic Arc Magmas.Annual Review of Earth and Planetary Sciences, 23(1):251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343 Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 Sengör, A.M.C., Natal'in, B.A., 1996.Turkic-Type Orogeny and Its Role in the Making of the Continental Crust.Annual Review of Earth and Planetary Sciences, 24(1):263-337. https://doi.org/10.1146/annurev.earth.24.1.263 Çengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993.Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia.Nature, 364(6435):299-307. https://doi.org/10.1038/364299a0 Su, Y.P., Zheng, J.P., Griffin, W.L., et al., 2012.Geochemistry and Geochronology of Carboniferous Volcanic Rocks in the Eastern Junggar Terrane, NW China:Implication for a Tectonic Transition.Gondwana Research, 22(3-4):1009-1029. https://doi.org/10.1016/j.gr.2012.01.004 Sun, G.H., 2007.Structural Deformation and Tectonic Evolution of Harlik Mountain, in Xinjiang since the Paleozoic (Dissertation).Chinese Academy of Geological Science, Beijing (in Chinese with English abstract). Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Tang, D.M., Qin, K.Z., Li, C.S., et al., 2011.Zircon Dating, Hf-Sr-Nd-Os Isotopes and PGE Geochemistry of the Tianyu Sulfide-Bearing Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, NW China.Lithos, 126(1-2):84-98. https://doi.org/10.1016/j.lithos.2011.06.007 Taylor, S.R., McLennan, S.M., 1985.The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks, Blackwell Scientific Publications, Oxford. Thompson, R.N., 1972.Evidence for a Chemical Discontinuity near the Basalt-Andesite Transition in Many Anorogenic Volcanic Suites.Nature, 236(5342):106-110. https://doi.org/10.1038/236106a0 Vavra, G., Schmid, R., Gebauer, D., 1999.Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons:Geochronology of the Ivrea Zone (Southern Alps).Contributions to Mineralogy and Petrology, 134(4):380-404. https://doi.org/10.1007/s004100050492 Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995.Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses.Geostandards and Geoanalytical Research, 19(1):1-23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20(4):325-343. https://doi.org/10.1016/0009-2541(77)90057-2 Windley, B.F., Alexeiev, D., Xiao, W., et al., 2007.Tectonic Models for Accretion of the Central Asian Orogenic Belt.Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022 Windley, B.F., Allen, M.B., Zhang, C., et al., 1990.Paleozoic Accretion and Cenozoic Redeformation of the Chinese Tien Shan Range, Central Asia.Geology, 18(2):128.https://doi.org/10.1130/0091-7613(1990)018<0128:paacro>2.3.co; 2 doi: 10.1130/0091-7613(1990)018<0128:paacro>2.3.co;2 Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2008.Petrogenesis of Caboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and Its Neighboring Areas, Northwestern China.Northwestern Geology, 41(4):1-68 (in Chinese with English abstract). Xiao, W.J., Han, C.M., Yuan, C., et al., 2008.Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China:Implications for the Tectonic Evolution of Central Asia.Journal of Asian Earth Sciences, 32(2-4):102-117. https://doi.org/10.1016/j.jseaes.2007.10.008 Xiao, W.J., Huang, B.C., Han, C.M., et al., 2010.A Review of the Western Part of the Altaids:A Key to Understanding the Architecture of Accretionary Orogens.Gondwana Research, 18(2-3):253-273. https://doi.org/10.1016/j.gr.2010.01.007 Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):1054-1069. https://doi.org/10.1029/2002tc001484 Yang, S.F., Li, Z.L., Chen, H.L., et al., 2007.Permian Bimodal Dyke of Tarim Basin, NW China:Geochemical Characteristics and Tectonic Implications.Gondwana Research, 12(1-2):113-120. https://doi.org/10.1016/j.gr.2006.10.018 Zhang, L.C., Liu, T.B., Shen, Y.C., et al., 2002.Isotopic Geochronology of the Late Paleozoic Kanggur Gold Deposit of East Tianshan Mountains, Xinjiang, NW China.Resource Geology, 52(3):249-261. https://doi.org/10.1111/j.1751-3928.2002.tb00135.x Zhang, L.C., Shen, Y.C., Ji, J.S., 2003.Characteristics and Genesis of Kanggur Gold Deposit in the Eastern Tianshan Mountains, NW China:Evidence from Geology, Isotope Distribution and Chronology.Ore Geology Reviews, 23(1-2):71-90. https://doi.org/10.1016/s0169-1368(03)00016-7 Zhang, L.C., Xiao, W.J., Qin, K.Z., et al., 2004.Types, Geological Features and Geodynamic Significances of Gold-Copper Deposits in the Kanggurtag Metallogenic Belt, Eastern Tianshan, NW China.International Journal of Earth Sciences, 93(2):224-240. https://doi.org/10.1007/s00531-004-0383-x Zhang, Z.C., Zhou, G., Kusky, T.M., et al., 2009.Late Paleozoic Volcanic Record of the Eastern Junggar Terrane, Xinjiang, Northwestern China:Major and Trace Element Characteristics, Sr-Nd Isotopic Systematics and Implications for Tectonic Evolution.Gondwana Research, 16(2):201-215. https://doi.org/10.1016/j.gr.2009.03.004 Zhou, D., Graham, S.A., Chang, E.Z., et al., 2001.Paleozoic Amalgamation of the Chinese Tian Shan:Evidence from a Transect Along the Dushanzi-Kuqa Highway.Memoir of Geological Society of America, 23-46. https://doi.org/10.1130/0-8137-1194-0.23 Zindler, A., Hart, S., 1986.Chemical Geodynamics.Annual Review of Earth and Planetary Sciences, 14(1):493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 Zonenshain, L.P., Kuz, M.I., Natapov, L.M., 1990.Geology of the USSR: A Plate-Tectonic Synthesis.American Geophysical Union, New York.https://doi.org/10.1029/GD021 晁文迪, 李永军, 王冉, 等, 2015.西准噶尔"滞后型"弧岩浆作用——来自西准东部乌尔禾早二叠世中基性岩墙群的证据.岩石矿物学杂志, 34(2):171-183. doi: 10.3969/j.issn.1000-6524.2015.02.004 陈宁华, 董津津, 厉子龙, 等, 2013.新疆北山地区二叠纪地壳伸展量估算:基性岩墙群厚度统计的结果.岩石学报, 29(10):3540-3546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201310017 成守德, 王广瑞, 杨树德, 等, 1986.新疆古板块构造.新疆地质, 4(2):1-26. http://d.old.wanfangdata.com.cn/Thesis/Y056005 高景刚, 李文渊, 刘建朝, 等, 2014.新疆博格达东缘色皮口地区晚石炭世裂谷火山岩地球化学、锆石U-Pb年代学及Hf同位素研究.岩石学报, 30(12):3539-3552. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201412006 顾连兴, 胡受奚, 于春水, 等, 2000.东天山博格达造山带石炭纪火山岩及其形成地质环境.岩石学报, 16(3):305-316. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200003001 顾连兴, 胡受奚, 于春水, 等, 2001.论博格达俯冲撕裂型裂谷的形成与演化.岩石学报, 17(4):585-597. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200104009 贺新星, 肖龙, 王国灿, 等, 2015.西准噶尔晚古生代中基性岩墙群岩石学成因及地质意义.地球科学, 40(5):777-796. http://www.earth-science.net/WebPage/Article.aspx?id=3082 李锦轶, 2004.新疆东部新元古代晚期和古生代构造格局及其演变.地质论评, 50(3):304-322. doi: 10.3321/j.issn:0371-5736.2004.03.015 林瑶, 汤庆艳, 张铭杰, 等, 2014.新疆北部二叠纪基性岩墙群岩浆作用及其动力学背景.地球科学与环境学报, 36(3):73-82. doi: 10.3969/j.issn.1672-6561.2014.03.010 罗婷, 2016.中亚造山带西南缘石炭纪火山岩岩石成因、时空演化及其构造意义(博士学位论文).武汉: 中国地质大学. 罗婷, 陈帅, 廖群安, 等, 2016.东准噶尔晚石炭世双峰式火山岩年代学、地球化学及其构造意义.地球科学, 41(11):1845-1862. http://www.earth-science.net/WebPage/Article.aspx?id=3383 孙桂华, 2007.新疆哈尔里克山古生代以来构造变形及构造演化(博士学位论文).北京: 中国地质科学院. 夏林圻, 夏祖春, 徐学义, 等, 2008.天山及邻区石炭纪-早二叠世裂谷火山岩岩石成因.西北地质, 41(4):1-68. doi: 10.3969/j.issn.1009-6248.2008.04.001