Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes
-
摘要: 地球表层的土壤沉积物记录了第四纪以来与气候、环境、人类等有关的地球演化信息,是重要的研究过去历史的载体.成土体系中土壤的诸多特性都与成土期的气候环境信息息息相关,通过地质学研究方法可以提取某些特性并作为反演风化强度以及古气候的风化指标,即古气候替代指标.重点讨论了成土体系中新生的矿物学风化指标——粘土矿物与铁矿物的表征意义、研究方法与实例分析,并评述了其在反演气候方面的优势与局限性.成土作用中新生的粘土矿物直接受成土期盛行的环境与气候条件的影响,所以其组成、粒度、含量、结晶度等矿物学特征充分记录了成土期的气候与环境信息.另外,成土体系中也会新生成部分铁矿物.自生的铁矿物是反映成土期的湿度条件、温度范围的有效指标,因此对当时的气候演化历史也有很好的指示意义.粘土矿物与铁矿物在一定的条件下都可以作为独立的重建古气候的替代指标,但是在使用时要充分考虑研究区域的地质背景、物源供给、气候类型、风化条件等客观局限对这些风化指标的制约.另外,对于区域内风化程度及古气候的重建,通常多指标结合对比的方法更为可靠.Abstract: Soils from Earth's surface record critical evolution information on climate, environment and human since the Quaternary. Soil is regarded as one of the most important carrier for studying the past geological history. The soil properties, such as ion transformation, grain size distribution, mineral content and composition, are closely related to the coeval climate and environment variation. Some properties are extracted as weathering proxies, which are widely used to reconstruct the past climate history. In this study we focused the climatic significance, research methods and case studies of the authigenic mineral proxies-clay minerals and Fe-oxide minerals, and review their advantages and limitations in reflecting weathering degrees and climate conditions. Clay minerals and Fe-oxide minerals can be used as independent weathering and climate proxies. However, the applicability is conditioned by geological background, provenance, climate type, etc.. Besides, a multi-proxy method is preferred in regional weathering and climate reconstruction.
-
Key words:
- pedogenesis /
- chemical weathering /
- clay minerals /
- Fe-oxide minerals /
- Quaternary climate /
- mineralogy
-
图 1 成土作用的影响因素、产物以及土壤形成的过程简图
Fig. 1. The influence factors and products of pedogenesis and the process of the soil development
图 2 中国南方红土沉积物中粘土矿物的TEM照片
K.高岭石;S.蒙脱石;V.蛭石;I.伊利石;HIV.羟基间层蛭石.a.高岭石与蒙脱石的间层(Hong et al., 2012);b.蛭石与伊利石的间层(Hong et al., 2014);c.伊利石与蒙脱石、高岭石的相互间层(Hong et al., 2015);d.伊利石与羟基间层蛭石/蛭石的相互间层(Yin et al., 2013)
Fig. 2. TEM morphology images of clay minerals in the soils of southern China
图 3 中国北方典型黄土-古土壤剖面的低频磁化率变化与其他风化指标的对比曲线
a.西风剖面磁化率变化曲线(Chen et al., 2014); b.蓟县剖面磁化率变化曲线(Jahn et al., 2001); c.洛川剖面磁化率变化曲线(Guan et al., 2016); d.洛川剖面87Sr/86Sr比值变化(Yang et al., 2000); e.洛川剖面Rb/Sr比值变化(Chen et al., 1999); f.同时期全球冰芯氧同位素变化(Railsback et al., 2015)
Fig. 3. Correlation of magnetic susceptibility variations of loess-palaeosol sequences in northern China and other weathering indices
图 4 部分常见粘土矿物与铁矿物在VSWIR光谱区域内的特征峰
Fig. 4. Representative reflectance spectra of some common clay minerals and Fe-oxide minerals
-
Abrajevitch, A., van der Voo, R.V.D., Rea, D.K., 2009.Variations in Relative Abundances of Goethite and Hematite in Bengal Fan Sediments:Climatic vs.Diagenetic Signals.Marine Geology, 267(3-4):191-206. https://doi.org/10.1016/j.margeo.2009.10.010 An, Z., Kutzbach, J.E., Prell, W.L., et al., 2001.Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times.Nature, 411(6833):62-66. doi: 10.1038/35075035 An, Z.S., 2000.The History and Variability of the East Asian Paleomonsoon Climate.Quaternary Science Reviews, 19(1-5):171-187. https://doi.org/10.1016/s0277-3791(99)00060-8 Anderson, S.P., Blum, J., Brantley, S.L., et al., 2004.Proposed Initiative Would Study Earth's Weathering Engine.EOS, Transactions American Geophysical Union, 85(28):265. https://doi.org/10.1029/2004eo280001 Balsam, W., Ji, J.F., Chen, J., 2004.Climatic Interpretation of the Luochuan and Lingtai Loess Sections, China, Based on Changing Iron Oxide Mineralogy and Magnetic Susceptibility.Earth and Planetary Science Letters, 223(3-4):335-348. https://doi.org/10.1016/j.epsl.2004.04.023 Blum, A.E., Yund, R.A., Lasaga, A.C., 1990.The Effect of Dislocation Density on the Dissolution Rate of Quartz.Geochimica et Cosmochimica Acta, 54(2):283-297. https://doi.org/10.1016/0016-7037(90)90318-f Bourne, M.D., Feinberg, J.M., Strauss, B.E., et al., 2015.Long-Term Changes in Precipitation Recorded by Magnetic Minerals in Speleothems.Geology, 43(7):595-598. https://doi.org/10.1130/g36695.1 Brady, N.C., Weil, R.R., 2004.Elements of the Nature and Properties of Soils.Upper Saddle River, New Jersey, Prentice-Hall, 960. http://www.doc88.com/p-3973908298255.html Brantley, S.L., Goldhaber, M.B., Ragnarsdottir, K.V., 2007.Crossing Disciplines and Scales to Understand the Critical Zone.Elements, 3(5):307-314. https://doi.org/10.2113/gselements.3.5.307 Buggle, B., Glaser, B., Hambach, U., et al., 2011.An Evaluation of Geochemical Weathering Indices in Loess-Paleosol Studies.Quaternary International, 240(1-2):12-21. https://doi.org/10.1016/j.quaint.2010.07.019 Buggle, B., Hambach, U., Müller, K., et al., 2014.Iron Mineralogical Proxies and Quaternary Climate Change in SE-European Loess-Paleosol Sequences.Catena, 117:4-22. https://doi.org/10.1016/j.catena.2013.06.012 Chadwick, O.A., Chorover, J., 2001.The Chemistry of Pedogenic Thresholds.Geoderma, 100(3-4):321-353. https://doi.org/10.1016/s0016-7061(01)00027-1 Chamley, H., 1989, Clay Sedimentology.Springer, Berlin, 623. http://www.springer.com/us/book/9783642859182 Chen, J., An, Z.S., Head, J., 1999.Variation of Rb/Sr Ratios in the Loess-Paleosol Sequences of Central China during the Last 130 000 Years and Their Implications for Monsoon Paleoclimatology.Quaternary Research, 51(3):215-219. https://doi.org/10.1006/qres.1999.2038 Chen, J.S., Liu, X.M., Kravchinsky, V.A., 2014.Response of the High-Resolution Chinese Loess Grain Size Record to the 50°N Integrated Winter Insolation during the Last 500 000 Years.Geophysical Research Letters, 41(17):6244-6251. https://doi.org/10.1002/2014gl060239 Chen, T., Xu, H., Xie, Q., et al., 2005.Characteristics and Genesis of Maghemite in Chinese Loess and Paleosols:Mechanism for Magnetic Susceptibility Enhancement in Paleosols.Earth and Planetary Science Letters, 240(3-4):790-802. https://doi.org/10.1016/j.epsl.2005.09.026 Chen, T.H., Xie, Q.Q., Xu, H.F., et al., 2010.Characteristics and Formation Mechanism of Pedogenic Hematite in Quaternary Chinese Loess and Paleosols.Catena, 81(3):217-225. https://doi.org/10.1016/j.catena.2010.04.001 Cheng, F., Hong, H.L., Gu, Y.S., et al., 2014.Clay Mineralogy and Its Paleoclimate Interpretation of the Pleistocene Sediments in Baise Basin, Southern China.Quaternary Sciences, 34(3):560-569 (in Chinese with English abstract). Chevrier, V., Mathé, P.E., Rochette, P., et al., 2006.Magnetic Study of an Antarctic Weathering Profile on Basalt:Implications for Recent Weathering on Mars.Earth and Planetary Science Letters, 244(3-4):501-514. https://doi.org/10.1016/j.epsl.2006.02.033 Clark, R.N., Swayze, G.A., Wise, R., et al., 2007.USGS Digital Spectral Library Splib06a.US Geological Survey, Digital Data Series, 231. Clemens, S.C., 2015.Late Cenozoic Climate Change in Asia:Loess, Monsoon and Monsoon-Arid Environment Evolution.Quaternary Science Reviews, 107:274-275. https://doi.org/10.1016/j.quascirev.2014.10.026 Clift, P.D., Wan, S.M., Blusztajn, J., 2014.Reconstructing Chemical Weathering, Physical Erosion and Monsoon Intensity since 25 Ma in the Northern South China Sea:A Review of Competing Proxies.Earth-Science Reviews, 130:86-102. https://doi.org/10.1016/j.earscirev.2014.01.002 Cornell, R.M., Schwertmann, U., 2003, The Iron Oxides:Structure, Properties, Reactions, Occurrences and Uses.Wiley VCH, Weinheim. http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527606440.html Cudahy, T., Caccetta, M., Thomas, M., et al., 2016.Satellite-Derived Mineral Mapping and Monitoring of Weathering, Deposition and Erosion.Scientific Reports, 6(1):1-12. https://doi.org/10.1038/srep23702 da Cruz, R.S.D., Fernandes, C.M.D., Villas, R.N.N., et al., 2015.A Study of the Hydrothermal Alteration in Paleoproterozoic Volcanic Centers, São Félix do Xingu Region, Amazonian Craton, Brazil, Using Short-Wave Infrared Spectroscopy.Journal of Volcanology and Geothermal Research, 304:324-335. https://doi.org/10.1016/j.jvolgeores.2015.09.005 de Menocal, P.B., 2004.African Climate Change and Faunal Evolution during the Pliocene-Pleistocene.Earth and Planetary Science Letters, 220(1-2):3-24. https://doi.org/10.1016/s0012-821x(04)00003-2 Deng, C.L., Zhu, R.X., Verosub, K.L., et al., 2004.Mineral Magnetic Properties of Loess/Paleosol Couplets of the Central Loess Plateau of China over the Last 1.2 Myr.Journal of Geophysical Research:Solid Earth, 109(B1):241-262. https://doi.org/10.1029/2003jb002532 Dixon, J.L., Chadwick, O.A., Vitousek, P.M., 2016.Climate-Driven Thresholds for Chemical Weathering in Postglacial Soils of New Zealand.Journal of Geophysical Research:Earth Surface, 121(9):1619-1634. https://doi.org/10.1002/2016jf003864 Dixon, J.L., Heimsath, A.M., Kaste, J., et al., 2009.Climate-Driven Processes of Hillslope Weathering.Geology, 37(11):975-978. https://doi.org/10.1130/g30045a.1 Dixon, J.B., Weed, S.B., 1989.Minerals in Soil Environments (2nd ed.).Soil Science Society of America, Madison, WI. Dou, Y., Li, J., Zhao, J., et al., 2014.Clay Mineral Distributions in Surface Sediments of the Liaodong Bay, Bohai Sea and Surrounding River Sediments:Sources and Transport Patterns.Continental Shelf Research, 73:72-82. https://doi.org/10.1016/j.csr.2013.11.023 Dou, Y., Yang, S., Liu, Z., et al., 2010.Clay Mineral Evolution in the Central Okinawa trough since 28 ka:Implications for Sediment Provenance and Paleoenvironmental Change.Palaeogeography, Palaeoclimatology, Palaeoecology, 288(1-4):108-117. https://doi.org/10.1016/j.palaeo.2010.01.040 Ehrmann, W., Seidel, M., Schmiedl, G., 2013.Dynamics of Late Quaternary North African Humid Periods Documented in the Clay Mineral Record of Central Aegean Sea Sediments.Global and Planetary Change, 107:186-195. https://doi.org/10.1016/j.gloplacha.2013.05.010 Eiriksdottir, E.S., Gislason, S.R., Oelkers, E.H., 2013.Does Temperature or Runoff Control the Feedback between Chemical Denudation and Climate? Insights from NE Iceland.Geochimica et Cosmochimica Acta, 107:65-81. https://doi.org/10.1016/j.gca.2012.12.034 Fairchild, I.J., Smith, C.L., Baker, A., et al., 2006.Modification and Preservation of Environmental Signals in Speleothems.Earth-Science Reviews, 75(1-4):105-153. https://doi.org/10.1016/j.earscirev.2005.08.003 Fang, Q., Hong, H.L., Chen, Z.Q., et al., 2017.Microbial Proliferation Coinciding with Volcanism during the Permian-Triassic Transition:New, Direct Evidence from Volcanic Ashes, South China.Palaeogeography, Palaeoclimatology, Palaeoecology, 474:164-186. https://doi.org/10.1016/j.palaeo.2016.06.026 Gingele, F.X., de Deckker, P., 2004.Fingerprinting Australia's Rivers with Clay Minerals and the Application for the Marine Record of Climate Change.Australian Journal of Earth Sciences, 51(3):339-348. https://doi.org/10.1111/j.1400-0952.2004.01061.x Gingele, F., de Deckker, P., Norman, M., 2007.Late Pleistocene and Holocene Climate of SE Australia Reconstructed from Dust and River Loads Deposited Offshore the River Murray Mouth.Earth and Planetary Science Letters, 255(3-4):257-272. https://doi.org/10.1016/j.epsl.2006.12.019 Gislason, S.R., Oelkers, E.H., Eiriksdottir, E.S., et al., 2009.Direct Evidence of the Feedback between Climate and Weathering.Earth and Planetary Science Letters, 277(1-2):213-222. https://doi.org/10.1016/j.epsl.2008.10.018 Goldich, S.S., 1938.A Study in Rock-Weathering.The Journal of Geology, 46(1):17-58. https://doi.org/10.1086/624619 Guan, H., Zhu, C., Zhu, T., et al., 2016.Grain Size, Magnetic Susceptibility and Geochemical Characteristics of the Loess in the Chaohu Lake Basin:Implications for the Origin, Palaeoclimatic Change and Provenance.Journal of Asian Earth Sciences, 117:170-183. https://doi.org/10.1016/j.jseaes.2015.12.013 Guo, Z., Biscaye, P., Wei, L., et al., 2000. Summer Monsoon Variations over the Last 1.2 Ma from the Weathering of Loess-Soil Sequences in China.Geophysical Research Letters, 27(12):1751-1754. https://doi.org/10.1029/1999gl008419 Guyot, J.L., Jouanneau, J.M., Soares, L., et al., 2007.Clay Mineral Composition of River Sediments in the Amazon Basin.Catena, 71(2):340-356. https://doi.org/10.1016/j.catena.2007.02.002 Gylesjö, S., Arnold, E., 2006.Clay Mineralogy of a Red Clay-Loess Sequence from Lingtai, the Chinese Loess Plateau.Global and Planetary Change, 51(3-4):181-194. https://doi.org/10.1016/j.gloplacha.2006.03.002 Hamann, Y., Ehrmann, W., Schmiedl, G., et al., 2009.Modern and Late Quaternary Clay Mineral Distribution in the Area of the SE Mediterranean Sea.Quaternary Research, 71(3):453-464. https://doi.org/10.1016/j.yqres.2009.01.001 Harper, R.J., Gilkes, R.J., 2004.Aeolian Influences on the Soils and Landforms of the Southern Yilgarn Craton of Semi-Arid, Southwestern Australia.Geomorphology, 59(1-4):215-235. https://doi.org/10.1016/j.geomorph.2003.07.018 Harris, S.E., Mix, A.C., 1999.Pleistocene Precipitation Balance in the Amazon Basin Recorded in Deep Sea Sediments.Quaternary Research, 51(1):14-26. https://doi.org/10.1006/qres.1998.2008 Hong, H.L., Fang, Q., Wang, C.W., et al., 2017.Constraints of Parent Magma on Altered Clay Minerals:A Case Study on the Ashes near the Permian-Triassic Boundary in Xinmin Section, Guizhou Province.Earth Science, 42(2):161-172 (in Chinese with English abstract). https://www.researchgate.net/profile/Qian_Fang6/publication/313913131_Constraints_of_Parent_Magma_on_Altered_Clay_Minerals_A_Case_Study_on_the_Ashes_near_the_Permin-Triassic_Boundary_in_Xinmin_Section_Guizhou_Province/links/58afab7345851503be9536e1/Constraints-of-Parent-Magma-on-Altered-Clay-Minerals-A-Case-Study-on-the-Ashes-near-the-Permin-Triassic-Boundary-in-Xinmin-Section-Guizhou-Province.pdf Hong, H., Cheng, F., Yin, K., et al., 2015.Three-Component Mixed-Layer Illite/Smectite/Kaolinite (I/S/K) Minerals in Hydromorphic Soils, South China.American Mineralogist, 100(8-9):1883-1891. https://doi.org/10.2138/am-2015-5170 Hong, H., Churchman, G.J., Gu, Y., et al., 2012.Kaolinite-Smectite Mixed-Layer Clays in the Jiujiang Red Soils and Their Climate Significance.Geoderma, 173-174:75-83. https://doi.org/10.1016/j.geoderma.2011.12.006 Hong, H., Churchman, G.J., Yin, K., et al., 2014.Randomly Interstratified Illite-Vermiculite from Weathering of Illite in Red Earth Sediments in Xuancheng, Southeastern China.Geoderma, 214-215:42-49. https://doi.org/10.1016/j.geoderma.2013.10.004 Hong, H., Fang, Q., Cheng, L., et al., 2016.Microorganism-Induced Weathering of Clay Minerals in a Hydromorphic Soil.Geochimica et Cosmochimica Acta, 184:272-288. https://doi.org/10.1016/j.gca.2016.04.015 Hong, H., Fang, Q., Wang, C., et al., 2017.Constraints of Parent Magma on Altered Clay Minerals:A Case Study on the Ashes near the Permin-Triassic Boundary in Xinmin Section, Guizhou Province.Earth Science, 42(2):161-172(in Chinese with English abstract). https://www.researchgate.net/publication/313913131_Constraints_of_Parent_Magma_on_Altered_Clay_Minerals_A_Case_Study_on_the_Ashes_near_the_Permin-Triassic_Boundary_in_Xinmin_Section_Guizhou_Province Hong, H., Gu, Y., Yin, K., et al., 2010.Red Soils with White Net-Like Veins and Their Climate Significance in South China.Geoderma, 160(2):197-207. https://doi.org/10.1016/j.geoderma.2010.09.019 Hošek, J., Hambach, U., Lisá, L., et al., 2015.An Integrated Rock-Magnetic and Geochemical Approach to Loess/Paleosol Sequences from Bohemia and Moravia (Czech Republic):Implications for the Upper Pleistocene Paleoenvironment in Central Europe.Palaeogeography, Palaeoclimatology, Palaeoecology, 418:344-358. https://doi.org/10.1016/j.palaeo.2014.11.024 Hu, P., Liu, Q., Heslop, D., et al., 2015.Soil Moisture Balance and Magnetic Enhancement in Loess-Paleosol Sequences from the Tibetan Plateau and Chinese Loess Plateau.Earth and Planetary Science Letters, 409:120-132. doi: 10.1016/j.epsl.2014.10.035 Hu, P., Liu, Q., Torrent, J., et al., 2013.Characterizing and Quantifying Iron Oxides in Chinese Loess/Paleosols:Implications for Pedogenesis.Eath and Planetary Science Letters, 369:271-283. https://www.sciencedirect.com/science/article/pii/S0012821X13001544 Hu, X., Wei, J., Xu, L., et al., 2009.Magnetic Susceptibility of the Quaternary Red Clay in Subtropical China and Its Paleoenvironmental Implications.Palaeogeography, Palaeoclimatology, Palaeoecology, 279(3-4):216-232. doi: 10.1016/j.palaeo.2009.05.016 Huggett, R.J., 1998.Soil Chronosequences, Soil Development, and Soil Evolution:A Critical Review.Catena, 32(3-4):155-172. doi: 10.1016/S0341-8162(98)00053-8 Inda, A.V., Torrent, J., Barrón, V., et al., 2013.Iron Oxides Dynamics in a Subtropical Brazilian Paleudult under Long-Term No-Tillage Management.Scientia Agricola, 70(1):48-54. https://doi.org/10.1590/s0103-90162013000100008 Jahn, B.M., Gallet, S., Han, J.M., 2001.Geochemistry of the Xining, Xifeng and Jixian Sections, Loess Plateau of China:Eolian Dust Provenance and Paleosol Evolution during the Last 140 ka.Chemical Geology, 178(1-4):71-94. https://doi.org/10.1016/s0009-2541(00)00430-7 Ji, J.F., 2004.High Resolution Hematite/Goethite Records from Chinese Loess Sequences for the Last Glacial-Interglacial Cycle:Rapid Climatic Response of the East Asian Monsoon to the Tropical Pacific.Geophysical Research Letters, 31(3):1-4. https://doi.org/10.1029/2003gl018975 Ji, J.F., Balsam, W., Chen, J., 2001.Mineralogic and Climatic Interpretations of the Luochuan Loess Section (China) Based on Diffuse Reflectance Spectrophotometry.Quaternary Research, 56(1):23-30. https://doi.org/10.1006/qres.2001.2238 Ji, J.F., Chen, J., Wang, H.T., 2012.Crystallinity of Illite from the Luochuan Loess-Paleosol Sequence, Shanxi Provice-Indicators Origin and Paleoclimate of Loess.Geological Review, 43(2):181-185(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1040618204000345 Jiang, H., Guo, G., Cai, X., et al., 2016.Geochemical Evidence of Windblown Origin of the Late Cenozoic Lacustrine Sediments in Beijing and Implications for Weathering and Climate Change.Palaeogeography, Palaeoclimatology, Palaeoecology, 446:32-43. https://doi.org/10.1016/j.palaeo.2016.01.017 Jordanova, D., Jordanova, N., Petrov, P., et al., 2010.Soil Development of Three Chernozem-Like Profiles from North Bulgaria Revealed by Magnetic Studies.Catena, 83(2-3):158-169. https://doi.org/10.1016/j.catena.2010.08.008 Kukla, G., Heller, F., Ming, L.X., et al., 1988.Pleistocene Climates in China Dated by Magnetic Susceptibility.Geology, 16(9):811.https://doi.org/10.1130/0091-7613(1988)016<0811:pcicdb>2.3.co;2 doi: 10.1130/0091-7613(1988)016<0811:pcicdb>2.3.co;2 Lascu, I., Feinberg, J.M., 2011.Speleothem Magnetism.Quaternary Science Reviews, 30(23-24):3306-3320. https://doi.org/10.1016/j.quascirev.2011.08.004 Leask, E. K., Ehlmann, B. L., 2016. Identifying and Quantifying Mineral Abundance through VSWIR Microimaging Spectroscopy: A Comparison to XRD and SEM. The Workshop on Hyperspectral Image & Signal Processing: Evolution in Remote Sensing. Lee, Y.I., Lim, H.S., Yoon, H.I., 2004.Geochemistry of Soils of King George Island, South Shetland Islands, West Antarctica:Implications for Pedogenesis in Cold Polar Regions.Geochimica et Cosmochimica Acta, 68(21):4319-4333. https://doi.org/10.1016/j.gca.2004.01.020 Li, C.A., Gu, Y.S., 1997.A Priliminary Study on Phytolith Assemblages and Its Paleoenvironmental Indication of the Vermicular Red Earth.Earth Science, 22(2):195-198 (in Chinese with English abstract). Li, J.H., Pan, Y.X., 2015.Application of Transmission Electron Microscopy in Earth Science.Earth Science, 45(9):1359-1382(in Chinese). http://www.formatex.org/microscopy3/pdf/pp122-131.pdf Liu, Q.S., Deng, C.L., Torrent, J., et al., 2007.Review of Recent Developments in Mineral Magnetism of the Chinese Loess.Quaternary Science Reviews, 26(3-4):368-385. https://doi.org/10.1016/j.quascirev.2006.08.004 Liu, T., Ding Z.L., Rutter, N., 1999.Comparison of Milankovitch Periods between Continental Loess and Deep Sea Records over the Last 2.5 Ma.Quaternary Science Reviews, 18(10-11):1205-1212. https://doi.org/10.1016/s0277-3791(98)00110-3 Liu, T., Ding, Z., 1993.Stepwise Coupling of Monsoon Circulations to Global Ice Volume Variations during the Late Cenozoic.Global and Planetary Change, 7(1-3):119-130. https://doi.org/10.1016/0921-8181(93)90044-o Liu, Z., Ma, J., Wei, G., et al., 2017.Magnetism of a Red Soil Core Derived from Basalt, Northern Hainan Island, China:Volcanic Ash versus Pedogenesis.Journal of Geophisical Research-Solid Earth, 122(3):1677-1696. https://www.researchgate.net/publication/314300053_Magnetism_of_a_red_soil_core_derived_from_basalt_northern_Hainan_Island_China_volcanic_ash_vs_pedogenesis_red_soil_volcanic_ash_vs_pedogenesis Liu, Z.F., Colin, C., Huang, W., et al., 2007.Climatic and Tectonic Controls on Weathering in South China and Indochina Peninsula:Clay Mineralogical and Geochemical Investigations from the Pearl, Red, and Mekong Drainage Basins.Geochemistry, Geophysics, Geosystems, 8(5):1-18. https://doi.org/10.1029/2006gc001490 Liu, Z.F., Colin, C., Li, X.J., et al., 2010.Clay Mineral Distribution in Surface Sediments of the Northeastern South China Sea and Surrounding Fluvial Drainage Basins:Source and Transport.Marine Geology, 277(1-4):48-60. https://doi.org/10.1016/j.margeo.2010.08.010 Liu, Z.F., Tuo, S.T., Colin, C., et al., 2008.Detrital Fine-Grained Sediment Contribution from Taiwan to the Northern South China Sea and Its Relation to Regional Ocean Circulation.Marine Geology, 255(3-4):149-155. https://doi.org/10.1016/j.margeo.2008.08.003 Liu, Z.F., Zhao, Y.L., Colin, C., et al., 2009.Chemical Weathering in Luzon, Philippines from Clay Mineralogy and Major-Element Geochemistry of River Sediments.Applied Geochemistry, 24(11):2195-2205. https://doi.org/10.1016/j.apgeochem.2009.09.025 Long, X.Y., Ji, J.F., Balsam, W., 2011.Rainfall-Dependent Transformations of Iron Oxides in a Tropical Saprolite Transect of Hainan Island, South China:Spectral and Magnetic Measurements.Journal of Geophysical Research-Earth Surface, 116:1-15. Long, X.Y., Ji, J.F., Barrón, V., et al., 2016.Climatic Thresholds for Pedogenic Iron Oxides under Aerobic Conditions:Processes and Their Significance in Paleoclimate Reconstruction.Quaternary Science Reviews, 150:264-277. https://doi.org/10.1016/j.quascirev.2016.08.031 Lu, S., Wang, S., Chen, Y., 2015.Palaeopedogenesis of Red Palaeosols in Yunnan Plateau, Southwestern China:Pedogenical, Geochemical and Mineralogical Evidences and Palaeoenvironmental Implication.Palaeogeography, Palaeoclimatology, Palaeoecology, 420:35-48. https://doi.org/10.1016/j.palaeo.2014.12.004 Maher, B.A., 1998.Magnetic Properties of Modern Soils and Quaternary Loessic Paleosols:Paleoclimatic Implications.Palaeogeography, Palaeoclimatology, Palaeoecology, 137(1-2):25-54. https://doi.org/10.1016/s0031-0182(97)00103-x Martinson, D.G., Pisias, N.G., Hays, J.D., et al., 1987.Age Dating and the Orbital Theory of the Ice Ages:Development of a High-Resolution 0 to 300 000-Year Chronostratigraphy.Quaternary Research, 27(1):1-29. https://doi.org/10.1016/0033-5894(87)90046-9 Murphy, R.J., Monteiro, S.T., 2013.Mapping the Distribution of Ferric Iron Minerals on a Vertical Mine Face Using Derivative Analysis of Hyperspectral Imagery (430-970 nm).ISPRS Journal of Photogrammetry and Remote Sensing, 75:29-39. https://doi.org/10.1016/j.isprsjprs.2012.09.014 Murphy, R.J., Schneider, S., Monteiro, S.T., 2014.Consistency of Measurements of Wavelength Position from Hyperspectral Imagery:Use of the Ferric Iron Crystal Field Absorption at~900 nm as an Indicator of Mineralogy.IEEE Transactions on Geoscience and Remote Sensing, 52(5):2843-2857. https://doi.org/10.1109/tgrs.2013.2266672 Nesbitt, H.W., Young, G.M., 1989.Formation and Diagenesis of Weathering Profiles.The Journal of Geology, 97(2):129-147. https://doi.org/10.1086/629290 Nocita, M., Stevens, A., van Wesemael, B.V., et al., 2014.Soil Spectroscopy:An Opportunity to be Seized.Global Change Biology, 21(1):10-11. https://doi.org/10.1111/gcb.12632 Nordt, L.C., Driese, S.D., 2010.New Weathering Index Improves Paleorainfall Estimates from Vertisols.Geology, 38(5):407-410. https://doi.org/10.1130/g30689.1 Osete, M.L., Martín-Chivelet, J., Rossi, C., et al., 2012.The Blake Geomagnetic Excursion Recorded in a Radiometrically Dated Speleothem.Earth and Planetary Science Letters, 353-354:173-181. https://doi.org/10.1016/j.epsl.2012.07.041 Railsback, L.B., Gibbard, P.L., Head, M.J., et al., 2015.An Optimized Scheme of Lettered Marine Isotope Substages for the Last 1.0 Million Years, and the Climatostratigraphic Nature of Isotope Stages and Substages.Quaternary Science Reviews, 111:94-106. https://doi.org/10.1016/j.quascirev.2015.01.012 Robert, C., 2004.Late Quaternary Variability of Precipitation in Southern California and Climatic Implications:Clay Mineral Evidence from the Santa Barbara Basin, ODP Site 893.Quaternary Science Reviews, 23(9-10):1029-1040. https://doi.org/10.1016/j.quascirev.2003.11.005 Rupp, K., Jungemann, C., Hong, S.M., et al., 2016.A Review of Recent Advances in the Spherical Harmonics Expansion Method for Semiconductor Device Simulation.Journal of Computational Electronics, 15(3):939-958. https://doi.org/10.1007/s10825-016-0828-z Schwertmann, U., 1993, Relations between Iron Oxides, Soil Color, and Soil Formation. In: Bigham, J. M., Ciolkosz, E. J., Luxmoore, R. J., eds., Soil Color SSSA Special Publication, 31: 51-70. Sheldon, N.D., Tabor, N.J., 2009.Quantitative Paleoenvironmental and Paleoclimatic Reconstruction Using Paleosols.Earth-Science Reviews, 95(1-2):1-52. https://doi.org/10.1016/j.earscirev.2009.03.004 Shen, J., Algeo, T.J., Zhou, L., et al., 2011.Volcanic Perturbations of the Marine Environment in South China Preceding the Latest Permian Mass Extinction and Their Biotic Effects.Geobiology, 10(1):82-103. https://doi.org/10.1111/j.1472-4669.2011.00306.x Simonson, R.W., 1959.Outline of a Generalized Theory of Soil Genesis 1.Soil Science Society of America Journal, 23(2):152. https://doi.org/10.2136/sssaj1959.03615995002300020021x Soriano-Disla, J.M., Janik, L.J., Rossel, R.A.V., et al., 2013.The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties.Applied Spectroscopy Reviews, 49(2):139-186. https://doi.org/10.1080/05704928.2013.811081 Stockmann, U., Minasny, B., McBratney, A., 2011.Advances in Agronomy Quantifying Processes of Pedogenesis.Advances in Agronomy, 150:1-74. https://doi.org/10.1016/b978-0-12-386473-4.00001-4 Stuut, J.B.W., Temmesfeld, F., de Deckker, P., 2014.A 550 ka Record of Aeolian Activity near North West Cape, Australia:Inferences from Grain-Size Distributions and Bulk Chemistry of SE Indian Ocean Deep-Sea Sediments.Quaternary Science Reviews, 83:83-94. https://doi.org/10.1016/j.quascirev.2013.11.003 Sun, Y., Kutzbach, J., An, Z., et al., 2015a.Astronomical and Glacial Forcing of East Asian Summer Monsoon Variability.Quaternary Science Reviews, 115:132-142. https://doi.org/10.1016/j.quascirev.2015.03.009 Sun, Y., Ma, L., Bloemendal, J., et al., 2015b.Miocene Climate Change on the Chinese Loess Plateau:Possible Links to the Growth of the Northern Tibetan Plateau and Global Cooling.Geochemistry, Geophysics, Geosystems, 16(7):2097-2108. https://doi.org/10.1002/2015gc005750 Sun, Z., Owens, P.R., Han, C., et al., 2016a.A Quantitative Reconstruction of a Loess-Paleosol Sequence Focused on Paleosol Genesis:An Example from a Section at Chaoyang, China.Geoderma, 266:25-39. https://doi.org/10.1016/j.geoderma.2015.12.012 Sun, Y., Liang, L., Bloemendal, J., et al., 2016b.High-Resolution Scanning XRF Investigation of Chinese Loess and Its Implications for Millennial-Scale Monsoon Variability.Journal of Quaternary Science, 31(3):191-202. https://doi.org/10.1002/jqs.2856 Thamban, M., Rao, V.P., Schneider, R.R., 2002.Reconstruction of Late Quaternary Monsoon Oscillations Based on Clay Mineral Proxies Using Sediment Cores from the Western Margin of India.Marine Geology, 186(3-4):527-539. https://doi.org/10.1016/s0025-3227(02)00268-2 Torrent, J., Liu, Q.S., Bloemendal, J., et al., 2007.Magnetic Enhancement and Iron Oxides in the Upper Luochuan Loess-Paleosol Sequence, Chinese Loess Plateau.Soil Science Society of America Journal, 71(5):1570. https://doi.org/10.2136/sssaj2006.0328 Torrent, J., Schwertmann, U., Fechter, H., et al., 1983.Quantitative Relationships between Soil Color and Hematite Content.Soil Science, 136(6):354-358. https://doi.org/10.1097/00010694-198312000-00004 Turpault, M.P., Righi, D., Utérano, C., 2008.Clay Minerals:Precise Markers of the Spatial and Temporal Variability of the Biogeochemical Soil Environment.Geoderma, 147(3-4):108-115. https://doi.org/10.1016/j.geoderma.2008.07.012 Újvári, G., Varga, A., Raucsik, B., et al., 2014.The Paks Loess-Paleosol Sequence:A Record of Chemical Weathering and Provenance for the Last 800 ka in the Mid-Carpathian Basin.Quaternary International, 319:22-37. https://doi.org/10.1016/j.quaint.2012.04.004 Varga, A., Újvári, G., Raucsik, B., 2011.Tectonic versus Climatic Control on the Evolution of a Loess-Paleosol Sequence at Beremend, Hungary:An Integrated Approach Based on Paleoecological, Clay Mineralogical, and Geochemical Data.Quaternary International, 240(1-2):71-86. https://doi.org/10.1016/j.quaint.2010.10.032 Wang, C., Hong, H., Abels, H.A., et al., 2015.Early Middle Miocene Tectonic Uplift of the Northwestern Part of the Qinghai-Tibetan Plateau Evidenced by Geochemical and Mineralogical Records in the Western Tarim Basin.International Journal of Earth Sciences, 105(3):1021-1037. https://doi.org/10.1007/s00531-015-1212-0 Wang, Q., Yang.S.Y., 2013.Clay Mineralogy Indicates the Holocene Monsoon Climate in the Changjiang (Yangtze River) Catchment, China.Applied Clay Science, 74:28-36. https://doi.org/10.1016/j.clay.2012.08.011 White, A.F., Brantley, S.L., 2003.The Effect of Time on the Weathering of Silicate Minerals:Why do Weathering Rates Differ in the Laboratory and Field? Chemical Geology, 202(3-4):479-506. https://doi.org/10.1016/j.chemgeo.2003.03.001 Wilson, M.J., 2004.Weathering of the Primary Rock-Forming Minerals:Processes, Products and Rates.Clay Minerals, 39(3):233-266. https://doi.org/10.1180/0009855043930133 Xi, C.F., 1991.On the Red Weathering Crusts of Southern China.Quaternary Sciences, (1):1-8(in Chinese with English abstract). Xie, Q., Chen, T., Zhou, H., et al., 2013a.Mechanism of Palygorskite Formation in the Red Clay Formation on the Chinese Loess Plateau, Northwest China.Geoderma, 192:39-49. https://doi.org/10.1016/j.geoderma.2012.07.021 Xie, S., Evershed, R.P., Huang, X., et al., 2013b.Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China.Geology, 41(8):827-830. https://doi.org/10.1130/g34318.1 Yang, J.D., Chen, J., An, Z.S., et al., 2000.Variations in 87Sr/86Sr Ratios of Calcites in Chinese Loess:A Proxy for Chemical Weathering Associated with the East Asian Summer Monsoon.Palaeogeography, Palaeoclimatology, Palaeoecology, 157(1-2):151-159. https://doi.org/10.1016/s0031-0182(99)00159-5 Yang, S., Jung, H., Li, C., 2004.Two Unique Weathering Regimes in the Changjiang and Huanghe Drainage Basins:Geochemical Evidence from River Sediments.Sedimentary Geology, 164(1-2):19-34. https://doi.org/10.1016/j.sedgeo.2003.08.001 Yang, X., Peng, X., Qiang, X., et al., 2016.Chemical Weathering Intensity and Terrigenous Flux in South China during the Last 90 000 Years-Evidence from Magnetic Signals in Marine Sediments.Frontiers in Earth Science, 4:1-9. https://doi.org/10.3389/feart.2016.00047 Yin, K., Hong, H., Churchman, G.J., et al., 2013.Hydroxy-Interlayered Vermiculite Genesis in Jiujiang Late-Pleistocene Red Earth Sediments and Significance to Climate.Applied Clay Science, 74:20-27. https://doi.org/10.1016/j.clay.2012.09.017 Yu, Z., Wan, S., Colin, C., et al., 2016.Co-Evolution of Monsoonal Precipitation in East Asia and the Tropical Pacific ENSO System since 2.36 Ma:New Insights from High-Resolution Clay Mineral Records in the West Philippine Sea.Earth and Planetary Science Letters, 446:45-55. https://doi.org/10.1016/j.epsl.2016.04.022 Zeng, F.M., 2016.Provenance of the Late Quaternary Loess Deposit in the Qinghai Lake Region.Earth Science, 41(1):131-138(in Chinese with English abstract). Zeng, F.M., Xiang, S.Y., Liu, X.J., et al., 2014.Progress in Tracing Provenance of Eolian Deposits in Chinese Loess Plateau.Earth Science, 39(2):125-140(in Chinese with English abstract). Zeng, M., Song, Y., An, Z., et al., 2014.Clay Mineral Records of the Erlangjian Drill Core Sediments from the Lake Qinghai Basin, China.Science China Earth Sciences, 57(8):1846-1859. https://doi.org/10.1007/s11430-013-4817-9 Zhang, W., Yu, L., Lu, M., et al., 2009.East Asian Summer Monsoon Intensity Inferred from Iron Oxide Mineralogy in the Xiashu Loess in Southern China.Quaternary Science Reviews, 28(3-4):345-353. https://doi.org/10.1016/j.quascirev.2008.10.002 Zhao, G., Mu, X., Wen, Z., et al., 2013.Soil Erosion, Conservation, and Eco-Environment Changes in the Loess Plateau of China.Land Degradation & Development, 15:499-510. https://doi.org/10.1002/ldr.2246 Zhao, L., 2005.Variations of Illite/Chlorite Ratio in Chinese Loess Sections during the Last Glacial and Interglacial Cycle:Implications for Monsoon Reconstruction.Geophysical Research Letters, 32(20):1-4. https://doi.org/10.1029/2005gl024145 Zhao, L., Hong, H., Fang, Q., et al., 2017.Monsoonal Climate Evolution in Southern China since 1.2 Ma:New Constraints from Fe-Oxide Records in Red Earth Sediments from the Shengli Section, Chengdu Basin.Palaeogeography, Palaeoclimatology, Palaeoecology, 473:1-15. https://doi.org/10.1016/j.palaeo.2017.02.027 Zhao, L.L., Hong, H.L., Yin, K., et al., 2015.Characteristics and Palaeoclimate Significance of Clay Minerals in the Red Earth Sediment in Chengdu Basin.Geological Science and Technology Information, 34(3):80-86 (in Chinese with English abstract). https://www.researchgate.net/publication/302582124_characteristics_and_paleoclimate_significance_of_clay_minerals_in_the_red_earth_sediment_in_chengdu_basin Zheng, G., Jiao, C., Zhou, S., et al., 2016.Analysis of Soil Chronosequence Studies Using Reflectance Spectroscopy.International Journal of Remote Sensing, 37(8):1881-1901. https://doi.org/10.1080/01431161.2016.1163751 Zhu, Z., Feinberg, J.M., Xie, S., et al., 2017.Holocene ENSO-Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China.Proceedings of the National Academy of Sciences, 114(5):852-857. https://doi.org/10.1073/pnas.1610930114 Zhu, Z., Zhang, S., Tang, C., et al., 2012.Magnetic Fabric of Stalagmites and Its Formation Mechanism.Geochemistry, Geophysics, Geosystems, 13(6):1-12. https://doi.org/10.1029/2011gc003869 程峰, 洪汉烈, 顾延生, 等, 2014.广西百色盆地更新世沉积物中粘土矿物特征及其古气候指示意义.第四纪研究, 34(3):560-569. http://edu.wanfangdata.com.cn/Periodical/Detail/dsjyj201403010 洪汉烈, 方谦, 王朝文, 等, 2017.岩浆母质对蚀变粘土矿物的约束:以贵州新民剖面P-T界线附近火山灰层为例.地球科学, 42(2):161-172. http://www.earth-science.net/WebPage/Article.aspx?id=3423 季峻峰, 陈骏, 王洪涛, 2012.陕西洛川黄土-古土壤剖面中伊利石结晶度——黄土物质来源和古气候环境的指示.地质论评, 43(2):181-185. http://edu.wanfangdata.com.cn/Periodical/Detail/dsjyj201403009 李长安, 顾延生, 1997.网纹红土中的植硅石组合及其环境意义的初步研究.地球科学, 22(2):195-198. http://www.earth-science.net/WebPage/Article.aspx?id=485 李金华, 潘永信, 2015, 透射电子显微镜在地球科学研究中的应用.地球科学, 45(9):1359-1382. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201509010.htm 席承藩, 1991, 论华南红色风化壳.第四纪研究, (1):1-8. http://www.irgrid.ac.cn/handle/1471x/107131?mode=full 曾方明, 2016.青海湖地区晚第四纪黄土的物质来源.地球科学, 41(1):131-138. http://www.earth-science.net/WebPage/Article.aspx?id=3226 曾方明, 向树元, 刘向军, 等, 2014.黄土高原风尘堆积物源研究进展.地球科学, 39(2):125-140. http://www.earth-science.net/WebPage/Article.aspx?id=2813 赵璐璐, 洪汉烈, 殷科, 等, 2015.成都盆地红土沉积物中黏土矿物的特征及其古气候指示意义.地质科技情报, 34(3):80-86. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201503010.htm