Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China
-
摘要: 前人尚未关注特提斯喜马拉雅铅锌金锑成矿带钨锡成矿问题.错那洞钨锡多金属矿床位于特提斯喜马拉雅东段,产于新发现的错那洞大型片麻岩穹隆构造之中.错那洞钨锡多金属矿床主要富集钨、锡、铍,伴生铜、铅、锌、铋、钼等,其矿化类型主要为矽卡岩型;此外,铍的矿化类型还有伟晶岩型.主要矿石矿物为白钨矿、锡石和硅铍石,含有少量的黄铜矿、方铅矿、闪锌矿、辉铋矿、辉钼矿等,翠砷铜铀矿、晶质铀矿和钍石的发现表明错那洞地区具铀矿成矿潜力.研究结果表明,错那洞钨锡多金属矿床可达到大型-超大型规模.较低的Zr含量、Zr/Hf和Nb/Ta比值表明错那洞大型片麻岩穹隆核部淡色花岗岩为高分异花岗岩;花岗岩具有富钛铁矿、贫磁铁矿特征,Fe2O3/FeO < 0.5,锆石Ce/Ce*平均值约为23,暗示错那洞淡色花岗岩为还原性花岗岩.具还原性的高分异花岗岩是错那洞钨锡多金属矿床形成的必要条件,而片麻岩穹隆构造是其空间分布的控制因素,由此认为错那洞钨锡多金属矿受片麻岩穹隆构造和淡色花岗岩的双重控制.Abstract: Researchers have not paid attention to the tungsten-tin mineralization of the Tethys Himalayan lead-zinc-gold-metallogenic belt.The Cuonadong W-Sn polymetallic deposit is located in a newly recognized giant gneiss dome, eastern Tethys Himalaya.The deposit is rich in W, Sn and Be, accompanied by Cu, Pb, Zn, Bi and Mo, of which mineralization type is skarn-type. Besides, the mineralization of beryllium contains pegmatite type.Main ore minerals are scheelite, cassiterite and bertrandite, with minor chalcopyrite, galena, sphalerite, bismuthinite and molybdenited.There are also some zeunerite, uraninite and thorite, indicating the uranium mineralization potential.Geological survey shows that the Cuonadong W-Sn polymetallic deposit could be a large-or super large-scale ore deposit.Low concentration of Zr and relatively low ratios of Zr/Hf and Nb/Tb demonstrate that leucogranite within the Cuonadong dome is highly fractional crystallization.Meanwhile, there is absolutely little magnetite but relatively rich in ilmenite with Fe2O3/FeO < 0.5 and low Ce/Ce* ratio (average 23) in leucogranite, indicating characteristics of reductive granite.The reductive and highly fractional crystallization granite is a necessary condition for the formation of the tungsten-tin polymetallic deposit, additionally, the gneiss dome controls its spatial distribution.Therefore, the Cuonadong W-Sn polymetallic deposit is both controlled by dome structure and leucogranite.
-
Key words:
- Tethys Himalaya belt /
- Cuonadong /
- W-Sn deposit /
- leucogranite /
- skarn /
- ore deposit
-
图 2 错那洞片麻岩穹隆物质组成
a.二云母花岗岩(深色)和白云母(白色)花岗岩;b.白云母花岗岩未变形,主要矿物为石英、斜长石、白云母,含有少量的石榴石(正交偏光);c.花岗质片麻岩中石英发生强烈的形变;d.花岗质片麻岩中石榴石发生形变(正交偏光);e.片麻岩中发育两期伟晶岩脉;f.伟晶岩由长石、石英和白云母等组成,未发生变形(正交偏光);g.强变形的石榴二云母片岩;h.石榴二云片岩发生剪切变形(正交偏光);i.石榴十字石片岩中粗大的石榴石和十字石.Qz.石英;Pl.斜长石;Bi.黑云母;Chl.绿泥石;Grt.石榴石;Ms.白云母;St.十字石
Fig. 2. Composition of the Cuonadong gneiss dome in southern Tibet
图 5 错那洞钨锡多金属矿床矿石宏观及微观特征
a.矽卡岩中的锡石呈自形状集合体产出;b.荧光灯下,矽卡中白钨矿发出天蓝色荧光;c.锡石与石英共生,且锡石具有结晶环带(正交偏光);d.白钨矿与石英共生,显示出强内反射特征(反射光);e.伟晶岩中富Be的绿柱石具有典型的六方柱晶形;f.硅铍石和羟硅铍石是矽卡岩中重要的富Be矿物,且与锡石具有共生关系(BSD图像).Cst.锡石;Sch.白钨矿;Qz.石英;Brl.绿柱石;Be.硅铍石;Ber.羟硅铍石;Di.透辉石;Ep.绿帘石;Tri.透闪石
Fig. 5. Macro- and micro-features of ores in the Cuonadong W-Sn polymetallic deposit
图 6 错那洞钨锡多金属矿床典型矿物交生关系及对应的能谱面扫描图
a.扫描电镜下主要矿物(白钨矿、锡石及萤石)的交生关系,显示钨锡矿形成于同一时间;b~f.对应图a视域中F、W、Sn、Si和Ca等元素分布特征.Cst.锡石;Sch.白钨矿;Fl.萤石;Di.透辉石
Fig. 6. Relationship of typical ore minerals and its corresponding distribution of main elements by scanning electron microscope within the Cuonadong W-Sn polymetallic deposit
图 7 错那洞钨锡多金属矿床主要金属矿物BSE图像特征
a.矽卡岩中闪锌矿残留体;b.自形方铅矿晶体;c.矽卡岩中残留黄铜矿,氧化边为赤铁矿;d.自形辉锑矿晶体;e.矽卡岩中自形泡铋矿;f.他形辉铋矿;g.与方解石共生的针状辉钼矿;h.矽卡岩中放射状翠砷铜铀矿集合体;i.自形晶质铀矿;j.粒状钍石晶体.Sph.闪锌矿;Gn.方铅矿;Bis.泡铋矿;Bmt.辉铋矿;Ccp.黄铜矿;Hem.赤铁矿;Cc.方解石;Mb.辉钼矿;Zeu.翠砷铀矿;Ura.晶质铀矿;Tho.钍石;Sch.白钨矿;Stb.辉锑矿
Fig. 7. BSE image characteristics of main metal minerals within the Cuonadong W-Sn polymetallic deposit
-
Bau, M., 1996.Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems:Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect.Contributions to Mineralogy and Petrology, 123(3)323-333. doi: 10.1007/s004100050159 Beaudoin, G., Taylor, B.E., Sangster, D.F., 1991.Silver-Lead-Zinc Veins, Metamorphic Core Complexes, and Hydrologic Regimes during Crustal Extension.Geology, 19(12):1217-1220.https://doi.org/10.1130/0091-7613(1991)019<1217:slzvmc>2.3.co;2 doi: 10.1130/0091-7613(1991)019<1217:slzvmc>2.3.co;2 Blevin, P.L., Chappell, B.W., 1992.The Role of Magma Sources, Oxidation States and Fractionation in Determining the Granite Metallogeny of Eastern Australia.Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):305-316. https://doi.org/10.1017/s0263593300007987 Blevin, P.L., Chappell, B.W.1995.Chemistry, Origin, and Evolution of Mineralized Granites in the Lachlan Fold Belt, Australia; The Metallogeny of I-and S-Type Granites.Economic Geology, 90(6):1604-1619. https://doi.org/10.2113/gsecongeo.90.6.1604 Burchfiel, B.C., Chen, Z., Hodges, K.V., et al., 1992.The South Tibetan Detachment System, Himalayan Orogen:Extension Contemporaneous and Parallel to Shorting in a Collisional Mountain Belt.Geological Society of American Special Paper, 269:1-41. doi: 10.1130/SPE269 Fu, J.G., Li, G.M., Wang, G.H., et al., 2016.First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome.International Journal of Earth Sciences, 106(5):1581-1596. https://doi.org/10.1007/s00531-016-1368-2 Fu, W., Feng, Z.H., Huang, Y.G., et al., 2014.Mineralogical Characteristics and Genesis of the Uranyl Minerals in the Oxidized Zone of the Huashan Deposit, Guangxi, and Their Implications for Deep Ore Exploration.Acta Geoscientica Sinica, 35(3):295-304 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7552a0031c08a4b4cbd343a4855ccba9&encoded=0&v=paper_preview&mkt=zh-cn Gao, L.E., Gao, J.H., Zhao, L.H., et al., 2017.The Miocene Leucogranite in the Nariyongcuo Gneiss Dome, Southern Tibet:Products from Melting Metapelite and Fractional Crystallization.Acta Petrologica Sinica, 33(8):2395-2411 (in Chinese with English abstract). Garzanti, E., 1999.Stratigraphy and Sedimentary History of the Nepal Tethys Himalaya Passive Margin.Journal of Asian Earth Sciences, 17(5-6):805-827. https://doi.org/10.1016/s1367-9120(99)00017-6 Harrison, T.M., Lovera, O.M., Grove, M., 1997.New Insights into the Origin of Two Contrasting Himalayan Granite Belts.Geology, 25(10):899-902. http://cn.bing.com/academic/profile?id=fab52a8a94c23e3761e693095e4eaa33&encoded=0&v=paper_preview&mkt=zh-cn Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027 Hou, Z.Q., Lü, Q.T., Wang, A.J., et al., 2003.Continental Collision and Related Metallogeny:A Case Study of Mineralization in Tibetan Orogen.Mineral Deposits, 22(4):319-333 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200304000.htm Hou, Z.Q., Mo, X.X., Yang, Z.M., et al., 2006a.Metallogeneses in the Collisional Orogen of the Qinghai-Tibet Plateau:Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types.Chinese Geology, 33(2):340-351 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7bb2559d7613f361373458e89a59941f&encoded=0&v=paper_preview&mkt=zh-cn Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006b.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ.Mineralization in Post-Collisional Extension Setting.Mineral Deposits, 25(6):629-651 (in Chinese with English abstract). Hou, Z.Q., Yang, Z.M., Qu, X.M., et al., 2009.The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen.Ore Geology Reviews, 36(1-3):25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006 Huangfu, P.P., Wang, Y.J., Li, Z.H., et al., 2016.Effects of Crustal Eclogitization on Plate Subduction/Collision Dynamics:Implications for India-Asia Collision.Journal of Earth Science, 27(5):727-739. https://doi.org/10.1007/s12583-016-0701-9 Ishihara, S., 1998.Granitoid Series and Mineralization in the Circum-Pacific Phanerozoic Granitic Belts.Resource Geology, 48(4):219-224. https://doi.org/10.1111/j.1751-3928.1998.tb00019.x Ishihara, S., 2004.The Redox State of Granitoids Relative to Tectonic Setting and Earth History:The Magnetite-Ilmenite Series 30 Years Later.Transactions of the Royal Society of Edinburgh:Earth Sciences, 95(1-2):23-33. https://doi.org/10.1017/s0263593300000894 Ishihara, S., Hashimoto, M., Machida, M., 2000.Magnetite/Ilmenite-Series Classification and Magnetic Susceptibility of the Mesozoic-Cenozoic Batholiths in Peru.Resource Geology, 50(2):123-129. https://doi.org/10.1111/j.1751-3928.2000.tb00062.x Ishihara, S., Sawata, H., Arpornsuwan, S., et al., 1979.The Magnetite-Series and Ilmenite-Series Granitoids and Their Bearing on Tin Mineralization, Particularly of the Malay Peninsula Region.Geological Society of Malaysia, 11:103-111. le Fort, P., 1975.Himalayas:The Collided Range-Present Knowledge of Continental Arc.American Journal of Sciences, 275:1-44. http://d.old.wanfangdata.com.cn/Periodical/ynzwyj200203001 Lee, J., Hacker, B., Wang, Y., 2004.Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome, Southern Tibet.Journal of Structural Geology, 26(12):2297-2316. doi: 10.1016/j.jsg.2004.02.013 Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet.Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract). Li, H.L., Li, G.M., Li, Y.X., et al., 2017.A Study on Ore Geological Characteristics and Fluid Inclusions of Jienagepu Gold Deposit in Zhaxikang Ore Concentration District, Southern Tibet, China.Acta Mineralogica Sinica, 37(6):684-696 (in Chinese with English abstract). Lin, B., Tang, J.X., Zheng, W.B., et al., 2016.Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet.Acta Petrologica et Mineralogica, 35(3):391-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201603002 Liu, G.H., Einsele, G., 1994.Sedimentary History of the Tethyan Basin in the Tibetan Himalayas.Geologische Rundschau, 83(1):32-61. https://doi.org/10.1007/bf00211893 Liu, W.C., Wang, Y., Zhang, X.X., et al., 2004.The Rock Types and Isotope Dating of the Kangmar Gneissic Dome in Southern Tibet.Earth Science Frontiers, 11(4):491-501 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200404015 Manning, D.A.C., 1981.The Effect of Fluorine onLiquidus Phase Relationships in the System Qz-Ab-Or with Excess Water at 1 kb.Contributions to Mineralogy and Petrology, 76(2):206-215. https://doi.org/10.1007/bf00371960 Naeem, M., Burg, J.P., Ahmad, N., et al., 2016.U-Pb Zircon Systematics of the Mansehra Granitic Complex:Implications on the Early Paleozoic Orogenesis in NW Himalaya of Pakistan.Geosciences Journal, 20(4):427-447. https://doi.org/10.1007/s12303-015-0062-x Nie, F.J., Hu, P., Jiang, S.H., et al., 2005.Type and Temporal-Spatial Distribution of Gold and Antimony Deposits (Prospects) in Southern Tibet, China.Acta Geologica Sinica, 79(3):373-385 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200503009 Pan, Y., Kidd, W.S.F., 1992.Nyainqentanglha Shear Zone:A Late Miocene Extensional Detachment in the Southern Tibetan Plateau.Geology, 20(9):775-778.https://doi.org/10.1130/0091-7613(1992)020<0775:nszalm>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0775:nszalm>2.3.co;2 Qi, X.X., Li, T.F., Meng, X.J., et al., 2008.Cenozoic Tectonic Evolution of the Tethyan Himalayan Foreland Fault-Fold Belt in Southern Tibet, and Its Constraint on Antimony-Gold Polymetallic Minerogenesis.Acta Petrologica Sinica, 24(7):1638-1648 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=129be08fca1f86b56cffa04f068eee89&encoded=0&v=paper_preview&mkt=zh-cn Robyr, M., Vannay, J.C., Epard, J.L., et al., 2002.Thrusting, Extension, and Doming during the Polyphase Tectonometamorphic Evolution of the High Himalayan Crystalline Zone in NW India.Journal of Asian Earth Sciences, 21(3):221-239. https://doi.org/10.1016/s1367-9120(02)00039-1 Sato, K., Kovalenko, S.V., Romanovsky, N.P., et al., 2004.Crustal Control on the Redox State of Granitoid Magmas:Tectonic Implications from the Granitoid and Metallogenic Provinces in the Circum-Japan Sea Region.Transactions of the Royal Society of Edinburgh:Earth Sciences, 95(1-2):319-337. https://doi.org/10.1017/s0263593300001103 Takagi, T., Tsukimura, K., 1997.Genesis of Oxidized-and Reduced-Type Granites.Economic Geology, 92(1):81-86. https://doi.org/10.2113/gsecongeo.92.1.81 Thomas, R., Webster, J.D., Heinrich, W., 2000.Melt Inclusions in Pegmatite Quartz:Complete Miscibility between Silicate Melts and Hydrous Fluids at Low Pressure.Contributions to Mineralogy and Petrology, 139(4):394-401. https://doi.org/10.1007/s004100000120 Thompson, J.F.H., Sillitoe, R.H., Baker, T., et al., 1999.Intrusion-Related Gold Deposits Associated with Tungsten-Tin Provinces.Mineralium Deposita, 34(4):323-334. https://doi.org/10.1007/s001260050207 Wang, R.C., Wu, F.Y., Xie, L., et al., 2017.A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet.Science in China (Series D), 47(8):871-880 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017091300133575 Wang, X.X., Zhang, J.J., Santosh, M., et al., 2012.Andean-Type Orogeny in the Himalayas of South Tibet:Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana.Lithos, 154:248-262. https://doi.org/10.1016/j.lithos.2012.07.011 Wang, X.X., Zhang, J.J., Wang, J.M., 2016.Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications.Earth Science, 41(6):982-998. https://doi.org/10.3799/dqkx.2016.082 Webster, J.D., Thomas, R., Rhede, D., et al., 1997.Melt Inclusions in Quartz from an Evolved Peraluminous Pegmatite:Geochemical Evidence for Strong Tin Enrichment in Fluorine-Rich and Phosphorus-Rich Residual Liquids.Geochimica et Cosmochimica Acta, 61(13):2589-2604. doi: 10.1016/S0016-7037(97)00123-3 Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionated Granites:Recognition and Research.Science in China (Series D), 47(7):745-765 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010 Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift.Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001 Wu, J.Y., Li, G.M., Zhou, Q., et al., 2015.A Preliminary Study of the Metallogenic System in the Zhaxikang Integrated Exploration Area, Southern Tibet.Chinese Geology, 42(6):1674-1683 (in Chinese with English abstract). Xie, Y.L., Li, L.M., Wang, B.G., et al., 2017.Genesis of the Zhaxikang Epithermal Pb-Zn-Sb Deposit in Southern Tibet, China:Evidence for a Magmatic Link.Ore Geology Reviews, 80:891-909. https://doi.org/10.1016/j.oregeorev.2016.08.007 Yang, Z.S., Hou, Z.Q., Gao, W., et al., 2006.Metallogenic Characteristics and Genetic Model of Antimony and Gold Deposits in South Tibetan Detachment System.Acta Geologica Sinica, 80(9):1377-1391 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609013 Yang, Z.S., Hou, Z.Q., Meng, X.J., et al., 2009.Post-Collisional Sb and Au Mineralization Related to the South Tibetan Detachment System, Himalayan Orogen.Ore Geology Reviews, 36(1-3):194-212. https://doi.org/10.1016/j.oregeorev.2009.03.005 Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 Yu, X., Zhao, B., Zhang, D.H., et al., 2015.Partition Behaviors of Tungsten in Mineral/Melt and Solution/Melt Systems and Their Effects on Mineralization.Bulletin of Mineralogy Petrology and Geochemistry, 34(3):646-653 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201503026 Zeng, L.S., Gao, L.E., Tang, S.H., et al., 2014.Eocene Magmatism in the Tethyan Himalaya, Southern Tibet.Geological Society, London, Special Publications, 412(1):287-316. https://doi.org/10.1144/sp412.8 Zeng, L.S., Liu, J., Gao, L.E., et al., 2009.Early Oligocene Anatexis in the YardoiGneiss Dome, Southern Tibet and Geological Implications.Chinese Science Bulletin, 54(1):104-112 (in Chinese). doi: 10.1007/s11434-008-0362-x Zhang, D.H., Zhang, W.H., Xu, G.J., et al., 2004.The Ore Fluid Geochemisty of F-Rich Silicate Melt-Hydrous Fluid System and Its Metallogeny-The Current Status and Problems.Geoscience Frontier, 11 (2):479-490 (in Chinese with English abstract). Zhang, H.F., Harris, N., Parrish, R., et al., 2004.U-Pb Ages of Kude and Sajia Leucogranites in Sajia Dome from North Himalaya and Their Geological Implications.Chinese Science Bulletin, 49(19):2087-2092. https://doi.org/10.1360/04wd0198 Zhang, J.J., Guo, L., Zhang, B., 2007.Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China.Chinese Journal of Geology, 42(1):16-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701003 Zhang, J.J., Yang, X.Y., Qi, G.W., et al., 2011.Geochronology of the Malashan Dome and Its Application in Formation of the Southern Tibet Detachment System (STDS) and Northern Himalayan Gneiss Domes (NHGD).Acta Petrologica Sinica, 27(12):3535-3544 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112003 Zhang, J.Y., Liao, Q.A., Li, D.W., et al., 2003.Laguigangri Leucogranites and Its Relation with Laguigangri Metamorphic Core Complex in Sajia, South Tibet.Earth Science, 28(6):695-701 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200306018 Zhang, Z., Zhang, L.K., Li, G.M., et al., 2017.The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Controlling Role of North Himalaya Gneiss Domes.Acta Geoscientica Sinica, 38(5):754-766 (in Chinese with English abstract). Zheng, Y.C., Hou, Z.Q., Fu, Q., et al., 2016.Mantle Inputs to Himalayan Anatexis:Insights from Petrogenesis of the Miocene Langkazi Leucogranite and Its Dioritic Enclaves.Lithos, 264:125-140. https://doi.org/10.13039/501100001809 Zheng, Y.Y., Liu, M.Y., Sun, X., et al., 2012.Type, Discovery Process and Significance of Zhaxikang Antimony Polymetallic Ore Deposit, Tibet.Earth Science, 37(5):1003-1014 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.108 Zhu, D.C., Chung, S.L., Mo, X.X., et al., 2009.The 132 Ma Comei-Bunbury Large Igneous Province:Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia.Geology, 37(7):583-586. https://doi.org/10.1130/g30001a.1 Zhu, D.C., Mo, X.X., Pan, G.T., et al., 2008.Petrogenesis of the Earliest Early Cretaceous Mafic Rocks from the Cona Area of the Eastern Tethyan Himalaya in South Tibet:Interaction between the Incubating Kerguelen Plume and the Eastern Greater India Lithosphere?Lithos, 100(1-4):147-173. https://doi.org/10.1016/j.lithos.2007.06.024 Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2009.Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution:New Perspective.Earth Science Frontiers, 16(2):1-20 (in Chinese with English abstract). 付伟, 冯佐海, 黄永高, 等, 2014.广西花山铀矿床氧化带中铀酰矿物特征、成因及其勘查指示意义.地球学报, 35(3):295-304. http://d.old.wanfangdata.com.cn/Periodical/dqxb201403005 高利娥, 高家昊, 赵令浩, 等, 2017.藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用.岩石学报, 33(8):2395-2411. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201708005 侯增谦, 吕庆田, 王安建, 等, 2003.初论陆-陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质, 22(4):319-333. doi: 10.3969/j.issn.0258-7106.2003.04.001 侯增谦, 莫宣学, 杨志明, 等, 2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质, 33(2):340-351. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602013 侯增谦, 曲晓明, 杨竹森, 等, 2006b.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014 李洪梁, 李光明, 李应栩, 等, 2017.藏南扎西康矿集区姐纳各普金矿床地质与流体包裹体特征.矿物学报, 37(6):684-696. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201706002.htm 林彬, 唐菊兴, 郑文宝, 等, 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002 刘文灿, 王瑜, 张祥信, 等, 2004.西藏南部康马岩体岩石类型及其同位素测年.地学前缘, 11(4):491-501. doi: 10.3321/j.issn:1005-2321.2004.04.015 聂凤军, 胡朋, 江思宏, 等, 2005.藏南地区金和锑矿床(点)类型及其时空分布特征.地质学报, 79(3):373-385. doi: 10.3321/j.issn:0001-5717.2005.03.009 戚学祥, 李天福, 孟祥金, 等, 2008.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用.岩石学报, 24(7):1638-1648. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807020 王汝成, 吴福元, 谢磊, 等, 2017.藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究.中国科学(D辑), 47(8):871-880. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201708001.htm 王晓先, 张进江, 王佳敏, 2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学, 41(6):982-998. https://doi.org/10.3799/dqkx.2016.082 吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017071200021563 吴建阳, 李光明, 周清, 等, 2015.藏南扎西康整装勘查区成矿体系初探.中国地质, 42(6):1674-1683. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201506002 杨竹森, 侯增谦, 高伟, 等, 2006.藏南拆离系锑金成矿特征与成因模式.地质学报, 80(9):1377-1391. doi: 10.3321/j.issn:0001-5717.2006.09.013 喻晓, 赵博, 张德会, 等, 2015.钨在矿物/熔体和溶液/熔体中的分配行为及其对成矿作用的影响.矿物岩石地球化学通报, 34(3):646-653. doi: 10.3969/j.issn.1007-2802.2015.03.022 曾令森, 刘静, 高利娥, 等, 2009.藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义.科学通报, 54(3):373-381. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KXTB200903019&dbname=CJFD&dbcode=CJFQ 张德会, 张文淮, 许国建, 2004.富F熔体-溶液体系流体地球化学及其成矿效应——研究现状及存在问题.地学前缘, 11(2):479-490. doi: 10.3321/j.issn:1005-2321.2004.02.018 张进江, 郭磊, 张波, 2007.北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征.地质科学, 42(1):16-30. doi: 10.3321/j.issn:0563-5020.2007.01.003 张进江, 杨雄英, 戚国伟, 等.2011.马拉山穹窿的活动时限及其在藏南拆离系-北喜马拉雅片麻岩穹窿形成机制的应用.岩石学报, 27(12):3535-3544. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201112004&dbname=CJFD&dbcode=CJFQ 张金阳, 廖群安, 李德威, 等, 2003.藏南萨迦拉轨岗日淡色花岗岩特征及与变质核杂岩的关系.地球科学, 28(6):695-701. doi: 10.3321/j.issn:1000-2383.2003.06.018 张志, 张林奎, 李光明, 等, 2017.北喜马拉雅错那洞穹隆:片麻岩穹隆新成员与穹隆控矿新命题.地球学报, 38(5):754-766. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705015 郑有业, 刘敏院, 孙祥, 等, 2012.西藏扎西康锑多金属矿床类型、发现过程及意义.地球科学, 37(5):1003-1014. https://doi.org/10.3799/dqkx.2012.108 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2):1-20. doi: 10.3321/j.issn:1005-2321.2009.02.001