• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原中-南部新生代构造演化的热年代学制约

    朱晓青 郭兴伟 张训华 侯方辉 温珍河 耿威 王忠蕾 孙建伟 祁江豪

    朱晓青, 郭兴伟, 张训华, 侯方辉, 温珍河, 耿威, 王忠蕾, 孙建伟, 祁江豪, 2018. 青藏高原中-南部新生代构造演化的热年代学制约. 地球科学, 43(6): 1903-1920. doi: 10.3799/dqkx.2018.532
    引用本文: 朱晓青, 郭兴伟, 张训华, 侯方辉, 温珍河, 耿威, 王忠蕾, 孙建伟, 祁江豪, 2018. 青藏高原中-南部新生代构造演化的热年代学制约. 地球科学, 43(6): 1903-1920. doi: 10.3799/dqkx.2018.532
    Zhu Xiaoqing, Guo Xingwei, Zhang Xunhua, Hou Fanghui, Wen Zhenhe, Geng Wei, Wang Zhonglei, Sun Jianwei, Qi Jianghao, 2018. Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau. Earth Science, 43(6): 1903-1920. doi: 10.3799/dqkx.2018.532
    Citation: Zhu Xiaoqing, Guo Xingwei, Zhang Xunhua, Hou Fanghui, Wen Zhenhe, Geng Wei, Wang Zhonglei, Sun Jianwei, Qi Jianghao, 2018. Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau. Earth Science, 43(6): 1903-1920. doi: 10.3799/dqkx.2018.532

    青藏高原中-南部新生代构造演化的热年代学制约

    doi: 10.3799/dqkx.2018.532
    基金项目: 

    地质调查专项 121201102000150009

    国家自然科学基金项目 41402182

    地质调查专项 Nos.121201004000150013

    国家自然科学基金项目 Nos.41776081

    国家自然科学基金项目 41210005

    中国博士后科学基金项目 No.2017M620290

    详细信息
      作者简介:

      朱晓青(1982-), 男, 博士, 主要从事海洋地质与构造地质研究

      通讯作者:

      郭兴伟

    • 中图分类号: P542

    Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau

    • 摘要: 青藏高原新生代以来的隆升过程及特征长期以来广存争议.岩体中不同单矿物所记录的中低温热年代学信息适用于揭示较新年代地质体的隆升过程,可以为之提供有效制约.在青藏高原部分岩浆岩与变质岩露头区原位采集15块样品,利用锆石与磷灰石裂变径迹等热年代学结果为青藏高原中生代末期以来的隆升过程提供约束.其中,所获10块样品的锆石裂变径迹数据年龄范围为182~33 Ma,分别记录了渐新世之前青藏高原内不同块体间相互碰撞及高原内不同地区的构造热事件.特别是沿雅鲁藏布江缝合带分布的3个样品,锆石裂变径迹年龄结果一致显示始新世末期-渐新世早期该带存在一期显著的构造热事件.该构造热事件暗示在约36~33 Ma沿雅江缝合带发生过强烈的陆-陆硬碰撞.所获14块样品的磷灰石裂变径迹年龄范围为70.4~5.0 Ma,综合热史反演结果显示青藏高原南部中新世中晚期以来存在整体性隆升,特别是从上新世开始隆升速率显著加快.磷灰石裂变径迹年龄在空间分布上具有向高原东南部变年轻的趋势,表明青藏高原东南部在上新世以来的构造隆升较其他地区要强烈,暗示印度-亚洲板块碰撞驱动机制对该时期的高原隆升具有控制作用.此外,青藏高原中部在白垩纪末期-始新世可能即已隆升至相当高度,此后至今保持了相当低的剥蚀速率.

       

    • 图  1  (a) 青藏高原构造分区;(b)样品位置及采集剖面点

      图a据Pan et al.(2012)

      Fig.  1.  (a) Tectonic subdivision of Qinghai-Tibet Plateau; (b)samples' locations and traces of transects

      图  2  磷灰石样品的热史反演结果

      N为径迹条数,GOF为拟合度,部分退火带范围设定为60~120 ℃

      Fig.  2.  Reversed modeling results of the apatite samples

      图  3  (a) 裂变径迹年龄与高程关系;(b)磷灰石裂变径迹年龄与高程的空间分布特征

      Fig.  3.  (a) Relationship between fission track ages and elevations; (b) spatial distribution characteristics of apatite fission track ages and elevations

      图  4  锆石裂变径迹与磷灰石裂变径迹所揭示的样品的热历史

      其中实线为样品最佳热史反演模型,ZCTR为锆石裂变径迹的封闭温度范围,APZA为磷灰石的部分退火带范围

      Fig.  4.  Thermal history revealed of samples by zircon and apatite fission tracks

      表  1  采集样品信息统计

      Table  1.   Summary of samples' detailed information

      编号 经度(E) 纬度(N) 地理位置 高程(m) 年代和岩性
      QZ-01 94°47.395′ 36°07.993′ 格尔木南,青藏公路边 3 138 二叠纪细中粒二长花岗岩
      QZ-02 94°47.395′ 36°07.993′ 格尔木南,青藏公路边 3 138 二叠纪细中粒二长花岗岩
      QZ-03 91°41.987′ 32°11.246′ 安多到那曲路边 4 773 早侏罗细中粒花岗闪长岩
      QZ-04 91°42.774′ 32°07.436′ 安多到那曲路边 4 790 中元古黑云斜长片麻岩
      QZ-05 90°33.941′ 30°04.941′ 羊八井镇南500 m 4 272 晚白垩世细粒花岗岩
      QZ-06 90°33.941′ 30°04.941′ 羊八井镇南500 m 4 272 中晚元古黑云斜长变粒岩
      QZ-07 89°38.733′ 28°40.970′ 康马县 4 183 早古生代二长花岗片麻岩
      QZ-08 88°57.970′ 27°30.788′ 亚东县 3 382 中新世细粒二长花岗岩
      QZ-09 88°54.470′ 27°25.938′ 亚东县 3 356 元古代黑云斜长片麻岩
      QZ-10 93°06.466′ 29°58.372′ 工布江达县外,中流砥柱边 3 516 晚三叠花岗闪长岩
      QZ-11 93°46.820′ 29°48.755′ 林芝至拉萨318国道边 3 030 白垩纪细中粒二长花岗岩
      QZ-12 94°39.098′ 29°36.635′ 林芝色季拉山口 4 561 中晚元古黑云二长片麻岩
      QZ-13 94°34.523′ 29°33.979′ 林芝 3 909 元古代细中粒英云闪长岩
      QZ-14 93°22′49.7″ 29°3′28.3″ 朗县至米林县路边 3 029 早白垩细中粒花岗闪长岩
      QZ-15 90°56.134′ 29°29.555′ 拉萨至日喀则路边 3 620 白垩纪中粒花岗闪长岩
      下载: 导出CSV

      表  2  样品锆石裂变径迹测试结果

      Table  2.   Zircon fission track test results of the samples

      样品号 颗粒数 ρs(105) ρi(105) ρd(105) U(105) P(χ2)(%) 径迹年龄(Ma)
      QZ-03 22 250.662 186.384 27.405 247.36 13 182±9
      QZ-04 26 221.964 165.518 27.083 221.07 11.6 181±9
      QZ-05 26 105.497 181.143 26.815 247.43 5.1 77±5
      QZ-06 25 198.602 217.909 26.6 296.19 6.5 121±8
      QZ-07 13 90.29 183.075 26.171 255.07 7.2 59±9
      QZ-10 25 206.513 199.394 24.667 293.55 10.7 127±6
      QZ-11 23 188.583 192.038 24.882 282.44 12 121±7
      QZ-12 26 56.07 200.797 25.312 288.77 4.8 35±2
      QZ-14 25 44.641 166.169 25.58 239.48 9.8 33±7
      QZ-15 9 50.203 177.62 26.385 246.32 87 36±7
      注:ρs为自发裂变径迹;ρi为诱发裂变径迹;ρd为中子通量;U为测试样品的U含量;径迹年龄采用中值年龄.
      下载: 导出CSV

      表  3  样品磷灰石裂变径迹测试结果

      Table  3.   Apatite fission track test results of the samples

      样品号 颗粒数 ρs(105) ρi(105) ρd(105) U(105) P(χ2)(%) 径迹年龄(Ma) 径迹长度(μm)
      QZ-01 12 1.12 15.566 21.375 10.06 96.5 27.3±3.3 -
      QZ-02 28 0.596 8.687 21.197 6.12 4.9 25.7±3.0 12.66(40)±2.53
      QZ-03 28 9.59 49.522 21.019 32.48 6.7 70.4±4.8 12.88±(104)±2.07
      QZ-05 28 0.797 33.295 20.664 28.77 9.7 8.7±0.8 12.31 (97)±2.78
      QZ-06 28 0.813 28.397 20.664 21.83 23.8 10.4±1.2 11.88 (14)±1.97
      QZ-07 28 0.269 8.153 20.13 4.98 70.7 11.5±1.6 12.99 (12)±1.42
      QZ-08 21 0.605 42.612 19.774 26.08 34.6 5.0±0.5 10.62 (9)±1.87
      QZ-09 28 0.465 21.531 19.952 13.45 32.1 7.6±0.6 13.15 (113)±2.65
      QZ-10 28 1.187 39.299 18.707 26.90 7.3 10.0±0.7 13.03 (107)±2.11
      QZ-11 29 0.516 17.195 18.974 11.62 21.3 10.1±1.1 11.98 (10)±3.81
      QZ-12 29 0.476 28.944 19.418 18.49 7.2 5.6±0.5 13.73 (93)±2.09
      QZ-13 28 0.452 24.728 19.241 16.22 6.8 6.2±0.5 13.27 (109)±2.65
      QZ-14 28 0.416 12.126 19.596 7.58 5.1 11.9±1.1 12.76 (54)±2.69
      QZ-15 25 3.191 60.822 20.308 36.39 6.1 18.4±1.3 12.99 (108)±1.91
      注:ρs为自发裂变径迹;ρi为诱发裂变径迹;ρd为中子通量;U为测试样品的U含量;径迹年龄采用中值年龄;径迹长度括号内为所测的径迹数目.
      下载: 导出CSV
    • An, Z.S., Kutzbach, J.E., Prell, W.L., et al., 2001.Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times.Nature, 411(6833):62-66.http://dx.doi.org/10.1038/35075035" target="_blank"> http://dx.doi.org/10.1038/35075035
      Aitchison, J.C., Ali, J.R., Davis, A.M., 2007.When and Where did India and Asia Collide? Journal of Geophysical Research, 112(B5):B05423.https://doi.org/10.1029/2006jb004706 http://cn.bing.com/academic/profile?id=e616df35ae09f0a211efaef25f98b204&encoded=0&v=paper_preview&mkt=zh-cn
      Bai, D.H., Unsworth, M.J., Meju, M.A., et al., 2010.Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging.Nature Geoscience, 3(5):358-362. https://doi.org/10.1038/ngeo830
      Blisniuk, P.M., Hacker, B.R., Glodny, J., et al., 2001.Normal Faulting in Central Tibet since at Least 13.5 Myr ago.Nature, 412(6847):628-632. https://doi.org/10.1038/35088045
      Chen, J., Wu, J., Xu, J., et al., 2013.Geochemistry of Eocene High-Mg-Adakitic Rocks in the Northern Qiangtang Terrane, Central Tibet:Implications for Early Uplift of the Plateau.Geological Society of America Bulletin, 125(11-12):1800-1819.https://doi.org/10.1130/b30755.1 doi: 10.1130/B30755.1
      Clark, M.K., House, M.A., Royden, L.H., et al., 2005.Late Cenozoic Uplift of Southeastern Tibet.Geology, 33(6):525-528.https://doi.org/10.1130/g21265.1 doi: 10.1130/G21265.1
      Coleman, M., Hodges, K., 1995.Evidence for Tibetan Plateau Uplift before 14 Myr Ago from a New Minimum Age for East-West Extension.Nature, 374(6517):49-52. https://doi.org/10.1038/374049a0
      Craddock, W., Kirby, E., Zhang, H.P., 2011.Late Miocene-Pliocene Range Growth in the Interior of the Northeastern Tibetan Plateau.Lithosphere, 3(6):420-438.https://doi.org/10.1130/l159.1 doi: 10.1130/L159.1
      DeCelles, P.G., Quade, J., Kapp, P., et al., 2007.High and Dry in Central Tibet during the Late Oligocene.Earth and Planetary Science Letters, 253(3-4):389-401.http://dx.doi.org/10.1016/j.epsl.2006.11.001" target="_blank"> http://dx.doi.org/10.1016/j.epsl.2006.11.001
      Ding, H.X., Zhang, Z.M., Dong, X., et al., 2016.Early Eocene (ca.50 Ma) Collision of the Indian and Asian Continents:Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet.Earth and Planetary Science Letters, 435(1):64-73.https://doi.org/10.1016/j.epsl.2015.12.006 https://www.sciencedirect.com/science/article/pii/S0012821X15007694
      Ding, L., Kapp, P., Wan, X.Q., 2005.Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet.Tectonics, 24(3):TC3001.https://doi.org/10.1029/2004tc001729 http://cn.bing.com/academic/profile?id=39e79ac85b8d529e51fcf00fe21f2a0e&encoded=0&v=paper_preview&mkt=zh-cn
      Ding, L., Maksatbek, S., Cai, F.L., et al., 2017.Processes of Initial Collision and Suturing between India and Asia.Science China:Earth Sciences, 47(3):293-309(in Chinese). http://cn.bing.com/academic/profile?id=ca2f3e9c8b9b2f0427f9e845bbfedbda&encoded=0&v=paper_preview&mkt=zh-cn
      Donelick, R.A., O'Sullivan, P.B., Ketcham, R.A., 2005.Apatite Fission-Track Analysis.Reviews in Mineralogy and Geochemistry, 58(1):49-94.https://doi.org/10.2138/rmg.2005.58.3 http://cn.bing.com/academic/profile?id=8b2136e0ccc65b7d8d26f281222eb01c&encoded=0&v=paper_preview&mkt=zh-cn
      Dong, X., Zhang, Z.M., Xiang, H., et al., 2013.Metamorphism and Dynamics of the Lhasa Terrane, South Tibet.Acta Geoscientica Sinica, 34(3):257-262 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c899aaab97a5303b8208a16b8a3ea4aa&encoded=0&v=paper_preview&mkt=zh-cn
      Galbraith, R.F., Laslett, G.M., 1993.Statistical Models for Mixed Fission Track Ages.Nuclear Tracks and Radiation Measurements, 21(4):459-470.https://doi.org/10.1016/1359-0189(93)90185-c doi: 10.1016/1359-0189(93)90185-C
      Gallagher, K., Brown, R.W., Johnson, C., 1998.Fission Track Analysis and Its Applications to Geological Problems.Annual Review of Earth and Planetary Sciences, 26:519-572. https://doi.org/10.1146/annurev.earth.26.1.519
      Garzanti, E., Critelli, S., Ingersoll, R.V., 1996.Paleogeographic and Paleotectonic Evolution of the Himalayan Range as Reflected by Detrital Modes of Tertiary Sandstones and Modern Sands (Indus Transect, India and Pakistan).Geological Society of America Bulletin, 108(6):631-642.https://doi.org/10.1130/0016-7606(1996)108<0631:papeot>2.3.co; 2 doi: 10.1130/0016-7606(1996)108<0631:PAPEOT>2.3.CO;2
      Ge, X.H., Ren, S.M., Liu, Y.J., et al., 2004.Last Rapid Uplift of Qinghai-Xizang Plateau and the Australasian Event of Meteorites.Quaternary Sciences, 24(1):67-73(in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dsjyj200401008
      Ge, X.H., Ren, S.M., Ma, L.X., et al., 2006.Multi-Stage Uplifts of the Qinghai-Tibet Plateau and Their Environmental Effects.Earth Science Frontiers, 13(6):118-130(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b411af31244aead153c103ec06b7f1eb&encoded=0&v=paper_preview&mkt=zh-cn
      Gleadow, A.J.W., Belton, D.X., Kohn, B.P., et al., 2002.Fission Track Dating of Phosphate Minerals and the Thermochronology of Apatite.Reviews in Mineralogy and Geochemistry, 48(1):579-630. https://doi.org/10.2138/rmg.2002.48.16
      Gleadow, A.J.W., Duddy, I.R., Green, P.F., et al., 1986a.Fission Track Lengths in the Apatite Annealing Zone and the Interpretation of Mixed Ages.Earth and Planetary Science Letters, 78(2-3):245-254.https://doi.org/10.1016/0012-821x(86)90065-8 doi: 10.1016/0012-821X(86)90065-8
      Gleadow, A.J.W., Duddy, I.R., Green, P.F., et al., 1986b.Confined Fission Track Lengths in Apatite:A Diagnostic Tool for Thermal History Analysis.Contributions to Mineralogy and Petrology, 94(4):405-415.https://doi.org/10.1007/bf00376334 doi: 10.1007/BF00376334
      Gombosi, D.J., Garver, J.I., Baldwin, S.L., 2014.On the Development of Electron Microprobe Zircon Fission-Track Geochronology.Chemical Geology, 363:312-321. https://doi.org/10.1016/j.chemgeo.2013.11.005
      Harrison, T.M., Copeland, P., Kidd, W.S.F., et al., 1992.Raising Tibet.Science, 255(5052):1663-1670. https://doi.org/10.1126/science.255.5052.1663
      Harrison, T.M., Copeland, P., Kidd, W.S.F., et al., 1995.Activation of the Nyainqentanghla Shear Zone:Implications for Uplift of the Southern Tibetan Plateau.Tectonics, 14(3):658-676.https://doi.org/10.1029/95tc00608 doi: 10.1029/95TC00608
      Hetzel, R., Dunkl, I., Haider, V., et al., 2013.Peneplain Formation in Southern Tibet Predates the India-Asia Collision and Plateau Uplift:Reply.Geology, 41(9):e297-e298.https://doi.org/10.1130/g34504y.1 doi: 10.1130/G34504Y.1
      Hu, X.M., Garzanti, E., Wang, J.G., et al., 2016.The Timing of India-Asia Collision Onset-Facts, Theories, Controversies.Earth-Science Reviews, 160:264-299. https://doi.org/10.1016/j.earscirev.2016.07.014
      Hu, X.M., Wang, J.G., An, W., et al., 2017.Constraining the Timing of the India-Asia Continental Collision by the Sedimentary Record.Science China:Earth Sciences, 47(3):261-283(in Chinese). http://cn.bing.com/academic/profile?id=bea38d1e714aa526340c778cb9c465b3&encoded=0&v=paper_preview&mkt=zh-cn
      Huang, Q.T., Li, J.F., Xia, B., et al., 2015.Petrology, Geochemistry, Chronology and Geological Significance of Jiang Tso Ophiolite in Middle Segment of Bangonghu-Nujiang Suture Zone, Tibet.Earth Science, 40(1):34-48(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2015.003 https://www.researchgate.net/publication/281887311_Petrology_geochemistry_chronology_and_geological_significance_of_Jiang_Tso_ophiolite_in_middle_segment_of_Bangonghu-Nujiang_suture_zone_Tibet
      Hurford, A.J., Green, P.F., 1983.The Zeta Age Calibration of Fission-Track Dating.Chemical Geology, 41:285-317.https://doi.org/10.1016/s0009-2541(83)80026-6 doi: 10.1016/S0009-2541(83)80026-6
      Jiang, T., Aitchison, J.C., Wan, X.Q., 2016.The Youngest Marine Deposits Preserved in Southern Tibet and Disappearance of the Tethyan Ocean.Gondwana Research, 32:64-75. https://doi.org/10.1016/j.gr.2015.01.015
      Jolivet, M., Brunel, M., Seward, D., et al., 2001.Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau:Fission-Track Constraints.Tectonophysics, 343(1-2):111-134.http://dx.doi.org/10.1016/s0040-1951(01)00196-2 doi: 10.1016/S0040-1951(01)00196-2
      Kapp, P., DeCelles, P.G., Gehrels, G.E., et al., 2007a.Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet.Geological Society of America Bulletin, 119(7-8):917-933.https://doi.org/10.1130/b26033.1 doi: 10.1130/B26033.1
      Kapp, P., DeCelles, P.G., Leier, A.L., et al., 2007b.The Gangdese Retroarc Thrust Belt Revealed.GSA Today, 17(7):4.https://doi.org/10.1130/gsat01707a.1 doi: 10.1130/GSAT01707A.1
      Kapp, P., Yin, A., Harrison, T.M., et al., 2005.Cretaceous-Tertiary Shortening, Basin Development, and Volcanism in Central Tibet.Geological Society of America Bulletin, 117(7-8):865-878.https://doi.org/10.1130/b25595.1 http://cn.bing.com/academic/profile?id=7e903da88a7f039937fd16315de6edca&encoded=0&v=paper_preview&mkt=zh-cn
      Ketcham, R.A., Donelick, R.A., Balestrieri, M.L., et al., 2009.Reproducibility of Apatite Fission-Track Length Data and Thermal History Reconstruction.Earth and Planetary Science Letters, 284(3-4):504-515. https://doi.org/10.1016/j.epsl.2009.05.015
      Liu, X., Hsu, K.J., Ju, Y., et al., 2012.New Interpretation of Tectonic Model in South Tibet.Journal of Asian Earth Sciences, 56:147-159. https://doi.org/10.1016/j.jseaes.2012.05.005
      Liu, X.H., Ju, Y.T., Wei, L.J., et al., 2009.A Second Discussion on Structure Model of the Yarlungzangbo Suture Zone.Science in China(Series D), 39(4):448-463 (in Chinese).
      Meng, Y.K., Xu, Z.Q., Ma, S.W., et al., 2016.Deformation Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet.Earth Science, 41(7):1081-1098(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.090
      Mo, X.X., 2011.Magmatism and Evolution of the Tibetan Plateau.Geological Journal of China Universities, 17(3):351-367 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=caa5c9264ecd5e980f5c631c7e2a8dee&encoded=0&v=paper_preview&mkt=zh-cn
      Mo, X.X, Zhao, Z.D., Zhou, S., et al., 2007.On the Timing of India-Asia Continental Collision.Geological Bulletin of China, 26(10):1240-1244 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d96f17b4bb0a4bbbc0e246bc5c6937d5&encoded=0&v=paper_preview&mkt=zh-cn
      Mo, X.X., Zhao, Z.D., Zhu, D.C., et al., 2009.On the Lithosphere of Indo-Asia Collision Zone in Southern Tibet:Petrological and Geochemical Constraints.Earth Science, 34(1):17-27 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7fffa129a07a39b88f1c8fe658f0c10c&encoded=0&v=paper_preview&mkt=zh-cn
      Molnar, P., England, P., Martinod, J., 1993.Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon.Reviews of Geophysics, 31(4):357-396.https://doi.org/10.1029/93rg02030 doi: 10.1029/93RG02030
      Najman, Y., Appel, E., Boudagher-Fadel, M., et al., 2010.Timing of India-Asia Collision:Geological, Biostratigraphic, and Palaeomagnetic Constraints.Journal of Geophysical Research, 115(B12):B12416.https://doi.org/10.1029/2010jb007673 doi: 10.1029/2010JB007673
      Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      Pan, Y.S., 1999.Formation and Uplifting of the Qinghai-Tibet Plateau.Earth Science Frontiers, 6(3):153-163 (in Chinese with English abstract).
      Pan, Y.S., Zhong, J.Y., Zhou, Y., 2003.Mechanism of N-S Trending Graben System in the Qinghai-Tibetan Plateau.Chinese Journal of Geology, 38(2):172-178 (in Chinese with English abstract).
      Pares, J.M., van der Voo, R., Downs, W.R., et al., 2003.Northeastward Growth and Uplift of the Tibetan Plateau:Magnetostratigraphic Insights from the Guide Basin.Journal of Geophysical Research:Solid Earth, 108(B1):EPM 1-1-EPM 1-11.https://doi.org/10.1029/2001jb001349 doi: 10.1029/2001JB001349
      Rohrmann, A., Kapp, P., Carrapa, B., et al., 2012.Thermochronologic Evidence for Plateau Formation in Central Tibet by 45 Ma.Geology, 40(2):187-190.https://doi.org/10.1130/g32530.1 doi: 10.1130/G32530.1
      Rowley, D.B., 1996.Age of Initiation of Collision between India and Asia:A Review of Stratigraphic Data.Earth and Planetary Science Letters, 145(1-4):1-13.https://doi.org/10.1016/s0012-821x(96)00201-4 doi: 10.1016/S0012-821X(96)00201-4
      Rowley, D.B., Currie, B.S., 2006.Palaeo-Altimetry of the Late Eocene to Miocene Lunpola Basin, Central Tibet.Nature, 439(7077):677-681. https://doi.org/10.1038/nature04506
      Sobel, E.R., Arnaud, N., Jolivet, M., et al., 2001.Jurassic to Cenozoic Exhumation History of the Altyn Tagh Range, Northwest China, Constrained by 40Ar/39Ar and Apatite Fission Track Thermochronology.Geological Society of America Memoir, 194:247-259. https://www.researchgate.net/publication/282780983_Jurassic_to_Cenozoic_exhumation_history_of_the_Altyn_Tagh_range_northwest_China_constrained_by_40Ar39Ar_and_apatite_fission_track_thermochronology
      Sobel, E.R., Dumitru, T.A., 1997.Thrusting and Exhumation around the Margins of the Western Tarim Basin during the India-Asia Collision.Journal of Geophysical Research:Solid Earth, 102(B3):5043-5063.https://doi.org/10.1029/96jb03267 doi: 10.1029/96JB03267
      Spicer, R.A., Harris, N.B.W., Widdowson, M., et al., 2003.Constant Elevation of Southern Tibet over the Past 15 Million Years.Nature, 421(6923):622-624. https://doi.org/10.1038/nature01356
      Tapponnier, P., Xu, Z.Q., Roger, F., et al., 2001.Oblique Stepwise Rise and Growth of the Tibet Plateau.Science, 294(5547):1671-1677. https://doi.org/10.1126/science.105978
      van Hinsbergen, D.J.J., Lippert, P.C., Dupont-Nivet, G., et al., 2012.Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia.Proceedings of the National Academy of Sciences, 109(20):7659-7664. https://doi.org/10.1073/pnas.1117262109
      Wang, A., Garver, J.I., Wang, G.C., et al., 2010.Episodic Exhumation of the Greater Himalayan Sequence since the Miocene Constrained by Fission Track Thermochronology in Nyalam, Central Himalaya.Tectonophysics, 495(3-4):315-323. https://doi.org/10.1016/j.tecto.2010.09.037
      Wang, C.S., Li, X.H., Hu, X.M., et al., 2002.Latest Marine Horizon North of Qomolangma (Mt Everest):Implications for Closure of Tethys Seaway and Collision Tectonics.Terra Nova, 14(2):114-120. https://doi.org/10.1046/j.1365-3121.2002.00399.x
      Wang, C.S., Zhao, X.X., Liu, Z.F., et al., 2008a.Constraints on the Early Uplift History of the Tibetan Plateau.Proceedings of the National Academy of Sciences, 105(13):4987-4992. https://doi.org/10.1073/pnas.0703595105
      Wang, Q., Wyman, D.A., Xu, J.F., et al., 2008b.Eocene Melting of Subducting Continental Crust and Early Uplifting of Central Tibet:Evidence from Central-Western Qiangtang High-K Calc-Alkaline Andesites, Dacites and Rhyolites.Earth and Planetary Science Letters, 272(1-2):158-171. https://doi.org/10.1016/j.epsl.2008.04.034
      Wang, W.L., Aitchison, J.C., Lo, C.H., et al., 2008c.Geochemistry and Geochronology of the Amphibolite Blocks in Ophiolitic Mélanges along Bangong-Nujiang Suture, Central Tibet.Journal of Asian Earth Sciences, 33(1-2):122-138. https://doi.org/10.1016/j.jseaes.2007.10.022
      Wang, E., Kirby, E., Furlong, K.P., et al., 2012.Two-Phase Growth of High Topography in Eastern Tibet during the Cenozoic.Nature Geoscience, 5(9):640-645. https://doi.org/10.1038/ngeo1538
      Wang, E.Q., 2017.A Discussion on the Timing of the Initial Collision between the Indian and Asian Continents.Science China:Earth Sciences, 47(3):284-292 (in Chinese).
      Wang, W., Kirby, E., Peizhen, Z., et al., 2013.Tertiary Basin Evolution along the Northeastern Margin of the Tibetan Plateau:Evidence for Basin Formation during Oligocene Transtension.Geological Society of America Bulletin, 125(3-4):377-400.https://doi.org/10.1130/b30611.1 doi: 10.1130/B30611.1
      Williams, H., Turner, S., Kelley, S., et al., 2001.Age and Composition of Dikes in Southern Tibet:New Constraints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism.Geology, 29(4):339-342.https://doi.org/10.1130/0091-7613(2001)029<0339:aacodi>2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2
      Wu, F.Y., Huang, B.C., Ye, K., et al., 2008.Collapsed Himalayan-Tibetan Orogen and the Rising Tibetan Plateau.Acta Petrologica Sinica, 24(1):1-30 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b9bd2778b625ed39991b24a59e81eccb&encoded=0&v=paper_preview&mkt=zh-cn
      Wu, Z.H., Hu, D.G., Song, B., et al., 2005.Ages and Thermo-Chronological Evolution of the North Xidatan Granite in the South Kunlun Mts..Acta Geologica Sinica, 79(5):628-636 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=dbaf7ffa84a8324c1f41afa75c8a30e5&encoded=0&v=paper_preview&mkt=zh-cn
      Wu, Z.H., Wu, Z.H., Hu, D.G., et al., 2007a.Geological Evidences for the Tibetan Plateau Uplifted in Late Oligocene.Acta Geologica Sinica, 81(5):577-587 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=6a847a55565df47a744016c87621f4c1&encoded=0&v=paper_preview&mkt=zh-cn
      Wu, Z.H., Ye, P.S., Zhao, W.J., et al., 2007b.Late Cenozoic Overthrust System in the Southern East Kunlun Mountains, China.Geological Bulletin of China, 26(4):448-456(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=84e46acc93287978c28abb16a97dd548&encoded=0&v=paper_preview&mkt=zh-cn
      Xu, Z.Q., Wang, Q., Li, Z.H., et al., 2016.Indo-Asian Collision:Tectonic Transition from Compression to Strike Slip.Acta Geologica Sinica, 90(1):1-23 (in Chinese with English abstract). doi: 10.1111/1755-6724.12639
      Yang, Y.F., Zhang, K.X., Xu, Y.D., et al., 2013.Response of the Neogene Sedimentary Paleocurrent and Provenance Distribution to Uplift of the Northeastern Qinghai-Tibetan Plateau.Acta Geologica Sinica, 87(6):797-813 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=0a96184bbf3d5352cda18ecb1328c5ef&encoded=0&v=paper_preview&mkt=zh-cn
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Yin, A., Kapp, P.A., Murphy, M.A., et al., 1999.Significant Late Neogene East-West Extension in Northern Tibet.Geology, 27(9):787-790.https://doi.org/10.1130/0091-7613(1999)027<0787:slnewe>2.3.co; 2 doi: 10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2
      Yuan, W.M., Dong, J.Q., Wang, S.C., et al., 2006.Apatite Fission Track Evidence for Neogene Uplift in the Eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China.Journal of Asian Earth Sciences, 27(6):847-856. https://doi.org/10.1016/j.jseaes.2005.09.002
      Yuan, W.M., Du, Y.S., Yang, L.Q., et al., 2007.Apatite Fission Track Studies on the Tectonics in Nanmulin Area of Gangdese Terrane, Tibet Plateau.Acta Petrologica Sinica, 23(11):2911-2917 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=df20c160247e64dba3c46fbb522017e0&encoded=0&v=paper_preview&mkt=zh-cn
      Zhang, K.X., Wang, G.C., Hong, H.L., et al., 2013.The Study of the Cenozoic Uplift in the Tibetan Plateau:A Review.Geological Bulletin of China, 32(1):1-18(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2f7445cab3914d5c0493d9557b285cba&encoded=0&v=paper_preview&mkt=zh-cn
      Zhang, Z.M., Dong, X., Santosh, M., et al., 2014.Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet.Gondwana Research, 25(1):170-189. https://doi.org/10.1016/j.gr.2012.08.024
      Zhang, Z.Y., Zhu, W.B., Zheng, D.W., et al., 2016.Apatite Fission Track Thermochronology in the Kuluketage and Aksu Areas, NW China:Implication for Tectonic Evolution of the Northern Tarim.Geoscience Frontiers, 7(2):171-180. https://doi.org/10.1016/j.gsf.2015.08.007
      Zhao, J.M., Du, P.R., 2016.On the Initial Collision between the Indian and Eurasian Continents.Seismology and Geology, 38(3):783-796 (in Chinese with English abstract).
      Zheng, D.W., Zhang, P.Z., Wan, J.L., et al., 2006.Rapid Exhumation at~8 Ma on the Liupan Shan Thrust Fault from Apatite Fission-Track Thermochronology:Implications for Growth of the Northeastern Tibetan Plateau Margin.Earth and Planetary Science Letters, 248(1-2):198-208. https://doi.org/10.1016/j.epsl.2006.05.023
      Zhong, D.L., Ding, L., 1996.Discussion on the Processes and Mechanism of the Tibetan Plateau.Science in China (Series D), 26(4):289-295 (in Chinese).
      Zhu, B., Kidd, W.S., Rowley, D.B., et al., 2005.Age of Initiation of the India-Asia Collision in the East-Central Himalaya.The Journal of Geology, 113(3):265-285. https://doi.org/10.1086/428805
      Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2004.The Age of Collision between India and Eurasia.Advances in Earth Science, 19(4):564-571 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b73838a91286f4a8caf547708e18e2e8&encoded=0&v=paper_preview&mkt=zh-cn
      丁林,Maksatbek,S.,蔡福龙,等,2017.印度与欧亚大陆碰撞时限、封闭方式和过程.中国科学:地球科学,47(3):293-309. http://www.doc88.com/p-4582877680016.html
      董昕,张泽明,向华,等,2013.青藏高原南部拉萨地体的变质作用与动力学.地球学报,34(3):257-262. doi: 10.3975/cagsb.2013.03.01
      葛肖虹,任收麦,刘永江,等,2004.青藏高原末次快速隆升与"亚澳"陨击事件.第四纪研究,24(1):67-73. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dsjyj200401008
      葛肖虹,任收麦,马立祥,等,2006.青藏高原多期次隆升的环境效应.地学前缘,13(6):118-130. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606017.htm
      胡修棉,王建刚,安慰,等,2017.利用沉积记录精确约束印度-亚洲大陆碰撞时间与过程.中国科学:地球科学,47(3):261-283. https://www.researchgate.net/publication/314187523_liyongchenjijilujingqueyueshuyindu-yazhoudalupengzhuangshijianyuguocheng
      黄强太,李建峰,夏斌,等,2015.西藏班公湖-怒江缝合带中段江错蛇绿岩岩石学、地球化学、年代学及地质意义.地球科学,40(1):34-48.https://doi.org/10.3799/dqkx.2015.003 http://www.earth-science.net/WebPage/Article.aspx?id=3014
      刘小汉,琚宜太,韦利杰,等,2009.再论雅鲁藏布江缝合带构造模型. 中国科学(D辑),39(4):448-463. http://www.oalib.com/paper/4153237
      孟元库,许志琴,马士委,等,2016.藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束.地球科学,41(7):1081-1098.https://doi.org/10.3799/dqkx.2016.090 http://www.earth-science.net/WebPage/Article.aspx?id=3320
      莫宣学,2011.岩浆作用与青藏高原演化.高校地质学报,17(3):351-367. http://www.cqvip.com/QK/90539X/201103/39866061.html
      莫宣学,赵志丹,周肃,等,2007.印度-亚洲大陆碰撞的时限.地质通报,26(10):1240-1244. doi: 10.3969/j.issn.1671-2552.2007.10.002
      莫宣学,赵志丹,朱弟成,等,2009.西藏南部印度-亚洲碰撞带岩石圈:岩石学-地球化学约束.地球科学,34(1):17-27. http://www.earth-science.net/WebPage/Article.aspx?id=1783
      潘裕生,1999.青藏高原的形成与隆升.地学前缘,6(3):153-163. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-IGQM199405001002.htm
      潘裕生,钟嘉猷,周勇,2003.青藏高原南北向地堑系的实验研究.地质科学,38(2):172-178. http://www.cnki.com.cn/Article/CJFDTotal-KXTB199815000.htm
      王二七,2017.关于印度与欧亚大陆碰撞初始碰撞事件的讨论.中国科学:地球科学,47(3):284-292. http://www.cqvip.com/QK/94287X/2004004/10103263.html
      吴福元,黄宝春,叶凯,等,2008.青藏高原造山带的垮塌与高原隆升.岩石学报,24(1):1-30. http://mall.cnki.net/magazine/Article/YSXB200801002.htm
      吴珍汉,胡道功,宋彪,等,2005.昆仑山南部西大滩盆北花岗岩的年龄与热历史.地质学报,79(5):628-636. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200505007
      吴珍汉,吴中海,胡道功,等,2007a.青藏高原渐新世晚期隆升的地质证据.地质学报,81(5):577-587. http://www.oalib.com/paper/4874117
      吴珍汉,叶培盛,赵文津,等,2007b.东昆仑南部晚新生代逆冲推覆构系统.地质通报,26(4):448-456. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200704011
      许志琴,王勤,李忠海,等,2016.印度-亚洲碰撞:从挤压到走滑的构造转换.地质学报,90(1):1-23. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601001.htm
      杨永锋,张克信,徐亚东,等,2013,青藏高原东北部新近纪古流向与物源分布对隆升的响应.地质学报,87(6):797-813. http://www.oalib.com/paper/4875322
      袁万明,杜杨松,杨立强,等,2007.西藏冈底斯带南木林地区构造活动的磷灰石裂变径迹分析.岩石学报,23(11):2911-2917. doi: 10.3969/j.issn.1000-0569.2007.11.021
      张克信,王国灿,洪汉烈,等,2013.青藏高原新生代隆升研究现状.地质通报,32(1):1-18. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201301000.htm
      赵俊猛,杜品仁,2016.印度-亚洲大陆的初始碰撞.地震地质,38(3):783-796. http://blog.sciencenet.cn/blog-528739-1042816.html
      钟大赉,丁林,1996.青藏高原的隆起过程及其机制探讨.中国科学(D辑),26(4):289-295. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604000.htm
      朱弟成,潘桂堂,莫宣学,等,2004.印度大陆和欧亚大陆的碰撞时代.地球科学进展,19(4):564-571. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200404012.htm
    • 加载中
    图(4) / 表(3)
    计量
    • 文章访问数:  5910
    • HTML全文浏览量:  2223
    • PDF下载量:  65
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-06
    • 刊出日期:  2018-06-15

    目录

      /

      返回文章
      返回