• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    喜马拉雅造山带的部分熔融与淡色花岗岩成因机制

    张泽明 康东艳 丁慧霞 田作林 董昕 秦圣凯 穆虹辰 李梦梅

    张泽明, 康东艳, 丁慧霞, 田作林, 董昕, 秦圣凯, 穆虹辰, 李梦梅, 2018. 喜马拉雅造山带的部分熔融与淡色花岗岩成因机制. 地球科学, 43(1): 82-98. doi: 10.3799/dqkx.2018.005
    引用本文: 张泽明, 康东艳, 丁慧霞, 田作林, 董昕, 秦圣凯, 穆虹辰, 李梦梅, 2018. 喜马拉雅造山带的部分熔融与淡色花岗岩成因机制. 地球科学, 43(1): 82-98. doi: 10.3799/dqkx.2018.005
    Zhang Zeming, Kang Dongyan, Ding Huixia, Tian Zuolin, Dong Xin, Qin Shengkai, Mu Hongchen, Li Mengmei, 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1): 82-98. doi: 10.3799/dqkx.2018.005
    Citation: Zhang Zeming, Kang Dongyan, Ding Huixia, Tian Zuolin, Dong Xin, Qin Shengkai, Mu Hongchen, Li Mengmei, 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1): 82-98. doi: 10.3799/dqkx.2018.005

    喜马拉雅造山带的部分熔融与淡色花岗岩成因机制

    doi: 10.3799/dqkx.2018.005
    基金项目: 

    国家自然科学基金项目 41230205

    国家科技重点研究发项目 2016YFC060310

    国家自然科学基金项目 41602062

    国家自然科学基金项目 41472056

    详细信息
      作者简介:

      张泽明(1961-), 男, 研究员, 主要从事造山带变质作用与构造演化研究

    • 中图分类号: P581

    Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites

    • 摘要: 喜马拉雅造山带核部由高级变质岩和淡色花岗岩组成,是研究大陆碰撞造山带部分熔融与花岗岩成因的天然实验室.基于最新研究成果,探讨了喜马拉雅造山带核部变质作用的条件、类型以及P-T轨迹、部分熔融的方式与程度及熔体成分以及变质作用与部分熔融的时间和持续过程.相关证据表明,造山带核部经历了高压麻粒岩相至榴辉岩相变质作用,具有以增温增压进变质和近等温降压退变质为特征的顺时针型P-T轨迹.这些高压变质岩石发生了长期持续的高温变质与部分熔融.在泥质岩石的进变质过程中白云母和黑云母脱水熔融可以形成不同成分的熔体.同时,总结了淡色花岗岩的形成时间、地球化学特征和源区熔融方式,结果表明碰撞造山过程中加厚下地壳的脱水熔融形成了喜马拉雅造山带的淡色花岗岩.

       

    • 图  1  喜马拉雅造山带地质简图

      Yin and Harrison(2000)Guillot et al.(2008)Kohn(2014)Ding et al.(2016a)修改;MFT.主前缘逆冲断裂;MBT.主边界逆冲断裂;MCT.主中央逆冲断裂;STD.藏南拆离系.图中标注了较深入研究的中、高级变质岩的地点与变质年龄,资料来源:ADM(Ama Drime Massif, Kellett et al., 2014), Annapurna(Kohn and Corrie, 2011), Everest(Cottle et al., 2009b), Gianbul(Horton et al., 2015), Jomolhari(Regis et al., 2014), Kaghan(Kaneko et al., 2003), Kali Gandaki(Iaccarino et al., 2015), Mabja dome(Lee and Whitehouse, 2007), Namche Barwa Syntaxis(Zhang et al., 2015), Nyalam(Wang et al., 2015a, 2015b), Sikkim(Rubatto et al., 2013), Tso Morari(Donaldson et al., 2013), Yadong(Zhang et al., 2017a)和Yardoi dome(Ding et al., 2016a, 2016b).变质作用类型:MP.中压;HP.高压;UHP.超高压

      Fig.  1.  Simplified geologic map of the Himalayan orogen

      图  2  高喜马拉雅岩系变质作用P-T轨迹

      变质相:AM.角闪岩相;BS.蓝片岩相;EA.绿帘角闪岩相;Ec.榴辉岩相;G.麻粒岩相;HPG.高压麻粒岩相;PS.泥质岩固相线;MS.基性岩固相线;本文矿物代号:Am.角闪石;And.红柱石;Bt.黑云母;Cpx.单斜辉石;Crd.堇青石;Gt.石榴石;Kf.钾长石;Ilm.钛铁矿;Ky.蓝晶石;L.熔体;Ms.白云母;Pl.斜长石;Qz.石英;Rt.金红石;Sil.夕线石

      Fig.  2.  Metamorphic P-T paths of the Greater Himalayan sequence

      图  3  高喜马拉雅岩系的变质作用P-T-t轨迹以及白云母与黑云母脱水熔融和熔体结晶的时间与持续过程

      Gou et al.(2016)张泽明等(2017)修改

      Fig.  3.  Metamorphic P-T-t path of the Greater Himalayan sequence, showing the timing and duration of muscovite-and biotite-dehydration, and melt crystallization

      图  4  泥质麻粒岩的P-T视剖图

      a.矿物组合及稳定条件;b.熔体体积;c~f.分别为石榴石、斜长石、黑云母和白云母的体积.暖色代表含量高,冷色代表含量低,具体含量见图中数字(%)

      Fig.  4.  P-T pseudosections of the pelitic granulite

      图  5  泥质麻粒岩进变质过程中矿物和熔体体积变化

      Fig.  5.  Calculated changes of model proportions of minerals and melt during the increasing temperature (600-900 ℃) and pressure (0.7-1.6 GPa) prograde metamorphism of the pelitic granulite

      图  6  泥质麻粒岩进变质部分熔融过程中熔体成分变化

      图中箭头指示熔融程度增加.喜马拉雅淡色花岗岩的成分范围据吴褔元等(2015).GHL.高喜马拉雅淡色花岗岩;THL.特提斯喜马拉雅淡色花岗岩

      Fig.  6.  Calculated changes of melt compositions during the increasing temperature (600-900 ℃) and pressure (0.7-1.6 GPa) prograde metamorphism of the pelitic granulite

      表  1  泥质麻粒岩进变质过程中所形成的熔体体积与成分计算结果

      Table  1.   Calculated mode and composition of melt of the pelitic granulites during the prograde metamorphism

      计算条件 P(GPa) 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.38 1.39 1.40 1.45 1.50 1.55 1.60
      T(℃) 700 717 733 750 767 783 800 817 833 850 867 883 900 825 828
      熔体体积 体积含量(%) 1.64 2.57 3.44 4.17 5.08 6.24 8.33 10.69 21.71 24.20 26.36 27.47 28.79 14.99 21.30
      熔体成分(%) SiO2 74.58 74.17 73.88 73.49 73.12 72.76 72.37 72.02 71.76 71.63 71.53 71.32 71.05 70.84 70.61
      Al2O3 15.29 15.44 15.53 15.68 15.76 15.81 15.82 15.87 15.92 15.98 16.03 16.11 16.23 16.30 16.38
      FeO 0.33 0.37 0.41 0.45 0.50 0.55 0.57 0.60 0.60 0.58 0.59 0.65 0.69 0.76 0.84
      MgO 0.06 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.10 0.12 0.13 0.14 0.15
      CaO 0.41 0.46 0.51 0.56 0.64 0.73 0.85 0.96 1.06 1.14 1.17 1.26 1.35 1.43 1.51
      Na2O 6.70 6.46 6.23 6.10 5.66 5.14 4.25 3.69 3.30 3.13 3.12 2.98 2.87 2.73 2.58
      K2O 2.65 3.04 3.38 3.65 4.23 4.92 6.06 6.78 7.27 7.44 7.47 7.56 7.68 7.79 7.92
      H2O 14.01 13.33 12.77 12.31 11.60 10.91 9.93 9.40 9.07 8.97 8.93 8.43 8.07 7.70 7.30
      标准矿物 Or 15.64 17.94 19.96 21.59 25.02 29.09 35.81 40.05 42.96 43.96 44.12 44.68 45.37 46.05 46.78
      Ab 56.67 54.70 52.74 51.57 47.90 43.46 35.92 31.22 27.90 26.46 26.37 25.24 24.24 23.08 21.87
      An 2.03 2.30 2.52 2.79 3.20 3.64 4.22 4.77 5.26 5.67 5.82 6.25 6.72 7.11 7.51
      下载: 导出CSV
    • Aikman, A.B., Harrison, T.M., Hermann, J., 2012.The Origin of Eo-and Neo-Himalayan Granitoids, Eastern Tibet.Journal of Asian Earth Sciences, 58:143-157. https://doi.org/10.1016/j.jseaes.2012.05.018
      Aikman, A.B., Harrison, T.M., Lin, D., 2008.Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet.Earth and Planetary Science Letters, 274(1-2):14-23. https://doi.org/10.1016/j.epsl.2008.06.038
      Ambrose, T.K., Larson, K.P., Guilmette, C., et al., 2015.Lateral Extrusion, Underplating, and Out-of-Sequence Thrusting within the Himalayan Metamorphic Core, Kanchenjunga, Nepal.Lithosphere, 7(4):441-464. https://doi.org/10.1130/l437.1
      Anczkiewicz, R., Chakraborty, S., Dasgupta, S., et al., 2014.Timing, Duration and Inversion of Prograde Barrovian Metamorphism Constrained by High Resolution Lu-Hf Garnet Dating:A Case Study from the Sikkim Himalaya, NE India.Earth and Planetary Science Letters, 407:70-81. https://doi.org/10.1016/j.epsl.2014.09.035
      Aoya, M., Wallis, S.R., Terada, K., et al., 2005.North-South Extension in the Tibetan Crust Triggered by Granite Emplacement.Geology, 33(11):853. https://doi.org/10.1130/g21806.1
      Carosi, R., Montomoli, C., Langone, A., et al., 2014.Eocene Partial Melting Recorded in Peritectic Garnets from Kyanite-Gneiss, Greater Himalayan Sequence, Central Nepal.Geological Society, London, Special Publications, 412(1):111-129. https://doi.org/10.1144/sp412.1
      Chakungal, J., Dostal, J., Grujic, D., et al., 2010.Provenance of the Greater Himalayan Sequence:Evidence from Mafic Granulites and Amphibolites in NW Bhutan.Tectonophysics, 480(1-4):198-212. https://doi.org/10.1016/j.tecto.2009.10.014
      Coleman, M.E., 1998.U-Pb Constraints on Oligocene-Miocene Deformation and Anatexis within the Central Himalaya, Marsyandi Valley, Nepal.American Journal of Science, 298(7):553-571. https://doi.org/10.2475/ajs.298.7.553
      Corrie, S.L., Kohn, M.J., 2011.Metamorphic History of the Central Himalaya, Annapurna Region, Nepal, and Implications for Tectonic Models.Geological Society of America Bulletin, 123(9-10):1863-1879. https://doi.org/10.1130/b30376.1
      Corrie, S.L., Kohn, M.J., Vervoort, J.D., 2010.Young Eclogite from the Greater Himalayan Sequence, Arun Valley, Eastern Nepal:P-T-t Path and Tectonic Implications.Earth and Planetary Science Letters, 289(3-4):406-416. https://doi.org/10.1016/j.epsl.2009.11.029
      Cottle, J.M., Jessup, M.J., Newell, D.L., et al., 2007.Structural Insights into the Early Stages of Exhumation along an Orogen-Scale Detachment:The South Tibetan Detachment System, Dzakaa Chu Section, Eastern Himalaya.Journal of Structural Geology, 29(11):1781-1797. https://doi.org/10.1016/j.jsg.2007.08.007
      Cottle, J.M., Jessup, M.J., Newell, D.L., et al., 2009a.Geochronology of Granulitized Eclogite from the Ama Drime Massif:Implications for the Tectonic Evolution of the South Tibetan Himalaya.Tectonics, 28(1):TC1002. https://doi.org/10.1029/2008tc002256
      Cottle, J.M., Larson, K.P., Kellett, D.A., 2015a.How does the Mid-Crust Accommodate Deformation in Large, Hot Collisional Orogens? A Review of Recent Research in the Himalayan Orogen.Journal of Structural Geology, 78:119-133. https://doi.org/10.1016/j.jsg.2015.06.008
      Cottle, J.M., Searle, M.P., Horstwood, M.S.A., et al., 2009b.Timing of Midcrustal Metamorphism, Melting, and Deformation in the Mount Everest Region of Southern Tibet Revealed by U(-Th)-Pb Geochronology.The Journal of Geology, 117(6):643-664. https://doi.org/10.1086/605994
      Cottle, J.M., Searle, M.P., Jessup, M.J., et al., 2015b.Rongbuk Re-Visited:Geochronology of Leucogranites in the Footwall of the South Tibetan Detachment System, Everest Region, Southern Tibet.Lithos, 227:94-106. https://doi.org/10.1016/j.lithos.2015.03.019
      Daniel, C.G., Hollister, L.S., Parrish, R.R., et al., 2003.Exhumation of the Main Central Thrust from Lower Crustal Depths, Eastern Bhutan Himalaya.Journal of Metamorphic Geology, 21(4):317-334. https://doi.org/10.1046/j.1525-1314.2003.00445.x
      Dasgupta, S., Chakraborty, S., Neogi, S., 2009.Petrology of an Inverted Barrovian Sequence of Metapelites in Sikkim Himalaya, India:Constraints on the Tectonics of Inversion.American Journal of Science, 309(1):43-84. https://doi.org/10.2475/01.2009.02
      Dasgupta, S., Ganguly, J., Neogi, S., 2004.Inverted Metamorphic Sequence in the Sikkim Himalayas:Crystallization History, P-T Gradient and Implications.Journal of Metamorphic Geology, 22(5):395-412. https://doi.org/10.1111/j.1525-1314.2004.00522.x
      Ding, H.X., Zhang, Z.M., Dong, X., et al., 2016a.Early Eocene (c.50 Ma) Collision of the Indian and Asian Continents:Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet.Earth and Planetary Science Letters, 435:64-73. https://doi.org/10.1016/j.epsl.2015.12.006
      Ding, H.X., Zhang, Z.M., Hu, K.M., et al., 2016b.P-T-t-D Paths of the North Himalayan Metamorphic Rocks:Implications for the Himalayan Orogeny.Tectonophysics, 683:393-404. https://doi.org/10.1016/j.tecto.2016.06.035
      Ding, L., Kapp, P., Wan, X.Q., 2005.Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet.Tectonics, 24(3):TC3001. https://doi.org/10.1029/2004tc001729
      Donaldson, D.G., Webb, A.A.G., Menold, C.A., et al., 2013.Petrochronology of Himalayan Ultrahigh-Pressure Eclogite.Geology, 41(8):835-838. https://doi.org/10.1130/g33699.1
      Finch, M., Hasalova, P., Weinberg, R.F., et al., 2014.Switch from Thrusting to Normal Shearing in the Zanskar Shear Zone, NW Himalaya:Implications for Channel Flow.Geological Society of America Bulletin, 126(7-8):892-924. https://doi.org/10.1130/b30817.1
      Gaidies, F., Petley-Ragan, A., Chakraborty, S., et al., 2015.Constraining the Conditions of Barrovian Metamorphism in Sikkim, India:P-T-t Paths of Garnet Crystallization in the Lesser Himalayan Belt.Journal of Metamorphic Geology, 33(1):23-44. https://doi.org/10.1111/jmg.12108
      Ganguly, J., Dasgupta, S., Cheng, W.J., et al., 2000.Exhumation History of a Section of the Sikkim Himalayas, India:Records in the Metamorphic Mineral Equilibria and Compositional Zoning of Garnet.Earth and Planetary Science Letters, 183(3-4):471-486. https://doi.org/10.1016/s0012-821x(00)00280-6
      Gao, L.E., Zeng, L.S., 2014.Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet.Geochimica et Cosmochimica Acta, 130:136-155. https://doi.org/10.1016/j.gca.2014.01.003
      Gao, L.E., Zeng, L.S., Asimow, P.D., 2017.Contrasting Geochemical Signatures of Fluid-Absent versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites.Geology, 45(1):39-42. https://doi.org/10.1130/g38336.1
      Gao, L.E., Zeng, L.S., Gao, J.H., et al., 2016.Oligocene Crustal Anatexis in the Tethyan Himalaya, Southern Tibet.Lithos, 264:201-209. https://doi.org/10.1016/j.lithos.2016.08.038
      Gao, L.E., Zeng, L.S., Xie, K.J., 2012.Eocene High Grade Metamorphism and Crustal Anatexis in the North Himalaya Gneiss Domes, Southern Tibet.Chinese Science Bulletin, 57(6):639-650. https://doi.org/10.1007/s11434-011-4805-4
      Godin, L., Grujic, D., Law, R.D., et al., 2006.Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones:An Introduction.Geological Society, London, Special Publications, 268:1-23. doi: 10.1144/GSL.SP.2006.268
      Godin, L., Parrish, R.R., Brown, R.L., et al., 2001.Crustal Thickening Leading to Exhumation of the Himalayan Metamorphic Core of Central Nepal:Insight from U-Pb Geochronology and 40Ar/39Ar Thermochronology.Tectonics, 20(5):729-747. https://doi.org/10.1029/2000tc001204
      Goscombe, B., Gray, D., Hand, M., 2006.Crustal Architecture of the Himalayan Metamorphic Front in Eastern Nepal.Gondwana Research, 10(3-4):232-255. https://doi.org/10.1016/j.gr.2006.05.003
      Gou, Z.B., Zhang, Z.M., Dong, X., et al., 2016.Petrogenesis and Tectonic Implications of the Yadong Leucogranites, Southern Himalaya.Lithos, 256-257:300-310. https://doi.org/10.1016/j.lithos.2016.04.009
      Groppo, C., Lombardo, B., Rolfo, F., et al., 2007.Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range (Eastern Himalayas).Journal of Metamorphic Geology, 25(1):51-75. https://doi.org/10.1111/j.1525-1314.2006.00678.x
      Groppo, C., Rolfo, F., Indares, A., 2012.Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal:The Effect of Decompression and Implications for the 'Channel Flow' Model.Journal of Petrology, 53(5):1057-1058. https://https://doi.org.org/10.1093/petrology/egs009
      Groppo, C., Rolfo, F., Mosca, P., 2013.The Cordierite-Bearing Anatectic Rocks of the Higher Himalayan Crystallines (Eastern Nepal):Low-Pressure Anatexis, Melt Productivity, Melt Loss and the Preservation of Cordierite.Journal of Metamorphic Geology, 31(2):187-204. https://doi.org/10.1111/jmg.12014
      Groppo, C., Rubatto, D., Rolfo, F., et al., 2010.Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley, Eastern Nepal Himalaya).Lithos, 118(3-4):287-301. https://doi.org/10.1016/j.lithos.2010.05.003
      Grujic, D., Warren, C.J., Wooden, J.L., 2011.Rapid Synconvergent Exhumation of Miocene-Aged Lower Orogenic Crust in the Eastern Himalaya.Lithosphere, 3(5):346-366. https://doi.org/10.1130/l154.1
      Guillot, S., Le Fort, P., 1995.Geochemical Constraints on the Bimodal Origin of High Himalayan Leucogranites.Lithos, 35(3-4):221-234. https://doi.org/10.1016/0024-4937(94)00052-4
      Guillot, S., Mahéo, G., de Sigoyer, J., et al., 2008.Tethyan and Indian Subduction Viewed from the Himalayan High-to Ultrahigh-Pressure Metamorphic Rocks.Tectonophysics, 451(1-4):225-241. https://doi.org/10.1016/j.tecto.2007.11.059
      Guilmette, C., Indares, A., Hébert, R., 2011.High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications.Lithos, 124(1-2):66-81. https://doi.org/10.1016/j.lithos.2010.09.003
      Guo, Z.F., Wilson, M., 2012.The Himalayan Leucogranites:Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting.Gondwana Research, 22(2):360-376. https://doi.org/10.1016/j.gr.2011.07.027
      Harris, N.B.W., Ayres, M.W., Massey, J.A., 1995.Geochemistry of Granitic Melts Produced during the Incongruent Melting of Muscovite:Implications for the Extraction of Himalayan Leucogranite Magmas.Journal of Geophysical Research:Solid Earth, 100(B8):15767-15777. https://doi.org/10.1029/94jb02623
      Harris, N.B.W., Caddick, M., Kosler, J., et al., 2004.The Pressure-Temperature-Time Path of Migmatites from the Sikkim Himalaya.Journal of Metamorphic Geology, 22(3):249-264. https://doi.org/10.1111/j.1525-1314.2004.00511.x
      Harris, N.B.W., Inger, S., Massey, J., 1993.The Role of Fluids in the Formation of High Himalayan Leucogranites.Geological Society, London, Special Publications, 74:391-400. doi: 10.1144/GSL.SP.1993.074.01.26
      Harris, N.B.W., Massey, J.A., 1994.Decompression and Anatexis of Himalayan Metapelites.Tectonics, 13(6):1537-1546. https://doi.org/10.1029/94tc01611
      Harrison, T.M., Grove, M., Lovera, O.M., et al., 1998.A Model for the Origin of Himalayan Anatexis and Inverted Metamorphism.Journal of Geophysical Research:Solid Earth, 103(B11):27017-27032. https://doi.org/10.1029/98jb02468
      Hodges, K.V., 2000.Tectonics of the Himalaya and Southern Tibet from Two Perspectives.Geological Society of America Bulletin, 112(3):324-350.https://doi.org/10.1130/0016-7606(2000)112<324:tothas>2.0.co;2 doi: 10.1130/0016-7606(2000)112<324:tothas>2.0.co;2
      Horton, F., Lee, J., Hacker, B., et al., 2015.Himalayan Gneiss Dome Formation in the Middle Crust and Exhumation by Normal Faulting:New Geochronology of Gianbul Dome, Northwestern India.Geological Society of America Bulletin, 127(1-2):162-180. https://doi.org/10.1130/b31005.1
      Hou, Z.Q., Zheng, Y.C., Zeng, L.S., et al., 2012.Eocene-Oligocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen.Earth and Planetary Science Letters, 349-350:38-52. https://doi.org/10.1016/j.epsl.2012.06.030
      Iaccarino, S., Montomoli, C., Carosi, R., et al., 2015.Pressure-Temperature-Time-Deformation Path of Kyanite-Bearing Migmatitic Paragneiss in the Kali Gandaki Valley (Central Nepal):Investigation of Late Eocene-Early Oligocene Melting Processes.Lithos, 231:103-121. https://https://doi.org.org/10.1016/j.lithos.2015.06.005
      Imayama, T., Takeshita, T., Arita, K., 2010.Metamorphic P-T Profile and P-T Path Discontinuity across the Far-Eastern Nepal Himalaya:Investigation of Channel Flow Models.Journal of Metamorphic Geology, 28(5):527-549. https://doi.org/10.1111/j.1525-1314.2010.00879.x
      Imayama, T., Takeshita, T., Yi, K., et al., 2012.Two-Stage Partial Melting and Contrasting Cooling History within the Higher Himalayan Crystalline Sequence in the Far-Eastern Nepal Himalaya.Lithos, 134-135:1-22. https://doi.org/10.1016/j.lithos.2011.12.004
      Jamieson, R.A., Beaumont, C., Medvedev, S., et al., 2004.Crustal Channel Flows:2.Numerical Models with Implications for Metamorphism in the Himalayan-Tibetan Orogen.Journal of Geophysical Research:Solid Earth, 109(B6):B06407. https://doi.org/10.1029/2003jb002811
      Kali, E., Leloup, P.H., Arnaud, N., et al., 2010.Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models.Tectonics, 29(2):TC2014. https://doi.org/10.1029/2009TC002551
      Kaneko, Y., Katayama, I., Yamamoto, H., et al., 2003.Timing of Himalayan Ultrahigh-Pressure Metamorphism:Sinking Rate and Subduction Angle of the Indian Continental Crust beneath Asia.Journal of Metamorphic Geology, 21(6):589-599. https://doi.org/10.1046/j.1525-1314.2003.00466.x
      Kellett, D.A., Cottle, J.M., Smit, M., 2014.Eocene Deep Crust at Ama Drime, Tibet:Early Evolution of the Himalayan Orogen.Lithosphere, 6(4):220-229. https://doi.org/10.1130/l350.1
      Kellett, D.A., Grujic, D., Coutand, I., et al., 2013.The South Tibetan Detachment System Facilitates Ultra Rapid Cooling of Granulite-Facies Rocks in Sikkim Himalaya.Tectonics, 32(2):252-270. https://doi.org/10.1002/tect.20014
      Kellett, D.A., Grujic, D., Erdmann, S., 2009.Miocene Structural Reorganization of the South Tibetan Detachment, Eastern Himalaya:Implications for Continental Collision.Lithosphere, 1(5):259-281. https://doi.org/10.1130/l56.1
      King, J., Harris, N., Argles, T., et al., 2007.First Field Evidence of Southward Ductile Flow of Asian Crust beneath Southern Tibet.Geology, 35(8):727. https://doi.org/10.1130/g23630a.1
      King, J., Harris, N., Argles, T., et al., 2011.Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet.Geological Society of America Bulletin, 123(1-2):218-239. https://doi.org/10.1130/b30085.1
      Kohn, M.J., 2014.Himalayan Metamorphism and Its Tectonic Implications.Annual Review of Earth and Planetary Sciences, 42(1):381-419. https://doi.org/10.1146/annurev-earth-060313-055005
      Kohn, M.J., Corrie, S.L., 2011.Preserved Zr-Temperatures and U-Pb Ages in High-Grade Metamorphic Titanite:Evidence for a Static Hot Channel in the Himalayan Orogen.Earth and Planetary Science Letters, 311(1-2):136-143. https://doi.org/10.1016/j.epsl.2011.09.008
      Langille, J.M., Jessup, M.J., Cottle, J.M., et al., 2012.Timing of Metamorphism, Melting and Exhumation of the Leo Pargil Dome, Northwest India.Journal of Metamorphic Geology, 30(8):769-791. https://doi.org/10.1111/j.1525-1314.2012.00998.x
      Larson, K.P., Ambrose, T.K., Webb, A.A.G., et al., 2015.Reconciling Himalayan Midcrustal Discontinuities:The Main Central Thrust System.Earth and Planetary Science Letters, 429:139-146. https://doi.org/10.1016/j.epsl.2015.07.070
      Larson, K.P., Cottle, J.M., 2014.Midcrustal Discontinuities and the Assembly of the Himalayan Midcrust.Tectonics, 33(5):718-740. https://doi.org/10.1002/2013tc003452
      Larson, K.P., Cottle, J.M., Godin, L., 2011.Petrochronologic Record of Metamorphism and Melting in the Upper Greater Himalayan Sequence, Manaslu-Himal Chuli Himalaya, West-Central Nepal.Lithosphere, 3(6):379-392. https://doi.org/10.1130/l149.1
      Le Fort, P., 1975.Himalayas:The Collided Range.Present Knowledge of the Continental Arc.American Journal of Science, 275:1-44.
      Le Fort, P., 1981.Manaslu Leucogranite:A Collision Signature of the Himalaya:A Model for Its Genesis and Emplacement.Journal of Geophysical Research:Solid Earth, 86(B11):10545-10568. https://doi.org/10.1029/jb086ib11p10545
      Lederer, G.W., Cottle, J.M., Jessup, M.J., et al., 2013.Timescales of Partial Melting in the Himalayan Middle Crust:Insight from the Leo Pargil Dome, Northwest India.Contributions to Mineralogy and Petrology, 166(5):1415-1441. https://doi.org/10.1007/s00410-013-0935-9
      Lee, J., Whitehouse, M.J., 2007.Onset of Mid-Crustal Extensional Flow in Southern Tibet:Evidence from U/Pb Zircon Ages.Geology, 35(1):45. https://doi.org/10.1130/g22842a.1
      Liu, F.L., Zhang, L.F., 2014.High-Pressure Granulites from Eastern Himalayan Syntaxis:P-T Path, Zircon U-Pb Dating and Geological Implications.Acta Petrologica Sinica, 30(10):2808-2820 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201410002.htm
      Liu, Z.C., Wu, F.Y., Ding, L., et al., 2016.Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet.Lithos, 240-243:337-354. https://doi.org/10.1016/j.lithos.2015.11.026
      Liu, Z.C., Wu, F.Y., Ji, W.Q., et al., 2014.Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model.Lithos, 208-209:118-136. https://doi.org/10.1016/j.lithos.2014.08.022
      Lombardo, B., Rolfo, F., 2000.Two Contrasting Eclogite Types in the Himalayas:Implications for the Himalayan Orogeny.Journal of Geodynamics, 30(1-2):37-60. https://doi.org/10.1016/s0264-3707(99)00026-5
      Montomoli, C., Carosi, R., Iaccarino, S., 2015.Tectonometamorphic Discontinuities in the Greater Himalayan Sequence:A Local or a Regional Feature? Geological Society, London, Special Publication, 412(1):25-41. https://doi.org/10.1144/SP412.3
      Montomoli, C., Iaccarino, S., Carosi, R., et al., 2013.Tectonometamorphic Discontinuities within the Greater Himalayan Sequence in Western Nepal (Central Himalaya):Insights on the Exhumation of Crystalline Rocks.Tectonophysics, 608:1349-1370. https://doi.org/10.1016/j.tecto.2013.06.006
      Mottram, C.M., Warren, C.J., Regis, D., et al., 2014.Developing an Inverted Barrovian Sequence; Insights from Monazite Petrochronology.Earth and Planetary Science Letters, 403:418-431. https://doi.org/10.1016/j.epsl.2014.07.006
      O'Brien, P.J., Zotov, N., Law, R., et al., 2001.Coesite in Himalayan Eclogite and Implications for Models of India-Asia Collision.Geology, 29(5):435.https://doi.org/10.1130/0091-7613(2001)029<0435:ciheai>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0435:ciheai>2.0.co;2
      Patiño Douce, A.E., Harris, N.B.W., 1998.Experimental Constraints on Himalayan Anatexis.Journal of Petrology, 39(4):689-710. https://doi.org/10.1093/petroj/39.4.689
      Pognante, U., Benna, P., 1993.Metamorphic Zonation, Migmatization, and Leucogranites along the Everest Transect (Eastern Nepal and Tibet):Record of an Exhumation History.Geological Society, London, Special Publication, 74(1):323-340. https://doi.org/10.1144/GSL.SP.1993.074.01.22
      Pognante, U., Lombardo, B., 1989.Metamorphic Evolution of the High Himalayan Crystallines in SE Zanskar, India.Journal of Metamorphic Geology, 7(1):9-17. https://doi.org/10.1111/j.1525-1314.1989.tb00571.x
      Prince, C., Harris, N.B.W., Vance, D., 2001.Fluid-Enhanced Melting during Prograde Metamorphism.Journal of the Geological Society, 158(2):233-241. https://doi.org/10.1144/jgs.158.2.233
      Qi, X.X., Zeng, L.S., Meng, X.J., et al., 2008.Zircon SHRIMP U-Pb Dating for Dala Granite in the Tethyan Himalaya and Its Geological Implication.Acta Petrologica Sinica, 24(7):1501-1508 (in Chinese with English abstract). http://www.oalib.com/paper/1471516
      Regis, D., Warren, C.J., Mottram, C.M., et al., 2016.Using Monazite and Zircon Petrochronology to Constrain the P-T-t Evolution of the Middle Crust in the Bhutan Himalaya.Journal of Metamorphic Geology, 34(6):617-639. https://doi.org/10.1111/jmg.12196
      Regis, D., Warren, C.J., Young, D., et al., 2014.Tectono-Metamorphic Evolution of the Jomolhari Massif:Variations in Timing of Syn-Collisional Metamorphism across Western Bhutan.Lithos, 190-191:449-466. https://doi.org/10.1016/j.lithos.2014.01.001
      Rubatto, D., Chakraborty, S., Dasgupta, S., 2013.Timescales of Crustal Melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) Inferred from Trace Element-Constrained Monazite and Zircon Chronology.Contributions to Mineralogy and Petrology, 165(2):349-372. https://doi.org/10.1007/s00410-012-0812-y
      Sachan, H.K., Kohn, M.J., Saxena, A., et al., 2010.The Malari Leucogranite, Garhwal Himalaya, Northern India:Chemistry, Age, and Tectonic Implications.Geological Society of America Bulletin, 122(11-12):1865-1876. https://doi.org/10.1130/b30153.1
      Sachan, H.K., Mukherjee, B.K., Ogasawara, Y., et al., 2004.Discovery of Coesite from Indus Suture Zone (ISZ), Ladakh, India:Evidence for Deep Subduction.European Journal of Mineralogy, 16(2):235-240. https://doi.org/10.1127/0935-1221/2004/0016-0235
      Scaillet, B., France-Lanord, C., Le Fort, P., 1990.Badrinath-Gangotri Plutons (Garhwal, India):Petrological and Geochemical Evidence for Fractionation Processes in a High Himalayan Leucogranite.Journal of Volcanology and Geothermal Research, 44(1-2):163-188. https://doi.org/10.1016/0377-0273(90)90017-a
      Searle, M.P., 1999.Extensional and Compressional Faults in the Everest Lhotse Massif, Khumbu Himalaya, Nepal.Journal of the Geological Society, 156(2):227-240. https://doi.org/10.1144/gsjgs.156.2.0227
      Searle, M.P., Godin, L., 2003.The South Tibetan Detachment and the Manaslu Leucogranite:A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal.The Journal of Geology, 111(5):505-523. https://doi.org/10.1086/376763
      Smit, M.A., Hacker, B.R., Lee, J., 2014.Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya.Geology, 42(7):591-594. https://doi.org/10.1130/g35524.1
      Sorcar, N., Hoppe, U., Dasgupta, S., et al., 2014.High-Temperature Cooling Histories of Migmatites from the High Himalayan Crystallines in Sikkim, India:Rapid Cooling Unrelated to Exhumation? Contributions to Mineralogy and Petrology, 167(2):1-34. https://doi.org/10.1007/s00410-013-0957-3
      Streule, M.J., Searle, M.P., Waters, D.J., et al., 2010.Metamorphism, Melting, and Channel Flow in the Greater Himalayan Sequence and Makalu Leucogranite:Constraints from Thermobarometry, Metamorphic Modeling, and U-Pb Geochronology.Tectonics, 29(5):TC5011. https://doi.org/10.1029/2009tc002533
      St-Onge, M.R., Rayner, N., Palin, R.M., et al., 2013.Integrated Pressure-Temperature-Time Constraints for the Tso Morari Dome (Northwest India):Implications for the Burial and Exhumation Path of UHP Units in the Western Himalaya.Journal of Metamorphic Geology, 31(5):469-504. https://doi.org/10.1111/jmg.12030
      Tian, Z., Zhang, Z.M., Dong, X., 2016.Metamorphism of High-P Metagreywacke from the Eastern Himalayan Syntaxis:Phase Equilibria and P-T Path.Journal of Metamorphic Geology, 34(7):697-718. https://doi.org/10.1111/jmg.12205
      Tian, Z.L., Kang, D.Y., Mu, H.C., 2017.Metamorphic P-T-t Path of Garnet Amphibolite from the Eastern Himalaya Syntaxis:Phase Equilibria and Zircon Chronology.Acta Petrologica Sinica, 33(8):2467-2478 (in Chinese with English abstract). doi: 10.1007/s00410-004-0600-4
      Tobgay, T., McQuarrie, N., Long, S., et al., 2012.The Age and Rate of Displacement along the Main Central Thrust in the Western Bhutan Himalaya.Earth and Planetary Science Letters, 319-320:146-158. https://doi.org/10.1016/j.epsl.2011.12.005
      Viskupic, K., Hodges, K.V., 2001.Monazite-Xenotime Thermochronometry:Methodology and an Example from the Nepalese Himalaya.Contributions to Mineralogy and Petrology, 141(2):233-247. https://doi.org/10.1007/s004100100239
      Viskupic, K., Hodges, K.V., Bowring, S.A., 2005.Timescales of Melt Generation and the Thermal Evolution of the Himalayan Metamorphic Core, Everest Region, Eastern Nepal.Contributions to Mineralogy and Petrology, 149(1):1-21. https://doi.org/10.1007/s00410-004-0628-5
      Visonà, D., Carosi, R., Montomoli, C., et al., 2012.Miocene Andalusite Leucogranite in Central-East Himalaya (Everest-Masang Kang Area):Low-Pressure Melting during Heating.Lithos, 144-145:194-208. https://doi.org/10.1016/j.lithos.2012.04.012
      Wang, J.M., Rubatto, D., Zhang, J.J., 2015a.Timing of Partial Melting and Cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya):In-Sequence Thrusting and Its Implications.Journal of Petrology, 56(9):1677-1702. https://doi.org/10.1093/petrology/egv050
      Wang, J.M., Wu, F.Y., Rubatto, D., et al., 2017b.Monazite Behaviour during Isothermal Decompression in Pelitic Granulites:A Case Study from Dinggye, Tibetan Himalaya.Contributions to Mineralogy and Petrology, 172(10):1-30. https://doi.org/10.1007/s00410-017-1400-y
      Wang, J.M., Zhang, J.J., Liu, K., et al., 2016.Spatial and Temporal Evolution of Tectonometamorphic Discontinuities in the Central Himalaya:Constraints from P-T Paths and Geochronology.Tectonophysics, 679:41-60. https://doi.org/10.1016/j.tecto.2016.04.035
      Wang, J.M., Zhang, J.J., Wang, X.X., 2013.Structural Kinematics, Metamorphic P-T Profiles and Zircon Geochronology across the Greater Himalayan Crystalline Complex in South-Central Tibet:Implication for a Revised Channel Flow.Journal of Metamorphic Geology, 31(6):607-628. https://doi.org/10.1111/jmg.12036
      Wang, J.M., Zhang, J.J., Wei, C.J., et al., 2015b.Characterising the Metamorphic Discontinuity across the Main Central Thrust Zone of Eastern-Central Nepal.Journal of Asian Earth Sciences, 101:83-100. https://doi.org/10.1016/j.jseaes.2015.01.027
      Wang, Y.H., Zhang, L.F., Zhang, J.J., et al., 2017a.The Youngest Eclogite in Central Himalaya:P-T Path, U-Pb Zircon Age and Its Tectonic Implication.Gondwana Research, 41:188-206. https://doi.org/10.1016/j.gr.2015.10.013
      Warren, C.J., Grujic, D., Kellett, D.A., et al., 2011.Probing the Depths of the India-Asia Collision:U-Th-Pb Monazite Chronology of Granulites from NW Bhutan.Tectonics, 30(2):TC2004. https://doi.org/10.1029/2010tc002738
      Wei, C.J., Guan, X., Dong, J., 2017.HT-UHP Metamorphism of Metabasites and the Petrogenesis of TTGs.Acta Petrologica Sinica, 33(5):1381-1404 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20170502
      Weinberg, R.F., 2016.Himalayan Leucogranites and Migmatites:Nature, Timing and Duration of Anatexis.Journal of Metamorphic Geology, 34(8):821-843. https://doi.org/10.1111/jmg.12204
      Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift.Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201501001.htm
      Xiang, H., Zhang, Z.M., Dong, X., et al., 2013.High-Pressure Metamorphism and Anatexis during the Subduction of Indian Continent:Phase Equilibria Modeling of the Namche Barwa Complex, Eastern Himalayan Syntaxis.Acta Petrologica Sinica, 29(11):3792-3802 (in Chinese with English abstract). https://www.researchgate.net/publication/229098874_High-pressure_anatectic_paragneisses_from_the_Namche_Barwa_Eastern_Himalayan_Syntaxis_Textural_evidence_for_partial_melting_phase_equilibria_modeling_and_tectonic_implications
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zeiger, K., Gordon, S.M., Long, S.P., et al., 2015.Timing and Conditions of Metamorphism and Melt Crystallization in Greater Himalayan Rocks, Eastern and Central Bhutan:Insight from U-Pb Zircon and Monazite Geochronology and Trace-Element Analyses.Contributions to Mineralogy and Petrology, 169(5):47. https://doi.org/10.1007/s00410-015-1143-6
      Zeng, L.S., Gao, L.E., 2017.Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt.Acta Petrologica Sinica, 33(5):1420-1444 (in Chinese with English abstract). http://mall.cnki.net/magazine/Article/JXTW2013Z2016.htm
      Zeng, L.S., Gao, L.E., Dong, C.Y., et al., 2012.High-Pressure Melting of Metapelite and the Formation of Ca-Rich Granitic Melts in the Namche Barwa Massif, Southern Tibet.Gondwana Research, 21(1):138-151. https://doi.org.org/10.1016/j.gr.2011.07.023
      Zeng, L.S., Gao, L.E., Tang, S.H., et al., 2015.Eocene Magmatism in the Tethyan Himalaya, Southern Tibet.Geological Society, London, Special Publications, 412(1):287-316. https://doi.org/10.1144/SP412.8
      Zeng, L.S., Gao, L.E., Xie, K.J., et al., 2011.Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust.Earth and Planetary Science Letters, 303(3-4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005
      Zhang, H.F., Harris, N.B.W., Parrish, R., et al., 2004.Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform.Earth and Planetary Science Letters, 228(1-2):195-212. https://doi.org/10.1016/j.epsl.2004.09.031
      Zhang, J.J., Santosh, M., Wang, X.X., et al., 2012a.Tectonics of the Northern Himalaya since the India-Asia Collision.Gondwana Research, 21(4):939-960. https://doi.org/10.1016/j.gr.2011.11.004
      Zhang, Z.M., Dong, X., Ding, H.X., et al., 2017.Metamorphism and Partial Melting of the Himalayan Orogen.Acta Petrologica Sinica, 33(8):2313-2341 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20170801
      Zhang, Z.M., Dong, X., Santosh, M., et al., 2012b.Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet:Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton.Gondwana Research, 21(1):123-137. https://doi.org/10.1016/j.gr.2011.02.002
      Zhang, Z.M., Xiang, H., Ding, H.X., et al., 2017a.Miocene Orbicular Diorite in East-Central Himalaya:Anatexis, Melt Mixing, and Fractional Crystallization of the Greater Himalayan Sequence.Geological Society of America Bulletin, 129(7-8):869-885. https://doi.org/10.1130/b31586.1
      Zhang, Z.M., Xiang, H., Dong, X., et al., 2015.Long-Lived High-Temperature Granulite-Facies Metamorphism in the Eastern Himalayan Orogen, South Tibet.Lithos, 212-215:1-15. https://doi.org/10.1016/j.lithos.2014.10.009
      Zhang, Z.M., Xiang, H., Dong, X., et al., 2017b.Oligocene HP Metamorphism and Anatexis of the Higher Himalayan Crystalline Sequence in Yadong Region, East-Central Himalaya.Gondwana Research, 41:173-187. https://doi.org/10.1016/j.gr.2015.03.002
      Zhang, Z.M., Zhao, G.C., Santosh, M., et al., 2010.Two Stages of Granulite Facies Metamorphism in the Eastern Himalayan Syntaxis, South Tibet:Petrology, Zircon Geochronology and Implications for the Subduction of Neo-Tethys and the Indian Continent beneath Asia.Journal of Metamorphic Geology, 28(7):719-733. https://doi.org/10.1111/j.1525-1314.2010.00885.x
      刘凤麟, 张立飞, 2014.喜马拉雅东构造结高压麻粒岩PT轨迹, 锆石U-Pb定年及其地质意义.岩石学报, 30(10):2808-2820. http://d.wanfangdata.com.cn/Periodical/ysxb98201410002
      戚学祥, 曾令森, 孟祥金, 等, 2008.特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义.岩石学报, 24(7):1501-1508. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_ysxb98200807007
      田作林, 康东艳, 穆虹辰, 2017.东喜马拉雅构造结石榴角闪岩变质作用P-T-t轨迹:相平衡模拟与锆石年代学.岩石学报, 33(8):2467-2478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201708009
      魏春景, 关晓, 董杰, 2017.基性岩高温-超高压变质作用与TTG质岩成因.岩石学报, 33(5):1381-1404. https://mall.cnki.net/qikan-YSXB201705002.html
      吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20150101
      向华, 张泽明, 董昕, 等, 2013.印度大陆俯冲过程中的高压变质与深熔作用:东喜马拉雅构造结南迦巴瓦杂岩的相平衡模拟研究.岩石学报, 29(11):3792-3802. http://www.ysxb.ac.cn/ysxb/ch/reader/issue_list.aspx?year_id=2013&quarter_id=11
      曾令森, 高利娥, 2017.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩.岩石学报, 33(5):1420-1444. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20170504
      张泽明, 董昕, 丁慧霞, 等, 2017.喜马拉雅造山带的变质作用与部分熔融.岩石学报, 33(8):2313-2341. http://mall.cnki.net/magazine/Article/YSXB201708001.htm
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  6243
    • HTML全文浏览量:  2780
    • PDF下载量:  153
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-09-23
    • 刊出日期:  2018-01-15

    目录

      /

      返回文章
      返回