Geochronology and Geochemistry of Volcanic Rocks from the Huangchengshan Volcanogenic Epithermal Silver Deposit, Dabie Orogen, China: Implications for Tectonic Setting
-
摘要: 皇城山银矿床是西大别山地区代表性的浅成低温热液矿床,受陈棚组火山机构的枝叉状裂隙构造控制.目前人们对该矿床成因、成矿时间和构造环境的理解尚不深刻,因此对相关火山岩进行了激光等离子质谱(LA-ICP-MS)锆石U-Pb测年、元素地球化学和Sr-Nd-Hf同位素研究,探讨了其岩石成因和构造属性.结果表明,皇城山矿区陈棚组熔结凝灰岩及外围流纹岩锆石U-Pb年龄分别为133.4±1.5 Ma(MSWD=1.3)和133.1±0.8 Ma(MSWD=0.59),形成于早白垩世.陈棚组火山岩在较短时间内喷发形成,其喷发时限基本代表了皇城山银矿床形成时间.陈棚组流纹岩具高硅(SiO2=73.83%~77.38%)、高钾(K2O=4.65%~9.31%)特征,属于过铝质(A/CNK=1.09~1.31)和高钾钙碱性岩石系列.岩石具轻稀土富集,重稀土平坦,大离子亲石元素相对富集,Ba、Nb、Ta、P、Ti明显负异常和负Eu异常(δEu=0.33~0.88)特点.岩石锶同位素初始比值ISr为0.708 220~0.708 741,εNd(t)值为-17.2~-18.5,Nd两阶段模式年龄TDM2=2.32~2.43 Ga.锆石εHf(t)值范围为-22.3~-26.1,Hf两阶段模式年龄TDM2=2.29~2.49 Ga.主、微量元素和Sr-Nd-Hf同位素特征共同揭示陈棚组流纹岩为扬子陆壳北缘古老地壳物质重熔演化的产物.结合区域地质特征,陈棚组火山岩及其相关皇城山银矿床形成于大别山早白垩世加厚下地壳拆沉作用初期、挤压向伸展转化环境.Abstract: The Huangchengshan deposit is the largest high-sulfidation epithermal silver deposit in the Western Dabie orogen. Silver mineralization characterized by argentiferous quartz veins is controlled by fractures of volcanic apparatus, and is spatially associated with volcanic rocks of Chenpeng Formation. In situ zircon U-Pb dating yielded 133.4±1.5 Ma (1σ, MSWD=1.3) and 133.1±0.8 Ma (1σ, MSWD=0.59) for the tuff and rhyolite from Chenpeng Formation, respectively, indicating an Early Cretaceous volcanism. The data also suggest a syngenetic volcanogenic epithermal mineralization age of ca.133 Ma for the Huangchengshan silver deposit. Rhyolites of the Chenpeng Formation display high contents of SiO2 (73.83% to 77.38%) and K2O (4.65% to 9.31%), belonging to high-K calc-alkaline series. Their A/CNK ratios range from 1.09 to 1.31, exhibiting peraluminous characteristics. Rare earth elements show light rare earth elements (LREEs) enrichment and flat heavy rare earth elements (HREEs) patterns, with moderate negative Eu anomalies (δEu=0.33-0.88). They are enriched in large ion lithophile elements (LILEs), but depleted in Ba, Nb, Ta, P and Ti. These geochemical characteristics show affinity to highly fractionated granites. The rhyolites have high ISr values (0.708 220 to 0.708 741) and negative εNd(t) values (-17.2 to -18.5), with two-stage Nd model ages of 2.32 to 2.43 Ga. Zircon εHf(t) values are negative (-22.3 to -26.1) with an calculated two-stage Hf model ages of 2.29 to 2.49 Ga. The geochemical and Sr-Nd-Hf isotopic signatures suggest that the rhyolite is likely to be derived by partial melting of the ancient lower crust of the Yangtze Block. We propose that this volcanism and related Huangchengshan silver deposit formed in a transitional stage from crustal compression to extension driven by delamination of thickened lower crust during the Early Cretaceous.
-
Key words:
- silver deposits /
- volcanic rocks /
- geochronology /
- geochemistry /
- Sr-Nd-Hf isotopes /
- Dabie orogen
-
图 1 大别造山带北淮阳构造带火山岩分布及构造格架
Fig. 1. Tectonic sketch of the northern Huaiyang belt showing the distribution of volcanic rocks
图 7 陈棚组流纹岩稀土元素配分图(a)和微量元素原始地幔标准化蛛网图(b)
图a标准化值据Boynton(1984);图b标准化值据Sun and Mcdonough(1989)
Fig. 7. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace elements diagram (b) for the rhyolite from the Chenpeng Formation
图 8 陈棚组流纹岩和英安岩全岩Sr-Nd同位素组成
底图据John et al.(1999)、赵子福和郑永飞(2009)、陈伟等(2013)修改.数据来源:华北地块下地壳、中上地壳和扬子地块下地壳范围引自John et al.(1999);中生代花岗岩范围赵子福和郑永飞(2009).陈棚组流纹岩数据为本文实测,英安岩数据杨梅珍等(2012)
Fig. 8. εNd(t) vs. (87Sr/86Sr)i diagram for the rhyolite from the Chenpeng Formation
图 10 北淮阳晚中生代火山岩带不同地区火山岩形成时代
年龄数据同表 5
Fig. 10. Ages of the volcanic rocks in different tectonic units of the northern Huaiyang area, Dabie orogenic belt
表 1 陈棚组火山岩LA-ICP-MS锆石U-Pb同位素测定结果
Table 1. LA-ICP-MS zircon isotopic U-Pb data for the volcanic rocks from the Chenpeng Formation
样品 元素含量(10-6) 同位素比值 年龄(Ma) Pb Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ HCS-20:赋矿岩屑晶屑熔结凝灰岩 HCS-20@01 43 527 550 0.96 0.052 8 0.004 4 0.149 1 0.014 0 0.020 0 0.000 5 318 208 141 12 128 3 HCS-20@02 130 1 240 2 478 0.50 0.048 6 0.002 4 0.144 2 0.007 1 0.021 6 0.000 4 127 105 137 6 138 2 HCS-20@03 53 373 1 834 0.20 0.052 2 0.003 4 0.150 5 0.009 1 0.021 1 0.000 4 292 137 142 8 135 2 HCS-20@04 197 2 082 2 847 0.73 0.052 6 0.002 2 0.155 4 0.006 5 0.021 2 0.000 3 310 92 147 6 135 2 HCS-20@05 195 1 876 3 358 0.56 0.052 4 0.002 1 0.152 8 0.006 2 0.020 9 0.000 3 303 90 144 5 133 2 HCS-20@06 171 1 716 3 413 0.50 0.047 3 0.002 0 0.136 0 0.005 9 0.020 9 0.000 4 66 88 129 5 133 2 HCS-20@07 159 1 841 1 718 1.07 0.053 2 0.002 7 0.151 7 0.007 7 0.020 7 0.000 3 338 112 143 7 132 2 HCS-20@08 195 1 821 2 937 0.62 0.050 5 0.003 7 0.145 2 0.010 3 0.020 9 0.000 3 217 166 138 9 133 2 HCS-20@09 339 2 881 4 320 0.67 0.052 4 0.003 7 0.152 4 0.010 4 0.021 1 0.000 3 304 161 144 9 134 2 HCS-20@10 22 65 1 072 0.06 0.053 8 0.004 2 0.155 3 0.011 4 0.021 2 0.000 4 361 165 147 10 135 2 HCS-20@11 221 1 228 3 188 0.39 0.047 7 0.004 0 0.134 5 0.011 0 0.020 5 0.000 3 83 186 128 10 131 2 HCS-20@12 269 1 439 4 267 0.34 0.061 3 0.008 0 0.173 2 0.022 5 0.020 5 0.000 3 649 294 162 20 131 2 HCS-20@13 768 541 1 193 0.45 0.127 0 0.003 0 5.009 4 0.167 6 0.286 0 0.007 8 2 057 42 1 821 28 1 621 39 HCS-20@14 43 96 129 0.75 0.067 9 0.004 5 0.991 8 0.069 7 0.105 4 0.002 8 866 137 700 36 646 17 HCS-20@15 686 2 113 2 191 0.96 0.072 1 0.002 4 0.601 6 0.029 5 0.058 9 0.001 9 991 67 478 19 369 11 HCS-20@16 56 437 1 372 0.32 0.049 9 0.003 4 0.177 2 0.013 1 0.025 5 0.000 6 191 153 166 11 163 4 D001-3:流纹岩 D001-3@01 110 924 751 1.23 0.049 5 0.001 8 0.143 9 0.005 1 0.021 0 0.000 2 169 83 136 5 134 2 D001-3@02 423 3 691 1 849 2.00 0.049 3 0.001 4 0.140 9 0.003 9 0.020 7 0.000 2 161 64 134 3 132 1 D001-3@03 118 917 663 1.38 0.049 2 0.001 8 0.141 3 0.005 1 0.020 9 0.000 3 167 82 134 5 133 2 D001-3@04 362 3 159 1 685 1.88 0.049 4 0.001 3 0.142 2 0.004 0 0.020 8 0.000 2 165 63 135 4 132 1 D001-3@05 45 378 232 1.63 0.047 3 0.003 3 0.133 7 0.008 6 0.020 5 0.000 4 65 156 127 8 131 3 D001-3@06 233 1 937 1 309 1.48 0.049 1 0.001 5 0.139 4 0.004 5 0.020 5 0.000 2 154 77 132 4 131 2 D001-3@07 224 1 871 1 191 1.57 0.047 3 0.001 8 0.134 5 0.005 0 0.020 6 0.000 3 61 89 128 4 132 2 D001-3@08 280 2 375 1 471 1.61 0.049 3 0.001 4 0.142 3 0.004 1 0.020 9 0.000 2 161 64 135 4 133 1 D001-3@09 51 417 386 1.08 0.047 2 0.002 2 0.135 0 0.005 7 0.020 9 0.000 3 58 107 129 5 134 2 D001-3@10 242 1 884 1 231 1.53 0.049 9 0.001 4 0.144 1 0.004 2 0.020 9 0.000 3 191 65 137 4 133 2 D001-3@11 286 2 526 1 574 1.60 0.049 6 0.001 5 0.143 1 0.004 3 0.020 9 0.000 2 176 77 136 4 133 1 D001-3@12 160 1 332 927 1.44 0.048 7 0.002 1 0.140 3 0.006 0 0.020 9 0.000 3 132 99 133 5 133 2 D001-3@13 225 1 949 1 224 1.59 0.047 7 0.001 3 0.138 1 0.003 8 0.021 0 0.000 2 83 65 131 3 134 1 D001-3@14 52 440 283 1.56 0.049 6 0.003 6 0.140 6 0.009 5 0.020 9 0.000 4 176 168 134 8 133 2 D001-3@15 520 4 123 1 999 2.06 0.053 0 0.003 6 0.154 2 0.010 3 0.021 1 0.000 2 330 157 146 9 135 1 表 2 陈棚组流纹岩主量元素(%)和微量、稀土元素(10-6)分析结果
Table 2. Major elements (%), trace elements (10-6) and rare earth elements (10-6) of the rhyolite from the Chenpeng Formation
样号 D001-1 D001-2 D001-3 D001-4 D004-2 岩性 流纹岩 流纹岩 流纹岩 流纹岩 流纹岩 SiO2 76.67 76.16 77.38 77.17 73.83 TiO2 0.11 0.14 0.12 0.12 0.06 Al2O3 12.44 12.83 12.32 12.34 13.86 Fe2O3 0.72 0.78 0.63 0.55 0.91 FeO 0.63 0.58 0.52 0.55 0.58 MnO 0.05 0.04 0.04 0.03 0.03 MgO 0.15 0.16 0.12 0.12 0.22 CaO 0.36 0.30 0.28 0.28 0.10 Na2O 3.04 3.50 3.38 3.34 0.22 K2O 5.05 5.10 4.65 4.77 9.31 P2O5 0.02 0.02 0.02 0.03 0.03 Total 99.25 99.61 99.46 99.29 99.13 LOI 0.48 0.11 0.24 0.41 0.55 A/NK 1.19 1.14 1.16 1.16 1.33 A/CNK 1.12 1.09 1.11 1.11 1.31 La 27.80 34.50 20.10 20.30 4.08 Ce 45.50 56.30 37.10 35.80 8.27 Pr 4.02 5.37 3.00 3.01 1.07 Nd 9.34 13.50 7.05 7.12 3.16 Sm 1.38 2.13 1.05 1.05 0.63 Eu 0.14 0.23 0.13 0.13 0.15 Gd 1.22 1.69 0.94 0.94 0.43 Tb 0.18 0.26 0.15 0.15 0.08 Dy 1.10 1.55 0.93 0.96 0.44 Ho 0.24 0.31 0.21 0.22 0.09 Er 0.78 0.98 0.67 0.72 0.30 Tm 0.15 0.17 0.13 0.13 0.06 Yb 1.12 1.24 0.98 1.02 0.54 Lu 0.17 0.17 0.14 0.15 0.09 Y 7.48 8.99 6.35 6.59 3.59 Li 4.00 2.94 2.96 9.86 15.60 Cr 13.20 4.89 4.58 15.30 4.36 Co 1.54 2.05 1.08 <1 1.20 Ni 4.46 4.85 2.98 3.13 4.53 Ga 15.20 15.90 15.10 16.00 36.60 Nb 15.40 15.50 14.20 15.30 12.80 Mo 1.20 0.77 0.39 0.48 0.44 Ta 1.34 1.44 1.26 1.33 1.18 Th 8.66 11.00 8.67 22.00 32.30 U 3.46 4.96 2.63 3.11 14.90 Cl 53.80 58.70 80.40 45.60 82.00 Ba 75.20 157.00 189.00 186.00 354.00 Hf 4.46 4.67 4.23 4.47 16.50 Pb 36.70 42.60 92.10 113.00 69.00 Rb 176.00 156.00 141.00 159.00 570.00 Sr 42.60 113.00 53.30 52.20 22.60 Zr 85.40 99.60 80.30 86.60 152.00 Cs 1.74 1.45 1.04 1.09 11.50 As 1.01 0.78 0.70 0.78 3.66 Sb 0.17 0.10 0.16 0.10 0.32 Bi 0.07 0.05 0.23 0.20 0.25 Be 3.37 1.48 1.86 2.06 2.68 V 2.51 4.51 4.18 3.66 6.41 Sc 3.66 4.61 4.53 4.17 4.92 Cu 8.46 8.29 9.48 5.79 10.20 Zn 11.20 11.00 113.00 99.60 54.30 Au 0.46 0.59 0.51 0.56 11.90 Ag 0.09 0.07 0.24 0.13 56.00 F 337.00 439.00 210.00 634.00 892.00 ∑REE 93.14 118.40 72.58 71.70 19.39 (La/Yb)N 17.80 19.96 14.71 14.28 5.42 δEu 0.33 0.37 0.40 0.40 0.88 δCe 1.06 1.01 1.17 1.12 0.97 表 3 陈棚组流纹岩全岩Sr-Nd同位素分析结果
Table 3. Whole rock Sr-Nd isotopic data of the rhyolite from the Chenpeng Formation
样品 岩石
类型年龄
(Ma)Rb
(10-6)Sr
(10-6)87Rb/
86Sr87Sr/
86SrISr Sm
(10-6)Nd
(10-6)147Sm/
144Nd143Nd/
144Nd(143Nd/
144Nd)iεNd(t) TDM2
(Ga)D001-1 流纹岩 133 184.4 45.3 0.730 47 11.770 0.708 220 1.218 9.348 0.078 8 0.511 586 0.511 517 -18.5 2.43 D001-3 流纹岩 133 158.4 57.2 0.723 58 7.995 0.708 466 1.244 10.010 0.075 2 0.511 614 0.511 549 -17.9 2.38 D001-4 流纹岩 133 161.2 57.6 0.724 01 8.077 0.708 741 0.914 6.905 0.080 3 0.511 656 0.511 586 -17.2 2.32 注:计算过程所用参数(147Sm/143Nd)CHUR=0.196 7;(143Nd/144Nd)CHUR=0.512 638;(147Sm/143Nd)DM=0.213 7;(143Nd/144Nd)DM=0.513 15. 表 4 陈棚组流纹岩的锆石Lu-Hf同位素LA-MC-ICP-MS原位分析结果
Table 4. LA-MC-ICP-MS zircon Lu-Hf isotopic data for the rhyolite from the Chenpeng Formation
样品点 年龄(Ma) 176Lu/177Hf 176Yb/177Hf 176Hf/177Hf 1σ εHf(0) 1σ εHf(t) 1σ TDM2(Ga) fLu/Hf D001-3@01 134 0.001 890 0.092 306 0.282 055 0.000 011 -25.4 0.7 -22.6 0.7 2.30 -0.94 D001-3@02 132 0.002 035 0.094 551 0.282 030 0.000 018 -26.2 0.8 -23.5 0.8 2.35 -0.94 D001-3@04 132 0.002 192 0.103 828 0.282 049 0.000 019 -25.6 0.8 -22.9 0.8 2.31 -0.93 D001-3@05 131 0.001 748 0.080 929 0.282 063 0.000 012 -25.1 0.7 -22.4 0.7 2.29 -0.95 D001-3@08 133 0.002 032 0.103 773 0.282 043 0.000 013 -25.8 0.7 -23.0 0.7 2.32 -0.94 D001-3@09 134 0.001 034 0.054 393 0.282 060 0.000 013 -25.2 0.7 -22.3 0.7 2.29 -0.97 D001-3@10 133 0.002 037 0.101 663 0.282 046 0.000 016 -25.7 0.8 -23.0 0.8 2.32 -0.94 D001-3@12 133 0.003 170 0.118 901 0.282 018 0.000 025 -26.7 1.0 -24.0 1.0 2.38 -0.90 D001-3@13 134 0.002 736 0.113 463 0.281 957 0.000 025 -28.8 1.0 -26.1 1.0 2.49 -0.92 D001-3@14 133 0.002 100 0.105 706 0.281 982 0.000 015 -27.9 0.7 -25.2 0.8 2.44 -0.94 注:测试点序号与表 1测年点序号对应. 表 5 大别造山带北淮阳地区白垩纪火山岩年龄
Table 5. Ages of the Cretaceous volcanic rocks in the northern Huaiyang belt, Dabie orogenic belt
组名 岩性 年龄值(Ma) 测试方法 数据来源 陈棚组 石英安山岩 133.4±1.5 LA-ICP-MS锆石U-Pb 杨梅珍等(2012) 熔结凝灰岩 133.1±1.5 LA-ICP-MS锆石U-Pb 本文 流纹岩 133.1±0.8 LA-ICP-MS锆石U-Pb 本文 英安斑岩 133.2±1.7 LA-ICP-MS锆石U-Pb 笔者实测,未发表 金刚台 粗安岩 129±2.0 SHRIMP锆石U-Pb 黄丹峰等(2010) 正长斑岩 129.2±0.7 LA-ICP-MS锆石U-Pb 黄皓和薛怀民(2012) 熔结凝灰岩 128.8±0.7 LA-ICP-MS锆石U-Pb 黄皓和薛怀民(2012) 粗面安山岩 127.6±0.5 LA-ICP-MS锆石U-Pb 黄皓和薛怀民(2012) 流纹岩 127±3.6 SHRIMP锆石U-Pb 黄丹峰等(2010) 流纹英安岩 127.5±0.6 LA-ICP-MS锆石U-Pb 李鑫浩等(2015) 英安岩 124.8±2.3 LA-ICP-MS锆石U-Pb 李鑫浩等(2015) 安山岩 123.3±0.7 LA-ICP-MS锆石U-Pb 李鑫浩等(2015) 毛坦厂组 粗面质熔结凝灰岩 130.8±1.8 LA-ICP-MS锆石U-Pb 张定源等(2014) 安山岩 126.7±1.4 LA-ICP-MS锆石U-Pb 朱江等(2017) 晓天组 粗面岩 126.9±1.7 LA-ICP-MS锆石U-Pb 张定源等(2014) 望母山组 粗面岩 126.7±1.4 LA-ICP-MS锆石U-Pb 张定源等(2014) -
Blichert-Toft, J., Chauvel, C., Albarède, F., 1997.Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS.Contributions to Mineralogy and Petrology, 127(3):248-260. https://doi.org/10.1007/s004100050278 Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteoritestudies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. Chappell, B.W., 1999.Aluminium Saturation in I-And S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 Chen, L., Ma, C.Q., Zhang, J.Y., et al., 2012.The First Geological Map of Intrusive Rocks in Dabie Orogenic Belt and Its Adjacent Areas (1:500 000) and Its Explanatory Notes.Geological Bulletin of China, 31(1):13-19 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=358d1cf6ad00ee4ad12fe8804801181a&encoded=0&v=paper_preview&mkt=zh-cn Chen, W., Xu, Z.W., Li, H.C., et al., 2013.Petrogenesis and Origin of the Xinxian Granitic Batholith in Henan Province and Its Implication for the Tectonic Evolution of the Western Dabie Area.Acta Geologica Sinica, 87(10):1510-1524 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=01df0498bea99361631d33a779f16dd1&encoded=0&v=paper_preview&mkt=zh-cn Du, J.G., Zhang, P., 1999.Mesozoic Volcanic Rocks in Northern Part of Dabie Orogenic Belt.Geoscience, 13(1):57-65 (in Chinese with English abstract). doi: 10.1007/s11430-007-2073-6 Feng, Y.D., 2008.Structure and Facies of the Volcanic Rocks in the Shangtianti Area of the Northern Dabie Mountains.Geology and Mineral Resources of South China, 24(3):79-84 https://doi.org/10.3969/j.issn.1007-3701.2008.03.013 (in Chinese with English abstract). Gao, S., Zhang, B.R., Jin, Z.M., et al., 1999.Delamination of the Lower Crust of the Qinling-Dabie Orogenic Belt.Science in China (Series D), 29 (6):532-541 (in Chinese). http://cn.bing.com/academic/profile?id=bd9d97adee9ae45e3c84b21b46b5caa7&encoded=0&v=paper_preview&mkt=zh-cn Han, Y.F., Li, Y.H., Lei, D.J., 2013.Metallogenic Series Related to Mesozoic Volcanic Rocks in Shangtianti-Huangchengshan Area, North Foot of Dabie Mountain.Geology and Mineral Resources of South China, 26(2):29-35 (in Chinese with English abstract). Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008.Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas.Journal of Analytical Atomic Spectrometry, 23(8):1093. https://doi.org/10.1039/b804760j Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012a.A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis.Spectrochimica Acta Part B:Atomic Spectroscopy, 78:50-57. https://doi.org/10.1016/j.sab.2012.09.007 Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012b.Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. https://doi.org/10.1039/c2ja30078h Huang, D.F., Luo, Z.H., Lu, X.X., 2010.Zircon SHRIMP U-Pb Age and Tectonic Implications of Jingangtai Volcanic Rocks in North Margin of Dabie Mountains.Earth Science Frontiers, 17(1):1-10 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=936626bb1353264afc7e8d134b66dc91&encoded=0&v=paper_preview&mkt=zh-cn Huang, F., Li, S.G., Dong, F., et al., 2008.High-Mg Adakitic Rocks in the Dabie Orogen, Central China:Implications for Foundering Mechanism of Lower Continental Crust.Chemical Geology, 255(1/2):1-13. https://doi.org/10.1016/j.chemgeo.2008.02.014 Huang, H., Xue, H.M., 2012.LA-ICP-MS Zircon U-Pb Ages of Early Cretaceous Volcanic Rocks from Jingangtai Formation in Beihuaiyang Belt on the Northern Margin of the Dabie Orogen and Their Geological Implications.Acta Petrologica et Mineralogica, 31(3):371-381 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=01bb5c9cc67a5028d77df6e5503570b1&encoded=0&v=paper_preview&mkt=zh-cn Huang, J., Zheng, Y.F., Zhao, Z.F., et al., 2006.Melting of Subducted Continent:Element and Isotopic Evidence for a Genetic Relationship between Neoproterozoic and Mesozoic Granitoids in the Sulu Orogen.Chemical Geology, 229(4):227-256. https://doi.org/10.1016/j.chemgeo.2005.11.007 Jahn, B., 1999.Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China.Chemical Geology, 157(1/2):119-146. https://doi.org/10.1016/s0009-2541(98)00197-1 Jiang, S.H., Nie, F.J., Zhang, Y., et al., 2004.The Latest Advances in the Research of Epithermal Deposits.Earth Science Frontiers, 11(2):401-411 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=f2fdaddae6a616fd39b776343a0a6078&encoded=0&v=paper_preview&mkt=zh-cn Kojima, S., 1999.Some Aspects Regarding the Tectonic Setting of High-and Low-Sulfidation Epithermal Gold Deposits of Chile.Resource Geology, 49(3):175-181. https://doi.org/10.1111/j.1751-3928.1999.tb00044.x Li, H.M., Chen, Y.C., Ye, H.S., et al., 2008.Mo, (W), Au, Ag, Pb, Zn Minerogenetic Series Related to Mesozoic Magmatic Activities in the East Qinling-Dabie Mountains.Acta Geoscientica Sinica, 82(11):1468-1477 https://doi.org/10.3321/j.issn:0001-5717.2008.11.002 (in Chinese with English abstract). Li, H.M., Wang, D.H., Zhang, G., et al., 2007.SHRIMP U-Pb Age of Zircons from Granitic Porphyry in the Baishipo Silver Deposit, Henan and Its Geological Significance.Acta Geologica Sinica, 81(6):808-813 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a4ffda5686f9366f2537482f7eba3838&encoded=0&v=paper_preview&mkt=zh-cn Li, S. Y., 2004. Mesozoic Sedimentology, Basin Analysis and Tectonic Evolution in the North Margin of the Dabie Orogenic Belt, China (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract). Li, X.H., Gao, X.N., Zhang, Z.H., et al., 2015.LA-ICP-MS Zircon U-Pb Dating of Volcanic Rocks from the Jingangtai Formation and Stratigraphic Comparison.Geotectonica et Metallogenia, 39(4):718-728. https://doi.org/10.16539/j.ddgzyckx.2015.04.014 (in Chinese with English abstract). Li, Z.N., Wu, R.S., Lin, B.Q., et al., 2004.Gold Deposits from the Volcanic Rocks Area in China.Geological Publishing House, Beijing (in Chinese). Liew, T.C, Hofmann, A.W., 1988.Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of central Europe:Indications from a Nd and Sr Isotopic Study.Contributions to Mineralogy & Petrology, 98(2):129-138. http://cn.bing.com/academic/profile?id=9d381bb0c67a774c4a100a7fc7b0281b&encoded=0&v=paper_preview&mkt=zh-cn Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1/2):537-571. https://doi.org/10.1093/petrology/egp082 Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1/2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Execl.No.4.Berkeley Geochronology Center Special Publication, Berkeley. Qiao, G.S., 1988.Normalization of Isotopic Dilution Analysis-A New Program for Isotope Mass Spectrometric Analysis.Science China:Mathematics, 31:1263. http://cn.bing.com/academic/profile?id=c7807aa87c28227d5829ffc5c1070559&encoded=0&v=paper_preview&mkt=zh-cn Qiu, J.S., Xu, X.S., Jiang, S.Y., 2003.Deep Subduction of Crust Materials and Its Implication to the Genesis of Potash-Rich Volcanic Rocks.Earth Science Frontiers, 10(3):191-200 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=029866389218ab0290de3c5cfd55a4c6&encoded=0&v=paper_preview&mkt=zh-cn Ren, A.Q., 2006.Geochemical Characteristics and Metallogenic Model of the Huangchengshan Silver Deposit in Henan Province.Geophysical and Geochemical Exploration, 30(2):133-136 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=6e86e75e97bad2e92701d6b1561f9f77&encoded=0&v=paper_preview&mkt=zh-cn Ren, A.Q., 2013.Mineralization Characteristics and Genesis of Huangchengshan Silver Deposit in Luoshan County, Henan Province.Geology and Mineral Resources of South China, 29(3):217-226 (in Chinese with English abstract). Ren, J.S., Chen, T.Y., Niu, B.G., et al., 1992.Tectonic Evolution of Continental Lithosphere and Ore-Forming beneath East China and Its Adjacent Areas.Science Press, Beijing (in Chinese). Ren, Z., Zhou, T.F., Yuan, F., et al., 2014.The Stages of Magmatic System in Shapinggou Molybdenum Deposit District, Anhui Province:Evidence from Geochronology and Geochemistry.Acta Petrologica Sinica, 30 (4):1097-1116 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=85ee3ae7a4bd647b9efbe0fa2c169f97&encoded=0&v=paper_preview&mkt=zh-cn Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Wang, Q., Wyman, D.A., Xu, J.F., et al., 2006.Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China):Implications for Geodynamics and Cu-Au Mineralization.Lithos, 89(3/4):424-446. https://doi.org/10.1016/j.lithos.2005.12.010 Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995.Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses.Geostandards and Geoanalytical Research, 19(1):1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x Williams-Jones, A.E., Heinrich, C.A., 2005.100th Anniversary Special Paper:Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits.Economic Geology, 100(7):1287-1312. https://doi.org/10.2113/100.7.1287 Wu, H.Q., Jiang, L.L., Dai, S.Q., 2002.Collation of the Mesozoic Sequences in the Huoshan-Maotanchang Area of Anhui.Journal of Stratigraphy, 26(1):39-45 (in Chinese with English abstract). Wu, Y.B., Zheng, Y.F., 2013.Tectonic Evolution of a Composite Collision Orogen:An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China.Gondwana Research, 23(4):1402-1428. https://doi.org/10.13039/501100002855 Xiao, C.H., 1991.Discuss on genesis of Huang Chengshan Silver Deposit.Henan Geology, 9(3):6-9 (in Chinese). Xu, G.F., Shao, J.L., Zhang, H.Z., et al., 1989.On the Study of Prospecting Typomorphosm of Minerals from Huang Chengshan Silver Deposit.Modern Geology, 3(4):432-437 (in Chinese with English abstract). Xu, H.J., Ma, C.Q., Ye, K., 2007.Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen, Eastern China:SHRIMP Zircon U-Pb Dating and Geochemistry.Chemical Geology, 240(3/4):238-259. https://doi.org/10.1016/j.chemgeo.2007.02.018 Xu, H.J., Ye, K., Ma, C.Q., 2008.Early Cretaceous Granitoids in the North Dabie and Their Tectonic Implications:Sr-Nd and Zircon Hf Isotopic Evidences.Acta Petrologica Sinica, 24(1):87-103 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=65075a26c1e375a466458222b66e3306&encoded=0&v=paper_preview&mkt=zh-cn Yang, M.Z., Zeng, J.N., Ren, A.Q., et al., 2011.Identifying Characteristics of High-Sulfidation Epithermal Huangcheng Shan Silver Deposit in Henan Province and Their Ore-Search Implictaion.Geology and Exploration, 47(6):1059-1066 (in Chinese with English abstract). Yang, M.Z., Zeng, J.N., Ren, A.Q., et al., 2012.Geochemistry and Zircon U-Pb Geochronology of Mesozoic Shuangqiao Volcanic Rocks in the Western Segment of Northern Dabie Mountain.Acta Petrologica et Mineralogica, 31(2):133-144. https://doi.org/10.3969/j.issn.1000-6524.2012.02.002 (in Chinese with English abstract). Yang, Z.L., Shen, J.L., Shen, W.Z., et al., 1999.Isotopic Chronology of Mesozoic Volcanic Intrusive Rocks in Beihuaiyang.Geological Review, 45(Suppl.):674-680 (in Chinese with English abstract). Zhang, C., Ma, C.Q., 2008.Large-Scale Late Mesozoic Magmatism in the Dabie Mountain:Constraints from Zircon U-Pb Dating and Hf Isotopes.Journal of Mineralogy and Petrology, 28(4):71-79 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e5518e41b63499b2e69b098d071936d0&encoded=0&v=paper_preview&mkt=zh-cn Zhang, D.Y., Wang, A.G., Zhang, X.D., et al., 2014.Geological Characteristics and Ore-Forming Conditions of Dongxi-Nanguanling Gold Deposit, Huoshan County, Anhui Province.Resources Survey and Environment, 35(3):202-210 (in Chinese with English abstract). Zhang, G.W., Zhang, B.R., Yuan, X.C., et al., 2001.Qinling Orogenic Belt and Continent Dynamics.Science Press, Beijing (in Chinese). Zhang, P., 1998.The Mesozoic Volcanic Activities and Their Tectonic Settings in the North Huaiyang Area.Geology of Anhui, 8(3):12-17 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=887b0135e7838f5d0f729e9e71732b2c&encoded=0&v=paper_preview&mkt=zh-cn Zhang, S.B., Zheng, Y.F., Zhao, Z.F., et al., 2008.Neoproterozoic Anatexis of Archean Lithosphere:Geochemical Evidence from Felsic to Mafic Intrusions at Xiaofeng in the Yangtze Gorge, South China.Precambrian Research, 163(3/4):210-238. https://doi.org/10.1016/j.precamres.2007.12.003 Zhang, S.B., Zheng, Y.F., Zhao, Z.F., et al., 2009.Origin of TTG-Like Rocks from Anatexis of Ancient Lower Crust:Geochemical Evidence from Neoproterozoic Granitoids in South China.Lithos, 113(3/4):347-368. https://doi.org/10.1016/j.lithos.2009.04.024 Zhao, X.F., Li, J.W., Ma, C.Q., et al., 2007.Geochronology and Geochemistry of the Gubei Granodiorite, North Huaiyang:Implications for Mesozoic Tectonic Transition of the Dabie Orogen.Acta Petrologica Sinica, 23(6):1392-1402 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d853cbab448873b6dad4a0e698f82d63&encoded=0&v=paper_preview&mkt=zh-cn Zhao, Z.F., Zheng, Y.F., 2009.Remelting of Subducted Continental Lithosphere:Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt.Science in China (Series D), 39(7):888-909. https://doi.org/10.1007/s11430-009-0134-8 Zhao, Z.F., Zheng, Y.F., Wei, C.S., et al., 2007.Post-Collisional Granitoids from the Dabie Orogen in China:Zircon U-Pb Age, Element and O Isotope Evidence for Recycling of Subducted Continental Crust.Lithos, 93(3/4):248-272. https://doi.org/10.1016/j.lithos.2006.03.067 Zhong, Z.Q., Suo, S.T., Zhang, H.F., et al., 2001.Major Constituents and Texture of the Tongbai-Dabie collisional orogenic Belt.Earth Science, 26(6):560-567 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2001.06.002 Zhu, J., Peng, S.G., Peng, L.H., et al., 2017.Geology, Fluid Inclusion Characteristics, and U-Pb Age of the Dongxi Epithermal Gold Deposit, Anhui Province.Acta Petrologica et Mineralogica, 36(5):593-604. https://doi.org/10.3969/j.issn.1000-6524.2017.05.001 (in Chinese with English abstract). 陈玲, 马昌前, 张金阳, 等, 2012.首编大别造山带侵入岩地质图(1:50万)及其说明.地质通报, 31(1):13-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201201002 陈伟, 徐兆文, 李红超, 等, 2013.河南新县花岗岩岩基的岩石成因、来源及对西大别构造演化的启示.地质学报, 87(10):1510-1524. http://www.cqvip.com/QK/95080X/201310/47643217.html 杜建国, 张鹏, 1999.大别造山带北部的中生代火山岩.现代地质, 13(1):57-65. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201004002.htm 丰耀东, 2008.大别山北坡上天梯一带火山岩相构造.华南地质与矿产, 24(3):79-84. http://www.cqvip.com/QK/91196A/200803/28303279.html 高山, 张本仁, 金振民, 等, 1999.秦岭-大别造山带下地壳拆沉作用.中国科学(D辑), 29(6):532-541. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgkx-cd199906008 韩燕峰, 李悦辉, 雷大景, 2010.大别山北麓上天梯-皇城山一带中生代火山岩成矿系列研究.华南地质与矿产, 26(2):29-35. http://d.wanfangdata.com.cn/Periodical/hndzykc201002005 黄丹峰, 罗照华, 卢欣祥, 2010.大别山北缘金刚台火山岩SHRIMP锆石U-Pb年龄及构造意义.地学前缘, 17(1):1-10. http://www.cnki.com.cn/Article/CJFDTotal-DZHB201302010.htm 黄皓, 薛怀民, 2012.北淮阳早白垩世金刚台组火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义.岩石矿物学杂志, 31(3):371-381. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200211012.htm 江思宏, 聂凤军, 张义, 等, 2004.浅成低温热液型金矿床研究最新进展.地学前缘, 11(2):401-411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200402010 李厚民, 陈毓川, 叶会寿, 等, 2008.东秦岭-大别地区中生代与岩浆活动有关钼(钨)金银铅锌矿床成矿系列.地质学报, 82(11):1468-1477. doi: 10.3321/j.issn:0001-5717.2008.11.002 李厚民, 王登红, 张冠, 等, 2007, 河南白石坡银矿区花岗斑岩中锆石的SHRIMP U-Pb年龄及其地质意义.地质学报, 81(6):808-813. https://www.wenkuxiazai.com/doc/935d8374c77da26924c5b063.html 李双应, 2004. 大别造山带北缘中生代沉积学、盆地分析和构造演化(博士学位论文). 合肥: 合肥工业大学. 李鑫浩, 高昕宇, 张忠慧, 等, 2015.北淮阳早白垩世金刚台组火山岩LA-ICP-MS锆石U-Pb年龄及地层对比.大地构造与成矿学, 39(4):718-728. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197702002.htm 李兆鼐, 毋瑞身, 林宝钦, 等, 2004.中国火山岩地区金矿床.北京:地质出版社. 邱检生, 徐夕生, 蒋少涌, 2003.地壳深俯冲与富钾火山岩成因.地学前缘, 10(3):191-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200303018 任爱琴, 2006.河南省皇城山银矿床地球化学特征及成矿模式.物探与化探, 30(2):133-136. http://www.cnki.com.cn/Article/CJFDTOTAL-SCJZ200905036.htm 任爱琴, 2013.河南省罗山县皇城山银矿床矿化特征和成矿作用.华南地质与矿产, 29(3):217-226. http://www.cnki.com.cn/Article/CJFDTOTAL-HNDD199103001.htm 任纪舜, 陈廷愚, 牛宝贵, 等, 1992.中国东部及邻区大陆岩石圈的构造演化与成矿.北京:科学出版社. 任志, 周涛发, 袁峰, 等, 2014.安徽沙坪沟钼矿区中酸性侵入岩期次研究——年代学及岩石化学约束.岩石学报, 30(4):1097-1116. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20140416&journal_id=ysxb&year_id=2014 吴海权, 江来利, 戴圣潜, 2002.安徽霍山-毛坦厂地区中生代地层层序的厘定.地层学杂志, 26(1):39-45. http://xueshu.baidu.com/s?wd=paperuri%3A%287aac5407de9223235f95c579fd30c482%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.cqvip.com%2FMain%2FDetail.aspx%3Fid%3D5879568&ie=utf-8&sc_us=4232809681808819068 肖从辉, 1991.皇城山银矿床成因探讨.河南地质, 9(3):6-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201204012 徐国风, 邵洁涟, 张慧珠, 等, 1989.皇城山银矿床矿物找矿标型性研究.现代地质, 3(4):432-437. http://www.oalib.com/paper/4321802 续海金, 叶凯, 马昌前, 2008.北大别早白垩纪花岗岩类的Sm-Nd和锆石Hf同位素及其构造意义.岩石学报, 24(1):87-103. http://www.oalib.com/paper/1473338 杨梅珍, 曾键年, 任爱琴, 等, 2011.河南省皇城山高硫化型浅成低温热液型银矿床识别特征及其找矿意义.地质与勘探, 47(6):1059-1066. http://xueshu.baidu.com/s?wd=paperuri%3A%28a5d497ea2a9471de1c81db1eab3727fd%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.cqvip.com%2FQK%2F93079X%2F201106%2F39965772.html&ie=utf-8&sc_us=13379476268868062108 杨梅珍, 曾键年, 任爱琴, 等, 2012.大别山北缘西段双桥中生代火山岩地球化学及锆石U-Pb同位素年代学.岩石矿物学杂志, 31(2):133-144. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1096.htm 杨祝良, 沈加林, 沈渭洲, 等, 1999.北淮阳中生代火山-侵入岩同位素年代学研究.地质论评, 45(增刊):674-680. http://www.cqvip.com/QK/91067X/1999S1/4000770824.html 张超, 马昌前, 2008.大别山晚中生代巨量岩浆活动的启动:花岗岩锆石U-Pb年龄和Hf同位素制约.矿物岩石, 28(4):71-79. http://www.oalib.com/paper/4267789 张定源, 王爱国, 张晓东, 等, 2014.安徽省霍山县东溪-南关岭金矿地质特征与成矿条件.资源调查与环境, 35(3):202-210. https://www.wenkuxiazai.com/doc/32abcc5ea76e58fafab00396-3.html 张国伟, 张本仁, 袁学诚, 等, 2001.秦岭造山带与大陆动力学.北京:科学出版社. 张鹏, 1998.北淮阳地区中生代火山活动及其构造背景.安徽地质, 8(3):12-17. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1134.htm 赵新福, 李建威, 马昌前, 等, 2007.北淮阳古碑花岗闪长岩侵位时代及地球化学特征:对大别山中生代构造体制转换的启示.岩石学报, 23(6):1392-1402. http://xueshu.baidu.com/s?wd=paperuri%3A%28881d52004037c6df71925119adf5c821%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dysxb200706014%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=17790455743378872733 赵子福, 郑永飞, 2009.俯冲大陆岩石圈重熔:大别-苏鲁造山带中生代岩浆岩成因.中国科学(D辑), 39(7):888-909. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200904001094.htm 钟增球, 索书田, 张宏飞, 等, 2001.桐柏-大别碰撞造山带的基本组成与结构.地球科学, 26(6):560-567. https://doi.org/10.3321/j.issn.1000-2383.2001.06.002 朱江, 彭三国, 彭练红, 等, 2017.安徽东溪浅成低温热液型金矿床成矿流体特征和形成时代-流体包裹体和赋矿安山岩U-Pb年代学约束.岩石矿物学杂志, 36(5):593-604. http://xueshu.baidu.com/s?wd=paperuri%3A%284e12a604a526ca9837910a10ea7fe983%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dyskw201705002%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=14179250838098323059