Rock Assemblage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya
-
摘要: 目前关于新近发现的错那洞穹隆的精细构造、岩石组成、变质变形运动学特征等方面均不清楚,严重阻碍了其演化历程的还原以及成穹与成矿耦合关系的解剖工作.在详实的野外地质调查基础上,补充采集了穹隆中新发现的岩浆岩进行年代学研究.结果表明,错那洞穹隆由上(边部)-中(幔部)-下(核部)3个构造层组成,分别以上、下拆离断层为分界线.核部岩石组合主要为片麻岩、淡色花岗岩以及少量深熔混合岩,可见大量伟晶岩脉穿插;幔部为古生界,岩石组合为一套强变质变形片岩夹碳酸盐岩,从内至外具有蓝晶石+十字石+石榴石+黑云母的蓝晶石带→十字石+石榴石+黑云母的十字石带→石榴石+堇青石+黑云母的石榴石带→绿泥石+黑云母的绿泥石带的巴罗式变质分带特征;边部主要为三叠纪-侏罗纪浅变质沉积岩系,岩石组合为一套砂板岩及少量千枚岩.穹隆内从早至晚经历了南北向逆冲推覆、南北向伸展、东西向伸展3期次的构造运动,穹隆的形成主要与南北向伸展作用有关.穹隆中岩浆活动从早至晚可见有早古生代片麻岩(约500 Ma)、中生代辉绿岩(140 Ma)、渐新世变形二云母花岗岩/伟晶岩(26 Ma)、中新世弱定向二云母花岗岩(18 Ma)、含石榴石电气石花岗岩(16.8~15.9 Ma)5期.综合研究表明,错那洞穹隆的形成是早期伸展拆离核杂岩叠加晚期岩浆底劈热穹隆综合作用的结果,成穹构造的初始阶段与始新世-渐新世藏南拆离系(STDS)的运动密切相关.Abstract: The structure assemblage, rock composition, and kinematics characteristics of metamorphic deformation of the newly discovered Cuonadong dome are not clear currently, which seriously hinders the restoration of its evolutionary process and the anatomy of the coupled relationship between the formation of plutonium and mineralization. Based on the detailed field geological survey, the newly discovered magmatic rocks in dome were additionally collected for chronological study in this paper. The results show that the Cuonadong dome is divided into three structural layers of upper (margin)-middle (mantle)-lower (core) by upper and lower detachment faults. The core rock assemblages are primarily composed of granite gneiss, leucogranite, and a little migmatite, with a large amount of intruded pegmatite veins. The mantle rock assemblage is a set of strongly metamorphic and deformable schist with interlayer carbonate. This rock assemblage has Barrovian metamorphism confirmed by mineral assemblages from the core to the margin of kyanite+staurolite+garnet+biotite→taurolite+garnet+biotite→garnet+cordierite+biotite→chlorite+biotite; The margin is primarily comprised of slightly metamorphic Triassic-Jurassic sedimentary rocks, which is constituted of sericite chlorite sand slate and a small amount of phyllite. The dome from early to late has experienced N-S trending thrusting, N-S extension and E-W extension, and the formation of the dome is primarily associated with the N-S extension. There are five episodes of magmatism in the dome at ~500 Ma (gneiss), 140 Ma (diabase), 26 Ma (deformed two-mica granite/pegmatite), 18 Ma (weakly oriented two-mica granite), 16.8-15.9 Ma (garnet-tourmaline-bearing granite). The study shows that the formation of the Cuonadong dome is the result of the combined effect of the early extension and detachment and the late magmatic diapir, and the movement of the South Tibetan detachment system during the Eocene-Oligocene is the primal factor.
-
Key words:
- Cuonadong dome /
- structure assemblage /
- metamorphic zoning /
- Tethys Himalayan /
- zircon U-Pb dating /
- geochemistry /
- structural geology
-
图 1 喜马拉雅地质简图(a)及扎西康整装勘查区地质图(b)
据 张志等(2017a)修改
Fig. 1. Generalized geological maps of Himalaya (a) and zhaxikang integrated exploration area (b)
图 7 错那洞穹隆构造变形特征
a.错那洞穹隆上构造层中膝褶皱及轴面劈理;b.上构造层中不对称褶皱及轴面劈理,产状为145∠40°,石英脉呈一系列透镜体产出,指示向北伸展特征;c.中构造层中含蓝晶石石榴石十字石片岩的S-C组构,指示右旋剪切特征;d.中构造层中含蓝晶石石榴石十字石片岩中的S-C组构,指示左旋剪切特征;e.错那洞穹隆北部中构造层中鞘褶皱,镜头方向为鞘褶皱的YZ面;f.鞘褶皱的YZ面,呈圈闭的椭圆形;g.中构造层中含石榴石十字石片岩中的σ型旋转斑晶,指示右旋剪切特征;h.中构造层中含蓝晶石石榴石云母片岩中的σ型旋转斑晶,指示右旋剪切特征;i.中构造层中变形的伟晶岩,片岩和伟晶岩均发生强烈变形
Fig. 7. Tectonic deformation characteristics of the Cuonadong dome
表 1 错那洞穹隆片麻岩(PM01-B1)锆石年代学分析结果
Table 1. Zircon dating result of the gneiss (PM01-B1) in the Cuonadong dome
分析点 含量(10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ PM01-B101 478.93 2 778.04 0.17 0.057 58 0.001 85 0.639 78 0.022 18 0.080 09 0.001 39 522.3 70.4 502.2 13.7 496.6 8.3 PM01-B102 454.98 786.19 0.58 0.064 08 0.002 56 0.717 96 0.030 45 0.080 26 0.001 07 744.1 85.2 549.5 18.0 497.7 6.4 PM01-B103 645.28 2 601.29 0.25 0.056 51 0.001 73 0.629 35 0.018 91 0.080 33 0.000 96 472.3 36.1 495.7 11.8 498.1 5.7 PM01-B104 1 885.32 1 002.14 1.88 0.056 80 0.002 16 0.647 94 0.024 23 0.080 48 0.000 84 483.4 83.3 507.2 14.9 499.0 5.0 PM01-B105 613.74 805.64 0.76 0.056 20 0.001 88 0.628 51 0.021 09 0.080 55 0.000 97 461.2 74.1 495.2 13.2 499.4 5.8 PM01-B106 451.25 2 083.86 0.22 0.056 20 0.001 63 0.636 11 0.022 36 0.080 62 0.001 60 461.2 64.8 499.9 13.9 499.8 9.5 PM01-B107 371.75 2 106.83 0.18 0.057 04 0.001 48 0.641 84 0.016 56 0.080 82 0.000 89 494.5 57.4 503.4 10.2 501.0 5.3 PM01-B108 711.56 1 435.97 0.50 0.056 54 0.002 01 0.639 64 0.022 19 0.080 94 0.000 99 472.3 77.8 502.1 13.7 501.7 5.9 PM01-B109 359.22 734.26 0.49 0.056 26 0.002 30 0.637 44 0.025 50 0.081 00 0.001 14 461.2 90.7 500.7 15.8 502.1 6.8 PM01-B110 281.27 615.58 0.46 0.061 37 0.002 97 0.690 97 0.030 72 0.081 01 0.001 19 653.7 105.5 533.4 18.5 502.2 7.1 PM01-B111 745.51 2 491.90 0.30 0.055 37 0.001 60 0.623 37 0.019 36 0.081 03 0.001 53 427.8 69.4 492.0 12.1 502.2 9.2 PM01-B112 658.72 997.29 0.66 0.054 33 0.001 60 0.610 85 0.018 02 0.081 03 0.000 91 383.4 66.7 484.1 11.4 502.2 5.4 PM01-B113 2704.11 4 812.12 0.56 0.057 97 0.001 47 0.655 08 0.019 46 0.081 06 0.001 46 527.8 55.5 511.6 11.9 502.5 8.7 PM01-B114 144.35 306.67 0.47 0.057 96 0.002 66 0.650 74 0.030 54 0.081 17 0.001 17 527.8 97.2 508.9 18.8 503.1 7.0 PM01-B115 352.20 523.37 0.67 0.060 31 0.003 05 0.673 70 0.030 64 0.081 21 0.001 39 613.0 109.2 523.0 18.6 503.3 8.3 PM01-B116 370.52 517.52 0.72 0.055 98 0.002 49 0.632 68 0.027 27 0.081 30 0.001 11 450.0 98.1 497.8 17.0 503.9 6.6 PM01-B117 204.77 584.41 0.35 0.052 95 0.002 59 0.598 19 0.027 05 0.081 61 0.001 24 327.8 111.1 476.1 17.2 505.7 7.4 PM01-B118 489.71 911.10 0.54 0.058 94 0.002 17 0.661 26 0.024 65 0.080 65 0.001 01 564.9 79.6 515.4 15.1 500.0 6.0 PM01-B119 271.33 393.43 0.69 0.061 63 0.003 12 0.692 97 0.033 35 0.080 69 0.001 37 661.1 108.2 534.6 20.0 500.2 8.2 PM01-B120 160.17 430.94 0.37 0.063 38 0.002 83 0.712 69 0.031 71 0.080 82 0.001 06 720.4 89.8 546.3 18.8 501.0 6.3 PM01-B121 290.32 1 149.74 0.25 0.055 33 0.001 92 0.616 60 0.020 63 0.079 92 0.000 82 433.4 77.8 487.7 13.0 495.6 4.9 PM01-B122 247.80 723.97 0.34 0.056 49 0.002 23 0.629 39 0.024 38 0.079 96 0.001 14 472.3 91.7 495.7 15.2 495.9 6.8 表 2 片麻岩(PM01-B2)锆石年代学分析结果
Table 2. 2Zircon dating result of the gneiss (PM01-B2) in the Cuonadong dome
分析点 含量(10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ PM01-B201 98.60 254.96 0.39 0.052 76 0.002 77 0.588 53 0.02799 0.080 20 0.001 24 316.7 120.4 469.9 17.9 497.3 7.4 PM01-B202 514.26 870.82 0.59 0.055 58 0.001 95 0.618 58 0.02152 0.080 32 0.000 95 435.2 77.8 489.0 13.5 498.0 5.7 PM01-B203 988.81 726.81 1.36 0.059 30 0.001 77 0.665 96 0.01969 0.080 52 0.000 79 588.9 60.2 518.3 12.0 499.2 4.7 PM01-B204 994.83 2 060.62 0.48 0.053 39 0.001 46 0.596 91 0.01617 0.080 62 0.000 86 346.4 61.1 475.3 10.3 499.8 5.2 PM01-B205 267.32 530.96 0.50 0.053 43 0.002 41 0.596 90 0.02698 0.080 70 0.001 11 346.4 106.5 475.3 17.2 500.3 6.6 PM01-B206 973.76 1 228.11 0.79 0.054 98 0.001 85 0.615 51 0.02037 0.080 71 0.000 93 413.0 69.4 487.0 12.8 500.4 5.5 PM01-B207 409.45 600.09 0.68 0.060 45 0.003 03 0.672 84 0.03116 0.080 81 0.001 23 620.4 107.4 522.4 18.9 500.9 7.3 PM01-B208 863.71 1 645.50 0.52 0.061 00 0.002 21 0.687 27 0.02273 0.080 83 0.000 90 638.9 77.8 531.2 13.7 501.1 5.4 PM01-B209 253.42 249.46 1.02 0.054 50 0.003 96 0.611 55 0.04651 0.080 87 0.001 60 390.8 162.9 484.5 29.3 501.3 9.6 PM01-B210 278.97 495.79 0.56 0.055 43 0.002 50 0.619 91 0.02692 0.080 92 0.000 93 427.8 101.8 489.8 16.9 501.6 5.5 PM01-B211 613.04 1 993.53 0.31 0.054 11 0.001 59 0.606 84 0.01722 0.080 93 0.000 88 376.0 64.8 481.6 10.9 501.7 5.2 PM01-B212 709.15 3 220.44 0.22 0.056 45 0.001 77 0.636 08 0.02213 0.080 94 0.001 31 477.8 70.4 499.9 13.7 501.7 7.8 PM01-B213 340.75 546.37 0.62 0.057 70 0.002 68 0.646 67 0.02893 0.080 94 0.001 20 516.7 101.8 506.4 17.8 501.8 7.2 PM01-B214 340.81 790.76 0.43 0.052 97 0.002 06 0.593 22 0.02249 0.080 97 0.001 03 327.8 88.9 472.9 14.3 501.9 6.1 PM01-B215 136.29 375.86 0.36 0.054 91 0.002 54 0.621 69 0.02936 0.080 98 0.001 11 409.3 103.7 490.9 18.4 502.0 6.6 PM01-B216 479.80 1 665.20 0.29 0.055 86 0.001 56 0.627 20 0.01687 0.081 03 0.000 83 455.6 63.0 494.4 10.5 502.3 5.0 PM01-B217 308.06 517.47 0.60 0.054 90 0.002 62 0.614 86 0.02785 0.081 04 0.001 08 409.3 112.0 486.6 17.5 502.3 6.4 PM01-B218 490.46 932.11 0.53 0.053 90 0.002 10 0.606 99 0.02296 0.081 08 0.001 00 364.9 88.9 481.7 14.5 502.5 6.0 PM01-B219 968.09 1 475.73 0.66 0.055 13 0.001 64 0.623 42 0.01812 0.081 20 0.000 82 416.7 66.7 492.0 11.3 503.3 4.9 表 3 弱定向二云母花岗岩(DD2017-B1)锆石年代学分析结果
Table 3. Zircon dating results of the weak directional mica granite (DD2017-B1) in the Cuonadong dome
分析点 含量(10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ DD2017-B501 359.949 7 8 167.607 0.04 0.047 65 0.000 73 0.018 14 0.000 28 0.002 76 0.000 02 83.4 30.6 18.3 0.3 17.8 0.1 DD2017-B502 325.766 1 8 452.618 0.04 0.048 92 0.000 82 0.018 75 0.000 33 0.002 77 0.000 02 142.7 38.9 18.9 0.3 17.8 0.1 DD2017-B503 179.616 6 6 248.751 0.03 0.048 06 0.000 90 0.018 34 0.000 33 0.002 77 0.000 02 101.9 44.4 18.5 0.3 17.8 0.1 DD2017-B504 173.698 8 5 091.655 0.03 0.047 47 0.001 09 0.018 22 0.000 42 0.002 78 0.000 02 72.3 55.6 18.3 0.4 17.9 0.1 DD2017-B505 295.644 0 9 464.237 0.03 0.046 62 0.000 67 0.018 09 0.000 26 0.002 81 0.000 02 27.9 37.0 18.2 0.3 18.1 0.1 DD2017-B506 476.932 5 1 0838.560 0.04 0.046 77 0.000 70 0.018 20 0.000 27 0.002 82 0.000 02 39.0 -163.9 18.3 0.3 18.1 0.1 DD2017-B507 157.371 0 5 582.908 0.03 0.047 55 0.000 96 0.018 58 0.000 39 0.002 83 0.000 03 76.0 48.1 18.7 0.4 18.2 0.2 DD2017-B508 400.512 4 1 0358.350 0.04 0.046 87 0.000 72 0.018 35 0.000 28 0.002 83 0.000 02 42.7 37.0 18.5 0.3 18.2 0.1 DD2017-B509 351.089 1 1 0763.430 0.03 0.047 35 0.000 76 0.018 53 0.000 29 0.002 83 0.000 02 77.9 38.9 18.6 0.3 18.2 0.1 DD2017-B510 216.997 4 6 972.365 0.03 0.046 71 0.000 78 0.018 30 0.000 30 0.002 84 0.000 02 35.3 37.0 18.4 0.3 18.3 0.1 DD2017-B511 327.150 7 9 102.487 0.04 0.046 24 0.000 80 0.018 35 0.000 31 0.002 87 0.000 02 9.4 40.7 18.5 0.3 18.5 0.1 DD2017-B512 264.342 2 7 643.585 0.03 0.045 36 0.000 77 0.018 05 0.000 30 0.002 88 0.000 02 / / 18.2 0.3 18.5 0.1 DD2017-B513 231.729 9 4 902.503 0.05 0.049 71 0.001 49 0.019 81 0.000 61 0.002 88 0.000 03 189.0 70.4 19.9 0.6 18.6 0.2 DD2017-B514 239.967 7 3 357.240 0.07 0.044 94 0.001 11 0.017 93 0.000 45 0.002 89 0.000 02 / / 18.0 0.4 18.6 0.1 DD2017-B515 179.123 9 55 11.921 0.03 0.046 22 0.000 99 0.018 43 0.000 38 0.002 89 0.000 02 9.4 51.8 18.5 0.4 18.6 0.1 DD2017-B516 379.709 8 12 467.080 0.03 0.045 63 0.000 68 0.018 34 0.000 28 0.002 91 0.000 02 / / 18.4 0.3 18.7 0.1 DD2017-B517 205.222 4 5 357.011 0.04 0.047 17 0.000 96 0.018 90 0.000 38 0.002 91 0.000 02 57.5 48.1 19.0 0.4 18.7 0.1 DD2017-B518 277.135 8 7 781.116 0.04 0.047 36 0.000 78 0.019 11 0.000 38 0.002 91 0.000 03 77.9 36.1 19.2 0.4 18.7 0.2 表 4 电气石石榴石细粒花岗岩(D1126-B1)锆石年代学分析结果
Table 4. Zircon dating results of the tourmaline garnet fine grained granite (D1126-B1) in the Cuonadong dome
分析点 含量(10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ D1126-B101 1 260.13 31 548.35 0.04 0.046 05 0.000 83 0.015 19 0.000 21 0.002 39 0.000 03 / / 15.3 0.2 15.4 0.4 D1126-B102 665.34 19 358.87 0.03 0.046 48 0.001 7 0.015 81 0.000 52 0.002 47 0.000 04 23 77 15.9 0.5 15.9 0.4 D1126-B103 77.08 6 814.39 0.01 0.049 25 0.001 9 0.016 72 0.000 61 0.002 46 0.000 03 160 90 16.8 0.6 15.9 0.4 D1126-B104 211.76 6 983.56 0.03 0.046 05 0.001 48 0.016 13 0.000 49 0.002 54 0.000 03 / / 16.2 0.5 16.4 0.4 D1126-B105 82.30 6 677.76 0.01 0.047 05 0.001 93 0.015 82 0.000 62 0.002 44 0.000 03 52 89 15.9 0.6 15.7 0.4 D1126-B106 117.56 7 145.29 0.02 0.046 05 0.000 73 0.016 0 0.000 19 0.002 52 0.000 03 / / 16.1 0.2 16.2 0.4 D1126-B107 2 248.67 46 173.27 0.05 0.046 05 0.000 96 0.014 78 0.000 26 0.002 33 0.000 03 / / 14.9 0.3 15.0 0.4 D1126-B108 62.79 3 658.22 0.02 0.050 75 0.003 2 0.018 24 0.001 12 0.002 61 0.000 04 230 146 18.0 1.0 16.8 0.4 D1126-B109 63.24 3 953.27 0.02 0.046 05 0.001 01 0.015 84 0.000 28 0.002 50 0.000 03 / / 16.0 0.3 16.1 0.4 D1126-B110 186.94 13 115.32 0.01 0.048 23 0.001 51 0.016 67 0.000 49 0.002 51 0.000 03 110 73 16.8 0.5 16.1 0.4 D1126-B111 155.78 7 546.52 0.02 0.046 66 0.001 52 0.015 30 0.000 46 0.002 38 0.000 03 32 69 15.4 0.5 15.3 0.4 -
Beaumont, C., Jamieson, R.A., Nguyen, M.H., et al., 2001.Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation.Nature, 414(6865):738-742. https://doi.org/10.1038/414738a Burg, J.P., Guiraud, M., Chen, G.M., et al., 1984.Himalayan Metamorphism and Deformations in the North Himalayan Belt (Southern Tibet, China).Earth and Planetary Science Letters, 69(2):391-400.https://doi.org/10.1016/0012-821x(84)90197-3 doi: 10.1016/0012-821X(84)90197-3 Chardon, D., Choukroune, P., Jayananda, M., 1998.Sinking of the Dharwar Basin (South India):Implications for Archaean Tectonics.Precambrian Research, 91(1-2):15-39.https://doi.org/10.1016/s0301-9268(98)00037-0 doi: 10.1016/S0301-9268(98)00037-0 Chen, Z., Liu, Y., Hodges, K.V., et al., 1990.The Kangmar Dome:A Metamorphic Core Complex in Southern Xizang(Tibet).Science, 250(4987):1552-1556. https://doi.org/10.1126/science.250.4987.1552 Debon, F., Fort, P.L., Sheppard, S.M.F., et al., 1986.The Four Plutonic Belts of the Transhimalaya-Himalaya:A Chemical, Mineralogical, Isotopic, and Chronological Synthesis along a Tibet-Nepal Section.Journal of Petrology, 27(1):219-250. https://doi.org/10.1093/petrology/27.1.219 Duan, J.L., Tang, J.X., Lin, B., 2016.Zinc and Lead Isotope Signatures of the Zhaxikang Pb-Zn Deposit, South Tibet:Implications for the Source of the Ore-Forming Metals.Ore Geology Reviews, 78:58-68. https://doi.org/10.1016/j.oregeorev.2016.03.019 Fu, J.G., Li, G.M., Wang, G.H., et al., 2016.First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome.International Journal of Earth Sciences, 106(5):1581-1596.https://doi.org/10.1007/s00531-016-1368-2 Gao, L.E., Gao, J.H., Zhao, L.H., et al., 2017.The Miocene Leucogranite in the Nariyongcuo Gneiss Dome, Southern Tibet:Products from Melting Metapelite and Fractional Crystallization.Acta Petrologica Sinica, 33(8):2395-2411 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201708005.htm Gao, L.E., Zeng, L.S., Hou, K.J., et al., 2013a.Episodic Crustal Anatexis and the Formation of Paiku Composite Leucogranitic Pluton in the Malashan Gneiss Dome, Southern Tibet.Chinese Science Bulletin, 58(27):2810-2822 (in Chinese). Gao, L.E., Zeng, L.S., Wang, L., et al., 2013b.Age and Formation Mechanism of the Malashan High-Ca Two-Mica Granite within the Northern Himalayan Gneiss Domes, Southern Tibet.Acta Petrologica Sinica, 29(6):1995-2012 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306010 Gao, L.E., Zeng, L.S., 2014.Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet.Geochimica et Cosmochimica Acta, 130:136-155. https://doi.org/10.1016/j.gca.2014.01.003 Gao, L.E., Zeng, L.S., Xie, K.J., 2012.Eocene High Grade Metamorphism and Crustal Anatexis in the North Himalaya Gneiss Domes, Southern Tibet.Chinese Science Bulletin, 57(6):639-650. https://doi.org/10.1007/s11434-011-4805-4 Gao, S., Liu, X.M., Yuan, H.L., et al., 2002.Determination of Forty-Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 26(2):181-196.https://doi.org/10.1111/j.1751-908x.2002.tb00886.x doi: 10.1111/ggr.2002.26.issue-2 Gu, P.Y., He, S.P., Li, R.S., et al., 2013.Geochemical Features and Tectonic Significance of Granitic Gneiss of Laguigangri Metamorphic Core Complexes in Southern Tibet.Acta Petrologica Sinica, 29(3):756-768 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002 Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ.Mineralization in Post-Collisional Extension Setting.Mineral Depsits, 25(6):629-651 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030175040 Hu, G.Y., Zeng, L.S., Gao, L.E., et al., 2011.Lanthanide Kinked Shape, Similar to Tetrad Effect, Observed in Sub-Volcanic Rocks from Qiaga, Southern Tibet, China.Geological Bulletin of China, 30(1):82-94 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201101008 Lee, J., Hacker, B.R., Dinklage, W.S., et al., 2000.Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints.Tectonics, 19(5):872-895.https://doi.org/10.1029/1999tc001147 doi: 10.1029/1999TC001147 Lee, J., Hacker, B., Wang, Y., 2004.Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome, Southern Tibet.Journal of Structural Geology, 26(12):2297-2316. https://doi.org/10.1016/j.jsg.2004.02.013 Lee, J., McClelland, W., Wang, Y., et al., 2006.Oligocene-Miocene Middle Crustal Flow in Southern Tibet:Geochronology of Mabja Dome.Geological Society, London, Special Publications, 268(1):445-469.https://doi.org/10.1144/gsl.sp.2006.268.01.21 doi: 10.1144/GSL.SP.2006.268.01.21 Lee, J., Whitehouse, M.J., 2007.Onset of Mid-Crustal Extensional Flow in Southern Tibet:Evidence from U/Pb Zircon Ages.Geology, 35(1):45-48.https://doi.org/10.1130/g22842a.1 doi: 10.1130/G22842A.1 Leech, M.L., 2008.Does the Karakoram Fault Interrupt Mid-Crustal Channel Flow in the Western Himalaya? Earth and Planetary Science Letters, 276(3):314-322.https://doi.org/10.1016/j.epsl.2008.10.006 http://www.sciencedirect.com/science/article/pii/S0012821X08006651 Li, D.W., Liu, D.M., Liao, Q.N., et al., 2003.Definition and Significance of the Lhagoi Kangri Metamorphic Core Complexes in Sa'gya, Southern Tibet.Regional Geology of China, 22(5):303-307 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200305002 Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet.Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014 Lin, B., Tang, J.X., Zheng, W.B., et al., 2014.Petrochemical Features, Zircon U-Pb Dating and Hf Isotopic Composition of the Rhyolite in Zhaxikang Deposit, Southern Xizang (Tibet).Geological Review, 60(1):178-189 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201401017 Lin, B., Tang, J.X., Zheng, W.B., et al., 2016.Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet.Acta Petrologica et Mineralogica, 35(3):391-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201603002 Liu, Y.M., Li, C., Xie, C.M., et al., 2016.Cambrian Granitic Gneiss within the Central Qiangtang Terrane, Tibetan Plateau:Implications for the Early Palaeozoic Tectonic Evolution of the Gondwanan Margin.International Geology Review, 58(9):1043-1063. https://doi.org/10.1080/00206814.2016.1141329 Liu, Z., Zhou, Q., Lai, Y., et al., 2015.Petrogenesis of the Early Cretaceous Laguila Bimodal Intrusive Rocks from the Tethyan Himalaya:Implications for the Break-Up of Eastern Gondwana.Lithos, 236-237:190-202.https://doi.org/10.13039/501100001809 doi: 10.1016/j.lithos.2015.09.006 Liu, Z.C., Wu, F.Y., Ding, L., et al., 2016.Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet.Lithos, 240-243:337-354.https://doi.org/10.13039/501100001809 doi: 10.1016/j.lithos.2015.11.026 Liu, Z.H., Pan, B.W., Li, P.C., et al., 2017.Ductile Shear Zone in High-Grade Metamorphic Rocks and Its Rheomorphic Mechanism in the Daqing Mountain Area, Inner Mongolia.Earth Science, 42(12):2105-2116 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.135 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201712001 Quigley, M.C., Liang, J.Y., Gregory, C., et al., 2008.U-Pb SHRIMP Zircon Geochronology and T-t-d History of the Kampa Dome, Southern Tibet.Tectonophysics, 446(1-4):97-113. https://doi.org/10.1016/j.tecto.2007.11.004 Siddoway, C.S., Richard, S.M., Fanning, C.M., et al., 2004.Origin and Emplacement of a Middle Cretaceous Gneiss Dome, Fosdick Mountains, West Antarctica.Geological Society of America Special Papers, 380:267-294.https://doi.org/10.1130/0-8137-2380-9.267 http://www.researchgate.net/publication/285724603_Origin_and_emplacement_of_a_middle_Cretaceous_gneiss_dome_Fosdick_Mountains_West_Antarctica Smit, M.A., Hacker, B.R., Lee, J., 2014.Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya.Geology, 42(7):591-594.https://doi.org/10.1130/g35524.1 doi: 10.1130/G35524.1 Sun, X., Zheng, Y.Y., Pirajno, F., et al., 2017.Geology, S-Pb Isotopes, and 40Ar/39Ar Geochronology of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet:Implications for Multiple Mineralization Events at Zhaxikang.Mineralium Deposita, 53(3):435-458.https://doi.org/10.1007/s00126-017-0752-6 Tirel, C., Brun, J.P., Burov, E., 2004.Thermomechanical Modeling of Extensional Gneiss Domes.Geological Society of America Special Papers, 380(1):67-78.https://doi.org/10.1130/0-8137-2380-9.67 http://www.researchgate.net/publication/282757213_Thermomechanical_modeling_of_extensional_gneiss_domes Vanderhaeghe, O., 2004.Structural Development of the Naxos Migmatite Dome.Geological Society of America Special Papers, 380:211-227.https://doi.org/10.1130/0-8137-2380-9.211 http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1130/0-8137-2380-9.211 Wang, X.X., Zhang, J.J., Santosh, M., et al., 2012.Andean-Type Orogeny in the Himalayas of South Tibet:Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana.Lithos, 154:248-262. https://doi.org/10.1016/j.lithos.2012.07.011 Wang, X.X., Zhang, J.J., Wang, J.M., 2016.Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications.Earth Science, 41(6):982-998 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.082 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201606006 Wu, Z.H., Ye, P.S., Wu, Z.H., et al., 2014.LA-ICP-MS Zircon U-Pb Ages of Tectonic-Thermal Events in the Yalaxiangbo Dome of Tethys Himalayan Belt.Geologcal Bulletin of China, 33(5):595-605 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201405001 Xie, Y.L., Li, L.M., Wang, B.G., et al., 2017.Genesis of the Zhaxikang Epithermal Pb-Zn-Sb Deposit in Southern Tibet, China:Evidence for a Magmatic Link.Ore Geology Reviews, 80:891-909. https://doi.org/10.1016/j.oregeorev.2016.08.007 Yan, D.P., Zhou, M.F., Robinson, P.T., et al., 2012.Constraining the Mid-Crustal Channel Flow beneath the Tibetan Plateau:Data from the Nielaxiongbo Gneiss Dome, SE Tibet.International Geology Review, 54(6):615-632. https://doi.org/10.1080/00206814.2010.548153 Zeng, L.S., Gao, L.E., Tang, S.H., et al., 2014.Eocene Magmatism in the Tethyan Himalaya, Southern Tibet.Geological Society, London, Special Publications, 412(1):287-316.https://doi.org/10.1144/sp412.8 http://adsabs.harvard.edu/abs/2015GSLSP.412..287Z Zeng, L.S., Gao, L.E., Xie, K.J., et al., 2011.Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust.Earth and Planetary Science Letters, 303(3-4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005 Zeng, L.S., Liu, J., Gao, L.E., et al., 2009.Early Oligocene Anatexis in the YardoiGneiss Dome, Southern Tibet and Geological Implications.Chinese Science Bulletin, 54(3):373-381 (in Chinese with English abstract). doi: 10.1007-s11434-008-0362-x/ Zhang, J.J., Guo, L., Zhang, B., 2007.Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China.Chinese Journal of Geology, 42(1):16-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701003 Zhang, L. K., Li, G. M., Cao, H. W., 2018. Zircon U-Pb Geochronology and Hf Isotope Compositions of the Granitic Gneiss from Cuonadong Dome in Tethys Himalaya, Tibet and Its Geological Significance. Geology in China, in Press. Zhang, J.Y., Liao, Q.A., Li, D.W., 2003.Geochemical Features of the High Himalayan Leucogranites of Dingjie Area, Tibet:Implication for Magma Sources.Geological Science and Technology Information, 22(3):9-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200303002.htm Zhang, S.Z., Li, F.Q., Li, Y., et al., 2014.Early Ordovician Strongly Peraluminous Granite in the Middle Section of the Yarlung Zangbo Junction Zone and Its Geological Significance.Science China Earth Sciences, 57(4):630-643. https://doi.org/10.1007/s11430-013-4721-3 Zhang, Z., Zhang, L.K., Li, G.M., et al., 2017a.The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Controlling Role of North Himalaya Gneiss Domes.Acta Geoscientica Sinica, 38(5):754-766 (in Chinese with English abstract). Zhang, Z., Song, J.L., Tang, J.X., et al., 2017b.Petrogenesis, Diagenesis and Mineralization Ages ofGalale Cu-Au Deposit, Tibet:Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science, 42(6):862-880 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.523 Zhou, Q., Li, W.C., Qing, C.S., et al., 2017.Origin and Tectonic Implications of theZhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Evidence from Structures, Re-Os-Pb-S Isotopes, and Fluid Inclusions.Mineralium Deposita, 53(4):585-600.https://doi.org/10.13039/501100001809 doi: 10.1007/s00126-017-0760-6 Zhu, D.C., Chung, S.L., Mo, X.X., et al., 2009.The 132 Ma Comei-Bunbury Large Igneous Province:Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia.Geology, 37(7):583-586.https://doi.org/10.1130/g30001a.1 doi: 10.1130/G30001A.1 Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2007.Petrogenesis of Volcanic Rocks in the Sangxiu Formation, Central Segment of Tethyan Himalaya:A Probable Example of Plume-Lithosphere Interaction.Journal of Asian Earth Sciences, 29(2-3):320-335. https://doi.org/10.1016/j.jseaes.2005.12.004 Zhu, D.C., Xia, Y., Qiu, B.B., et al., 2013.Why do We Need to Propose the Early Cretaceous Comei Large Igneous Province in Southeastern Tibet? Acta Petrologica Sinica, 29(11):3659-3670 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311001 Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454.https://doi.org/10.13039/501100001809 doi: 10.1016/j.gr.2012.02.002 高利娥, 高家昊, 赵令浩, 等, 2017.藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用.岩石学报, 33(8):2395-2411. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201708005 高利娥, 曾令森, 侯可军, 等, 2013a.藏南马拉山穹窿佩枯错复合淡色花岗岩体的多期深熔作用.科学通报, 58(27):2810-2822. http://www.cqvip.com/QK/94252X/201327/47435601.html 高利娥, 曾令森, 王莉, 等, 2013b.藏南马拉山高钙二云母花岗岩的年代学特征及其形成机制.岩石学报, 29(6):1995-2012. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306010 辜平阳, 何世平, 李荣社, 等, 2013.藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义.岩石学报, 29(3):756-768. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002 侯增谦, 曲晓明, 杨竹森, 等, 2006.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 胡古月, 曾令森, 高利娥, 等, 2011.藏南隆子地区恰嘎流纹质次火山岩稀土元素类似四分组效应.地质通报, 30(1):82-94. doi: 10.3969/j.issn.1671-2552.2011.01.008 李德威, 刘德民, 廖群安, 等, 2003.藏南萨迦拉轨岗日变质核杂岩的厘定及其成因.地质通报, 22(5):303-307. doi: 10.3969/j.issn.1671-2552.2003.05.002 李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍钨锡多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014 林彬, 唐菊兴, 郑文宝, 等, 2014.藏南扎西康矿区流纹岩的岩石地球化学、锆石U-Pb测年和Hf同位素组成.地质论评, 60(1):178-189. http://d.old.wanfangdata.com.cn/Periodical/dzlp201401017 林彬, 唐菊兴, 郑文宝, 等, 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002 刘正宏, 潘博文, 李鹏川, 等, 2017.内蒙古大青山高级变质岩韧性剪切带及其流变机制.地球科学, 42(12):2105-2116.https://doi.org/10.3799/dqkx.2017.135 http://earth-science.net/WebPage/Article.aspx?id=3710 王晓先, 张进江, 王佳敏, 2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学, 41(6):982-998.https://doi.org/10.3799/dqkx.2016.082 http://earth-science.net/WebPage/Article.aspx?id=3311 吴珍汉, 叶培盛, 吴中海, 等, 2014.特提斯喜马拉雅构造带雅拉香波穹隆构造热事件LA-ICP-MS锆石U-Pb年龄证据.地质通报, 33(5):595-605. doi: 10.3969/j.issn.1671-2552.2014.05.001 曾令森, 刘静, 高利娥, 等, 2009.藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义.科学通报, 54(3):373-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000253269 张金阳, 廖群安, 李德威, 2003.西藏定结地区高喜马拉雅淡色花岗岩的地球化学特征与岩浆源区研究.地质科技情报, 22(3):9-14. doi: 10.3969/j.issn.1000-7849.2003.03.002 张进江, 郭磊, 张波, 2007.北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征.地质科学, 42(1):16-30. doi: 10.3321/j.issn:0563-5020.2007.01.003 张林奎, 李光明, 曹华文, 等, 2018. 西藏特提斯喜马拉雅错那洞穹隆花岗质片麻岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 中国地质, 待刊. 张志, 张林奎, 李光明, 等, 2017a.北喜马拉雅错那洞穹隆:片麻岩穹隆新成员与穹隆控矿新命题.地球学报, 38(5):754-766. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705015 张志, 宋俊龙, 唐菊兴, 等, 2017b.西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球科学, 42(6):862-880.https://doi.org/10.3799/dqkx.2017.523 http://earth-science.net/WebPage/Article.aspx?id=3584 朱弟成, 夏瑛, 裘碧波, 等, 2013.为什么要提出西藏东南部早白垩世措美大火成岩省.岩石学报, 29(11):3659-3670. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311001