Metamorphism of Qinling Complex in Northern West Qinling Orogen: Petrology, Phase Equilibria Modelling of Paragneiss and Their Geological Implication
-
摘要: 造山带中的高级变质岩是研究造山带形成和演化历史的重要窗口.西秦岭北缘秦岭杂岩主要由正片麻岩、副片麻岩、少量变基性岩(基性麻粒岩)和大理岩组成.岩相学、矿物化学和相平衡模拟结果表明副片麻岩经历了3个变质演化阶段:(1)进变质阶段,以石榴子石核部包裹细粒片状黑云母和大小不等的石英为代表;(2)峰期变质阶段,矿物组合为石榴子石+斜长石+钾长石+夕线石+黑云母+金红石+石英.石榴子石变斑晶幔部成分在视剖面图上确定出峰期温压条件为T=793~803 ℃,P=8.8~9.5 kbar;(3)降温降压的退变质阶段,主要由石榴子石的最边部及后期斜长石记录.结合已有研究资料,表明西秦岭北缘秦岭杂岩可能经历了早古生代晚期与碰撞造山作用有关的变质作用与深熔作用.Abstract: Studies of high-grade metamorphic rocks in an ancient orogenic belt can provide important constraints on the formation and tectonic evolution of orogen. The Qinling complex in the northern West Qinling orogen mainly consists of orogneiss, paragneiss, minor metabasite (mafic granulite) and marble. The petrography, mineral chemistry and phase equilibria modelling in this study show that paragneiss has experencied three metamorphic evolution stages. Stage 1 is the prograde stage, characterized by biotite and quartz occurring as inclusions in garnet. Stage 2 is the peak metamorphic stage, and mineral assemblage in this stage is interpreted to be garnet+sillimanite+K-feldspar+plagioclase+biotite+quartz+rutile, which formed in P-T conditions of 793-803℃ and 8.8-9.5 kbar. Stage 3 is the retrograde stage with decrease in temperature and pressure, which is recorded by garnet and plagioclase. Combining with previous data, it is suggested that the Qinling complex in the northern West Qinling orogen has experienced Early Paleozoic metamorphism and anataxis related to collision orogenesis.
-
Key words:
- West Qinling /
- Qinling complex /
- paragneiss /
- metamorphism /
- phase equilibria modelling /
- petrology
-
图 1 秦岭造山带大地构造位置简图(a), 秦岭造山带构造简图(b), 西秦岭造山带北部地质廊带图(c)
图b修改自Dong et al.(2011);1.北祁连造山带;2.华北板块南缘;3.宽坪群;4.二郎坪群;5.秦岭杂岩;6.商丹缝合带;7.前寒武纪-古生代盖层;8.上古生界-三叠纪碎屑沉积物;9.勉略缝合带;10.大别地块;11.东西秦岭界限;12.研究区.图c修改自1:50万秦岭及邻区地质图,西安地质调查中心,2014.侵入体年龄数据裴先治等(2007a, 2012)、Zhang et al.(2006)、王婧等(2008);中国地图据1:1亿中华人民共和国地图(审图号:GS(2016)1552号,国家测绘地理信息局监制)修改
Fig. 1. The location of the Qinling orogenic belt in the geological sketch of China (a), simplified tectonic map of the Qinling orogenic belt showing the location of the study area (b), and corridor-like geological sketch of the northern part of the West Qinling orogenic belt (c)
图 3 副片麻岩(AQ14-18-9.6)矿物组合和结构构造显微照片
a.基质中的黑云母、夕线石和云母定向排列, 石英、长石和石榴子石变斑晶被拉长, 且石榴子石边部呈港湾状, 与后期发育的黑云母组成压力影结构, 单偏光;b.石榴子石核部包裹细粒黑云母和石英, 石榴子石幔部及边部包裹细粒夕线石(照片左下角), 单偏光;c.石榴子石核部包裹细小矿物(主要为黑云母和石英), 边部包裹细粒夕线石, 单偏光;d.石榴子石边部呈港湾状, 其周围可见细小夕线石、黑云母、钾长石、斜长石及石英发育, 单偏光;e.港湾状石榴子石周围可见黑云母、钛铁矿, 单偏光;f.金红石边部发育细小钛铁矿, 指示金红石向钛铁矿的转换, 尖锐的钾长石薄膜出现在斜长石和石英之间, 指示早期熔体的存在, 背散射图像;g.石榴子石边部的晚期黑云母中包裹部分峰期矿物, 背散射图像;h.基质中可见钛铁矿和金红石, 且金红石边部转化为钛铁矿, 背散射图像
Fig. 3. Images of mineral assemblage and microstructures of sample AQ14-18-9.6 (paragneiss)
表 1 副片麻岩(AQ14-18-9.6)中石榴子石的化学成分(%)
Table 1. Chemical composition of garnet from sample AQ14-18-9.6 (paragneiss) (%)
点位 Grt-r Grt-r Grt-r Grt-r Grt-r Grt-c Grt-c Grt-c Grt-c Grt-c Grt-c SiO2 37.96 38.43 38.10 38.54 39.37 38.73 38.65 38.67 38.91 38.49 37.86 TiO2 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al2O3 20.85 20.85 20.85 20.75 20.88 20.95 20.85 20.72 20.99 20.83 20.64 Cr2O3 0.05 0.06 0.05 0.02 0.04 0.01 0.02 0.02 0.08 0.05 0.03 Fe2O3 1.18 0.20 1.02 0.00 0.00 0.00 0.00 0.00 0.00 1.13 2.47 FeO 32.65 31.27 29.82 30.53 30.45 30.10 30.72 30.37 30.49 29.82 29.27 MnO 0.76 0.81 0.78 0.73 0.85 0.76 0.71 0.80 0.76 0.74 0.71 MgO 6.01 6.94 7.57 7.40 6.87 7.75 7.41 7.55 7.51 7.85 7.68 CaO 0.98 0.96 0.95 1.05 0.90 1.01 1.05 1.02 1.08 1.01 1.03 Na2O 0.00 0.05 0.05 0.03 0.00 0.00 0.00 0.02 0.05 0.03 0.04 K2O 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.03 Total 100.32 99.56 99.09 99.06 99.36 99.31 99.41 99.17 99.87 99.85 99.51 O 12 12 12 12 12 12 12 12 12 12 12 Si 2.994 3.028 3.003 3.039 3.086 3.038 3.038 3.044 3.040 3.010 2.980 Ti 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Al 1.939 1.937 1.938 1.929 1.929 1.938 1.932 1.923 1.930 1.920 1.910 Cr 0.003 0.004 0.003 0.001 0.003 0.000 0.001 0.001 0.010 0.000 0.000 Fe3+ 0.070 0.012 0.060 0.000 0.000 0.000 0.000 0.000 0.000 0.070 0.150 Fe2+ 2.154 2.061 1.966 2.013 1.996 1.975 2.020 2.000 1.990 1.950 1.920 Mn 0.051 0.054 0.052 0.048 0.056 0.050 0.047 0.053 0.050 0.050 0.050 Mg 0.706 0.815 0.890 0.870 0.802 0.906 0.868 0.885 0.880 0.910 0.900 Ca 0.083 0.081 0.080 0.088 0.076 0.085 0.089 0.086 0.090 0.090 0.090 Na 0.000 0.008 0.007 0.005 0.000 0.000 0.000 0.003 0.010 0.010 0.010 K 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 X(g) 0.24 0.28 0.30 0.29 0.28 0.31 0.29 0.30 0.30 0.31 0.31 Z(g) 0.028 0.027 0.027 0.030 0.026 0.029 0.030 0.029 0.030 0.031 0.031 注:成分单位为质量百分含量;X(g)=Mg/(Fe2++Mg+Ca);Z(g)=Ca/(Fe2++Mg+Ca);Grt-r.石榴子石边部;Grt-c.石榴子石核部. 表 2 副片麻岩(AQ14-18-9.6)中黑云母的化学成分(%)
Table 2. Chemical composition of biotite from sample AQ14-18-9.6 (paragneiss) (%)
点位 bt(Grt-c) bt(Grt-c) bt(Grt-m) bt(Grt-r) bt(j) bt(j) bt(j) bt(Grt) bt(Grt) bt(Grt) SiO2 38.05 39.69 36.23 36.80 36.86 36.72 36.98 36.45 35.83 37.62 TiO2 2.90 1.54 6.35 4.11 5.06 5.26 5.25 4.40 4.74 4.27 Al2O3 16.62 17.98 15.38 16.39 15.61 16.71 15.29 15.75 16.89 17.34 Cr2O3 0.13 0.05 0.07 0.08 0.05 0.07 0.06 0.09 0.15 0.18 Fe2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FeO 10.50 8.00 13.12 12.27 15.95 14.98 16.03 15.78 15.37 14.02 MnO 0.03 0.08 0.01 0.05 0.01 0.04 0.04 0.04 0.02 0.00 MgO 17.15 18.61 14.83 15.00 12.07 11.66 11.71 13.38 12.04 12.19 CaO 0.04 0.01 0.04 0.00 0.00 0.00 0.00 0.01 0.02 0.00 Na2O 0.25 0.12 0.05 0.13 0.12 0.08 0.12 0.04 0.16 0.15 K2O 9.97 9.54 9.82 10.06 10.14 9.65 10.26 9.63 10.13 9.66 Total 95.65 95.62 95.91 94.88 95.89 95.18 95.74 95.56 95.35 95.44 O 11 11 11 11 11 11 11 11 11 11 Si 2.772 2.830 2.680 2.734 2.760 2.745 2.776 2.731 2.694 2.782 Ti 0.159 0.082 0.353 0.230 0.285 0.296 0.296 0.248 0.268 0.238 Al 1.427 1.512 1.341 1.435 1.378 1.472 1.353 1.391 1.498 1.512 Cr 0.008 0.003 0.004 0.005 0.003 0.004 0.003 0.005 0.009 0.010 Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Fe2+ 0.639 0.477 0.811 0.762 0.999 0.937 1.007 0.988 0.966 0.867 Mn 0.002 0.005 0.001 0.003 0.001 0.002 0.003 0.003 0.001 0.000 Mg 1.862 1.978 1.635 1.661 1.347 1.299 1.311 1.494 1.349 1.343 Ca 0.003 0.001 0.003 0.000 0.000 0.000 0.000 0.000 0.001 0.000 Na 0.035 0.016 0.008 0.018 0.018 0.012 0.017 0.006 0.023 0.022 K 0.927 0.868 0.926 0.954 0.969 0.920 0.982 0.920 0.972 0.911 注:成分单位为质量百分含量;bt(Grt-c).石榴子石核部包裹的黑云母;bt(Grt-m).石榴子石幔部包裹的黑云母;bt(Grt-r).石榴子石边部包裹的黑云母;bt(j).基质中的黑云母;bt(Grt).围绕石榴子石边部发育的黑云母. 表 3 副片麻岩(AQ14-18-9.6)中长石的化学成分(%)
Table 3. Chemical composition of feldspar from sample AQ14-18-9.6 (paragneiss) (%)
矿物 Pl Kfs 点位 pl(Grt) pl(Grt) pl(Grt) pl(Grt) pl(j) pl(j) pl(j) pl(j) pl(j) kfs(Grt) kfs(Grt) kfs(j) SiO2 63.19 62.76 61.98 62.94 62.97 62.85 63.36 62.76 62.38 66.23 64.23 65.82 TiO2 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.01 0.02 0.01 0.01 Al2O3 23.16 23.05 23.67 22.68 22.92 23.08 22.90 23.04 22.98 17.59 18.21 17.61 Cr2O3 0.00 0.48 0.05 0.04 0.00 0.05 0.02 0.03 0.03 0.00 0.00 0.01 Fe2O3 0.23 0.26 0.32 0.01 0.08 0.06 0.05 0.05 0.03 0.60 0.83 0.04 FeO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MnO 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.03 0.02 0.03 0.04 0.00 MgO 0.00 0.05 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 CaO 5.44 5.48 4.97 5.34 5.69 5.45 5.59 5.42 5.59 0.05 0.02 0.09 Na2O 7.85 7.81 8.12 8.10 7.75 7.81 7.88 7.97 7.96 1.21 0.60 1.50 K2O 0.05 0.09 0.37 0.11 0.11 0.32 0.08 0.11 0.13 14.38 15.72 14.42 Total 100 100 99.51 99.23 100 100 100 99 99 100 100 100 O 8 8 8 8 8 8 8 8 8 8 8 8 Si 2.792 2.778 2.759 2.802 2.794 2.788 2.801 2.790 2.784 3.033 2.982 3.033 Ti 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000 Al 1.206 1.203 1.242 1.190 1.199 1.207 1.194 1.207 1.209 0.950 0.997 0.957 Cr 0.000 0.017 0.002 0.001 0.000 0.002 0.001 0.001 0.001 0.000 0.000 0.001 Fe3+ 0.008 0.009 0.011 0.000 0.003 0.002 0.002 0.002 0.001 0.021 0.029 0.002 Fe2+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.000 Mg 0.000 0.003 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 Ca 0.257 0.260 0.237 0.255 0.271 0.259 0.265 0.258 0.267 0.002 0.001 0.004 Na 0.673 0.671 0.701 0.699 0.667 0.672 0.675 0.687 0.689 0.107 0.054 0.134 K 0.003 0.005 0.021 0.006 0.006 0.018 0.005 0.006 0.007 0.840 0.931 0.848 An 0.275 0.278 0.247 0.266 0.287 0.273 0.280 0.271 0.277 - - - 注:成分单位为质量百分含量;An=Ca/(Na+K+Ca);pl(Grt).围绕石榴子石边部发育的斜长石;pl(j).基质中的斜长石;kfs(Grt).围绕石榴子石边部发育的钾长石;kfs(j).基质中的钾长石. 表 4 副片麻岩(AQ14-18-9.6)用于相平衡模拟的各组分含量(%)
Table 4. Molar proportion of oxides for mineral equilibria modelling of sample AQ14-18-9.6 (paragneiss) (%)
项目 H2O SiO2 Al2O3 CaO MgO FeO K2O Na2O TiO2 O MH2O(0) 0 78.47 7.72 1.51 3.45 4.52 1.56 2.09 0.64 0.03 MH2O(1) 10 70.62 6.95 1.36 3.1 4.06 1.41 1.89 0.58 0.03 P-T 2 76.9 7.57 1.48 3.38 4.43 1.53 2.05 0.63 0.03 注:成分单位为摩尔百分含量. -
Aydin, F., Karsli, O., Sadiklar, M.B., 2003.Mineralogy and Chemistry of Biotites from Eastern Pontide Granitoid Rocks, NE-Turkey:Some Petrological Implications for Granitoid Magmas.Chemie der Erde Geochemistry, 63(2):163-182. https://dx.doi.org/10.1078/0009-2819-00027 Bader, T., Franz, L., Ratschbacher, L., et al., 2013.The Heart of China Revisited:Ⅱ Early Paleozoic (Ultra) high-Pressure and (Ultra) High-Temperature Metamorphic Qinling Orogenic Collage.Tectonics, 32(4):922-947.doi: 10.1002/tect.20056 Chen, J.L., Li, H.B., Wang, H.L., et al., 2007.LA-ICPMS Zircon U-Pb Dating of a Quartz Diorite Pluton from Wangjiacha, the Junction Area between the Qinling and Qilian Orogenic Belts and Its Tectonic Significance.Journal of Jilin University (Earth Science Edition), 37(3):423-431 (in Chinese with English abstract). http://www.researchgate.net/publication/284666822_LA-ICPMS_zircon_U-Pb_dating_of_quartz_diorite_pluton_from_Wangjiacha_in_the_junction_area_between_Qinling_and_Qilian_orogenic_belts_and_its_tectonic_significance Cheng, H., Zhang, C., Vervoort, J.D., et al., 2011.Geochronology of the Transition of Eclogite to Amphibolite Facies Metamorphism in the North Qinling Orogen of Central China.Lithos, 125(3-4):969-983. https://dx.doi.org/10.1016/j.lithos.2011.05.010 Cheng, H., Zhang, C., Vervoort, J.D., et al., 2012.Timing of Eclogite Facies Metamorphism in the North Qinling by U-Pb and Lu-Hf Geochronology.Lithos, 136-139(4):46-59. https://dx.doi.org/10.1016/j.lithos.2011.06.003 Ding, S.P., Pei, X.Z., Li, Y., et al., 2004.Analysis of the Disintegration and Tectonic Setting of the "Liziyuan Group" in the Tianshui Area, Western Qinling.Geological Bulletin of China, 23(12):1209-1214 (in Chinese with English abstract). https://www.researchgate.net/publication/303560057_Analysis_of_the_disintegration_and_tectonic_setting_of_the_Liziyuan_Group_in_the_Tianshui_area_western_Qinling Dong, Y.P., Zhang, G.W., Neubauer, F., et al., 2011.Tectonic Evolution of the Qinling Orogen, China:Review and Synthesis.Journal of Asian Earth Sciences, 41(3):213-237. https://dx.doi.org/10.1016/j.jseaes.2011.03.002 Florence, F.P., Spear, F.S., 1991.Effects of Diffusional Modification of Garnet Growth Zoning on P-T Path Calculations.Contributions to Mineralogy and Petrology, 107(4):487-500. https://dx.doi.org/10.1007/bf00310683 Harley, S.L., 1989.The Origins of Granulites:A Metamorphic Perspective.Geological Magazine, 126(3):215-247. https://dx.doi.org/10.1017/s0016756800022330 He, S.P., Wang, H.L., Xu, X.Y., et al., 2007a.A LA-ICP-MS U-Pb Chronological Study of Zircons from Hongtubu Basic Volcanic Rocks and Its Geological Significance in the East Segment of North Qilian Orogenic Belt.Advances in Earth Science, 22(2):143-151 (in Chinese with English abstract). doi: 10.11867/j.issn.1001-8166.2007.02.0143 He, S.P., Wang, H.L., Xu, X.Y., et al., 2007b.Geochemical Characteristics and Tectonic Environment of Hongtubu Basalts and Chenjiahe Intermediate-Acid Volcanic Rocks in the Eastern Segment of North Qilian Orogenic Belt.Acta Petrologica et Mineralogica, 26(4):295-309 (in Chinese with English abstract). doi: 10.1007/s11430-016-9029-7 He, Y.H., Sun, Y., Chen, L., et al., 2005.Zircon U-Pb Chronology of Longshan Complex by LA-ICP-MS and Its Geological Significance.Acta Petrologica Sinica, 21(1):125-134 (in Chinese with English abstract). http://www.oalib.com/paper/1470625 Holland, T.J.B., Powell, R., 2011.An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids.Journal of Metamorphic Geology, 29(3):333-383. https://dx.doi.org/10.1111/j.1525-1314.2010.00923.x Holness, M.B., Clemens, J.D., 1999.Partial Melting of the Appin Quartzite Driven by Fracture-Controlled H2O Infiltration in the Aureole of the Ballachulish Igneous Complex, Scottish Highlands.Contributions to Mineralogy and Petrology, 136(1-2):154-168. https://dx.doi.org/10.1007/s004100050529 Holness, M.B., Sawyer, E.W., 2008.On the Pseudomorphing of Melt-Filled Pores during the Crystallization of Migmatites.Journal of Petrology, 49(7):1343-1363. https://dx.doi.org/10.1093/petrology/egn028 Hu, N.G., Zhao, D.L., Xu, B.Q., et al., 1994.Discovery of Coesite-Bearing Eclogites from the Northern Qinling and Its Significances.Chinese Science Bulletin, 40(2):174-176. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw199502020&dbname=CJFD&dbcode=CJFQ Hu, N.G., Zhao, D.L., Xu, B.Q., et al., 1995.Petrography and Metamorphism Study on High-Ultrahigh Pressure Eclogite from Guanpo Area, Northern Qinling Mountain.Journal of Mineralogy and Petrology, 15(4):1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWYS504.000.htm Kelsey, D.E., White, R.W., Powell, R., et al., 2003.New Constraints on Metamorphism in the Rauer Group, Prydz Bay, East Antarctica.Journal of Metamorphic Geology, 21(8):739-759. https://dx.doi.org/10.1046/j.1525-1314.2003.00476.x Kohn, M.J., Spear, F., 2000.Retrograde Net Transfer Reaction Insurance for Pressure-Temperature Estimates.Geology, 28(12):1127-1130.https://dx.doi.org/10.1130/0091-7613(2000)028<1127:RNTRIF>2.3.CO;2 doi: 10.1130/0091-7613(2000)028<1127:RNTRIF>2.3.CO;2 Korhonen, F.J., Brown, M., Clark, C., et al., 2013.Osumilite-Melt Interactions in Ultrahigh Temperature Granulites:Phase Equilibria Modelling and Implications for the P-T-t Evolution of the Eastern Ghats Province, India.Journal of Metamorphic Geology, 31(8):881-907. https://dx.doi.org/10.1111/jmg.12049 Korhonen, F.J., Powell, R., Stout, J.H., 2012.Stability of Sapphirine+Quartz in the Oxidized Rocks of the Wilson Lake Terrane, Labrador:Calculated Equilibria in NCKFMASHTO.Journal of Metamorphic Geology, 30(1):21-36. https://dx.doi.org/10.1111/j.1525-1314.2011.00954.x Kröner, A., Zhang, G.W., Sun, Y., 1993.Granulites in the Tongbai Area, Qinling Belt, China:Geochemistry, Petrology, Single Zircon Geochronology, and Implications for the Tectonic Evolution of Eastern Asia.Tectonics, 12(1):245-255. https://dx.doi.org/10.1029/92tc01788 Li, X.W., Wei, C.J., 2016.Phase Equilibria Modelling and Zircon Age Dating of Pelitic Granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton.Journal of Metamorphic Geology, 34(6):595-615. https://dx.doi.org/10.1111/jmg.12195 Liao, X.Y., Liu, L., Wang, Y.W., et al., 2016.Multi-Stage Metamorphic Evolution of Retrograde Eclogite with a Granulite-Facies Overprint in the Zhaigen Area of the North Qinling Belt, China.Gondwana Research, 30:79-96. https://dx.doi.org/10.1016/j.gr.2015.09.012 Liu, L., Liao, X.Y., Wang, Y.W., et al., 2016.Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt in Central China:Insights on Continental Deep Subduction and Multiphase Exhumation.Earth-Science Reviews, 159:58-81. https://dx.doi.org/10.1016/j.earscirev.2016.05.005 Liu, L., Zhou, D.W., Dong, Y.P., et al., 1995.High Pressure Metabasites and Their Retrograde Metamorphic P-T-t Path from Songshugou Area, Eastern Qinling Mountain.Acta Petrologica Sinica, 11(2):127-136 (in Chinese with English abstract). http://www.academia.edu/25954020/Tectonics_of_the_Qinling_Central_China_tectonostratigraphy_geochronology_and_deformation_history Liu, L., Zhou, D.W., Wang, Y., et al., 1996.Study and Implication of the High-Pressure Felsic Granulite in the Qinling Complex of East Qinling.Science in China (Series D), 26(Suppl.):56-63 (in Chinese). doi: 10.1360/03wd0544 Liu, X.C., Jahn, B.M., Dong, S.W., et al., 2008.High-Pressure Metamorphic Rocks from Tongbaishan, Central China:U-Pb and 40Ar/39Ar Age Constraints on the Provenance of Protoliths and Timing of Metamorphism.Lithos, 105(3-4):301-318. https://dx.doi.org/10.1016/j.lithos.2008.04.009 Lu, S.N., Chen, Z.H., Li, H.K., et al., 2005.Two Magmatic Belts of the Neoproterozoic in the Qinling Orogenic Belt.Acta Geologica Sinica, 79(2):165-173 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1342937X15000143 Mao, X.H., Zhang, J.X., Yu, S.Y., et al., 2017.Early Paleozoic Granulite-Facies Metamorphism and Anatexis in the Northern West Qinling Orogen:Monazite and Zircon U-Pb Geochronological Constraints.Science in China (Series D), 47(5):601-616 (in Chinese). https://wap.cnki.net/qikan-JDXG201705010.html Maruyama, S., Parkinson, C.D., 2000.Overview of the Geology, Petrology and Tectonic Framework of the High-Pressure-Ultrahigh-Pressure Metamorphic Belt of the Kokchetav Massif, Kazakhstan.The Island Arc, 9(3):439-455. https://dx.doi.org/10.1046/j.1440-1738.2000.00288.x Meng, Q.R., Zhang, G.W., 1999.Timing of Collision of the North and South China Blocks:Controversy and Reconciliation.Geology, 27(2):123-126.https://dx.doi.org/10.1130/0091-7613(1999)027<0123:tocotn>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0123:tocotn>2.3.co;2 Meng, Q.R., Zhang, G.W., 2000.Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China.Tectonophysics, 323(3-4):183-196. https://dx.doi.org/10.1016/s0040-1951(00)00106-2 Otamendi, J.E., Tibaldi, A.M., Vujovich, G.I., et al., 2008.Metamorphic Evolution of Migmatites from the Deep Famatinian Arc Crust Exposed in Sierras Valle Fértil-La Huerta, San Juan, Argentina.Journal of South American Earth Sciences, 25(3):313-335. https://dx.doi.org/10.1016/j.jsames.2007.09.001 Pei, X.Z., Ding, S.P., Hu, B., et al., 2004.Definition of the Guanzizhen Ophiolite in Tianshui Area, Western Qinling, and Its Geological Significance.Geological Bulletin of China, 23(12):1202-1208 (in Chinese with English abstract). doi: 10.1007/s11707-007-0008-3 Pei, X.Z., Ding, S.P., Li, Z.C., et al., 2007a.LA-ICP-MS Zircon U-Pb Dating of the Gabbro from the Guanzizhen Ophiolite in the Northern Margin of the Western Qinling and Its Geological Significance.Acta Geologica Sinica, 81(11):1550-1561 (in Chinese with English abstract). https://www.researchgate.net/publication/279691760_LA-ICP-MS_zircon_U-Pb_dating_of_the_gabbro_from_the_Guanzizhen_ophiolite_in_the_northern_margin_of_the_western_Qinling_and_its_geological_significance Pei, X.Z., Ding, S.P., Zhang, G.W., et al., 2007b.Zircons LA-ICP-MS U-Pb Dating of Neoproterozoic Granitoid Gneisses in the North Margin of West Qinling and Geological Implication.Acta Geologica Sinica, 81(6):772-786 (in Chinese with English abstract). http://www.adearth.ac.cn/EN/abstract/abstract3766.shtml Pei, X.Z., Ding, S.P., Zhang, G.W., et al., 2007c.The LA-ICP-MS Zircons U-Pb Ages and Geochemistry of the Baihua Basic Igneous Complexes in Tianshui Area of West Qinling.Science in China (Series D), 37(Suppl.1):224-234 (in Chinese). doi: 10.1007/s11430-007-6028-8 Pei, X.Z., Sun, R.Q., Ding, S.P., et al., 2007d.LA-ICP-MS Zircon U-Pb Dating of the Yanjiadian Diorite in the Eastern Qilian Mountains and Its Geological Significance.Geology in China, 34(1):8-16 (in Chinese with English abstract). https://www.researchgate.net/publication/287774708_LA-ICP-MS_zircon_U-Pb_dating_of_the_Yanjiadian_diorite_in_the_eastern_Qilian_Mountains_and_its_geological_significance Pei, X.Z., Ding, S.P., Li, Z.C., et al., 2009.Early Paleozoic Tianshui-Wushan Tectonic Zone of the Northern Margin of West Qinling and Its Tectonic Evolution.Acta Geologica Sinica, 83(11):1547-1564 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S136791201100246X Pei, X.Z., Li, Z.C., Li, R.B., et al., 2012.LA-ICP-MS U-Pb Ages of Detrital Zircons from the Meta-Detrital Rocks of the Early Palaeozoic Huluhe Group in Eastern Part of Qilian Orogenic Belt:Constraints of Material Source and Sedimentary Age.Earth Science Frontiers, 19(5):205-224 (in Chinese with English abstract). doi: 10.1007/s11430-016-9029-7 Powell, R., Holland, T.J.B., 1988.An Internally Consistent Dataset with Uncertainties and Correlations:3.Applications to Geobarometry, Worked Examples and a Computer Program.Journal of Metamorphic Geology, 6(2):173-204. https://dx.doi.org/10.1111/j.1525-1314.1988.tb00415.x Powell, R., Holland, T.J.B., 2008.On Thermobarometry.Journal of Metamorphic Geology, 26(2):155-179. https://dx.doi.org/10.1111/j.1525-1314.2007.00756.x Powell, R., White, R.W., Green, E.C.R., et al., 2014.On Parameterizing Thermodynamic Descriptions of Minerals for Petrological Calculations.Journal of Metamorphic Geology, 32(3):245-260. https://dx.doi.org/10.1111/jmg.12070 Spear, F.S., 1991.On the Interpretation of Peak Metamorphic Temperatures in Light of Garnet Diffusion during Cooling.Journal of Metamorphic Geology, 9(4):379-388. https://dx.doi.org/10.1111/j.1525-1314.1991.tb00533.x Sun, Y., Ma, C.Q., Liu, B., 2017.Record of Late Yanshanian Mafic Magmatic Activity in the Middle-Lower Yangtze River Metallogenic Belt.Earth Science, 42(6):891-908 (in Chinese with English abstract). https://dx.doi.org/10.3799/dqkx.2017.077 Thompson, A.B., England, P.C., 1984.Pressure-Temperature-Time Paths of Regional Metamorphism Ⅱ.Their Inference and Interpretation Using Mineral Assemblages in Metamorphic Rocks.Journal of Petrology, 25(4):929-955. https://dx.doi.org/10.1093/petrology/25.4.929 Tian, Z.L., Zhang Z.M., Dong, X., 2016.Metamorphism of High-P Metagreywacke from the Eastern Himalayan Syntaxis:Phase Equilibria and P-T Path.Journal of Metamorphic Geology, 34(7):697-718. https://dx.doi.org/10.1111/jmg.12205 Wang, H., Wu, Y.B., 2013.Early Paleozoic HP-UHP Metamorphism of the Qinling Orogen.Chinese Science Bulletin, 58(22):2124-2131 (in Chinese). https://www.researchgate.net/publication/264936238_Early_Paleozoic_HP-UHP_metamorphism_of_the_Qinling_orogen Wang, H., Wu, Y.B., Gao, S., et al., 2011.Silurian Granulite-Facies Metamorphism, and Coeval Magmatism and Crustal Growth in the Tongbai Orogen, Central China.Lithos, 125(1-2):249-271. https://dx.doi.org/10.1016/j.lithos.2011.02.010 Wang, H.L., Chen, L., Sun, Y., et al., 2007.~4.1Ga Xenocrystal Zircon from Ordovician Volcanic Rocks in Western Part of North Qinling Orogenic Belt.Chinese Science Bulletin, 52(14):1685-1693 (in Chinese). http://www.oalib.com/paper/1305184 Wang, J., Zhang, H.F., Xu, W.C., et al., 2008.Petrogenesis of Granites from Dangchuan Area in West Qinling Orogenic Belt and Its Tectonic Implication.Earth Science, 33(4):474-486 (in Chinese with English abstract). https://dx.doi.org/10.3321/j.issn:1000-2383.2008.04.005 Wang, T., Hu, N.G., Pei, X.Z., et al., 1997.The Composition, Tectonic Framework and Evolution of Qinling Complex, Central China.Acta Geoscientia Sinica, 18(4):345-351 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB704.001.htm White, R.W., Powell, R., Clarke, G.L., 2002.The Interpretation of Reaction Textures in Fe-Rich Metapelitic Granulites of the Musgrave Block, Central Australia:Constraints from Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3.Journal of Metamorphic Geology, 20(1):41-55. https://dx.doi.org/10.1046/j.0263-4929.2001.00349.x White, R.W., Powell, R., Holland, T.J.B., et al., 2014.New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems.Journal of Metamorphic Geology, 32(3):261-286. https://dx.doi.org/10.1111/jmg.12071 Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. https://dx.doi.org/10.2138/am.2010.3371 Wu, Y.B., Zheng, Y.F., 2013.Southward Accretion of the North China Block and the Tectonic Evolution of the Qinling Tongbai-Hong'An Orogenic Belt.Chinese Science Bulletin, 58(23):2246-2250 (in Chinese). http://or.nsfc.gov.cn/handle/00001903-5/267843 Wu, Y.B., Zheng, Y.F., 2013.Tectonic Evolution of a Composite Collision Orogen:An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China.Gondwana Research, 23(4):1402-1428. https://dx.doi.org/10.1016/j.gr.2012.09.007 Xiang, H., Zhang, L., Zhong, Z.Q., et al., 2012.Ultrahigh-Temperature Metamorphism and Anticlockwise P-T-t Path of Paleozoic Granulites from North Qinling-Tongbai Orogen, Central China.Gondwana Research, 21(2-3):559-576. https://dx.doi.org/10.1016/j.gr.2011.07.002 Xiang, H., Zhong, Z.Q., Li, Y., et al., 2014.Sapphirine-Bearing Granulites from the Tongbai Orogen, China:Petrology, Phase Equilibria, Zircon U-Pb Geochronology and Implications for Paleozoic Ultrahigh Temperature Metamorphism.Lithos, 208-209:446-461. https://dx.doi.org/10.1016/j.lithos.2014.08.017 Yan, Q.R., Wang, Z.Q., Chen, J.L., et al., 2007.Tectonic Setting and SHRIMP Age of Volcanic Rocks in the Xieyuguan and Caotangou Groups:Implications for the North Qinling Orogenic Belt.Acta Geologica Sinica, 81(4):488-500 (in Chinese with English abstract). doi: 10.1007/s11430-010-4054-4 Yang, J.S., Xu, Z.Q., Pei, X.Z., et al., 2002.Discovery of Diamond in North Qinling:Evidence for a Giant UHPM Belt across Central China and Recognition of Paleozoic and Mesozoic Dual Deep Subduction between North China and Yangtze Plates.Acta Geologica Sinica, 76(4):484-495 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2002AGUFM.T61A1228Y Yang, Z., Dong, Y.P., Liu, X.M., et al., 2006.LA-ICP-MS Zircon U-Pb Dating of Gabbro in the Guanzizhen Ophiolite, Tianshui, West Qinling, China.Geological Bulletin of China, 25(11):1321-1325 (in Chinese with English abstract). https://www.researchgate.net/publication/280016918_LA-ICP-MS_zircon_U-Pb_dating_of_gabbro_in_the_Guanzizhen_ophiolite_Tianshui_West_Qinling_China You, Z.D., Han, Y.J., Suo, S.T., et al., 1993.Metamorphic History and Tectonic Evolution of the Qinling Complex, Eastern Qinling Mountains, China.Journal of Metamorphic Geology, 11(4):549-560. https://dx.doi.org/10.1111/j.1525-1314.1993.tb00171.x Zhai, X.M., Day, H.W., Hacker, B.R., et al., 1998.Paleozoic Metamorphism in the Qinling Orogen, Tongbai Mountains, Central China.Geology, 26(4):371-374.https://dx.doi.org/10.1130/0091-7613(1998)026<0371:pmitqo>2.3.co;2 doi: 10.1130/0091-7613(1998)026<0371:pmitqo>2.3.co;2 Zhang, C.L., Liu, L., Wang, T., et al., 2013.Granitic Magmatism Related to Early Paleozoic Continental Collision in North Qinling.Chinese Science Bulletin, 58(23):2323-2329 (in Chinese). doi: 10.1007/s11434-013-6064-z.pdf Zhang, G.W., Guo, A.L., Yao, A.P., 2004.Western Qinling -Songpan Continental Tectonic Node in China's Continental Tectonics.Earth Science Frontiers, 11(3):23-32 (in Chinese with English abstract). http://www.doc88.com/p-2334711900349.html Zhang, G.W., Zhang, Z.Q., Dong, Y.P., 1995.Nature of Main Tectono-Lithostratigraphic Units of the Qinling Orogen:Implications for the Tectonic Evolution.Acta Petrologica Sinica, 11(2):101-114 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=19950215 Zhang, H.F., Jin, L.L., Zhang, L., et al., 2005.Geochemical and Pb-Sr-Nd Isotopic Compositions of Granitoids from Western Qinling Belt:Constraints on Basement Nature and Tectonic Affinity.Science in China (Series D), 35(10):914-926 (in Chinese). doi: 10.1007/s11430-007-2015-3.pdf Zhang, H.F., Jin, L.L., Zhang, L., et al., 2006.Pb and Nd Isotopic Compositions of Basement and Granitoid in the Qilianshan:Constraints on Tectonic Affinity.Earth Science, 31(1):57-65 (in Chinese with English abstract). https://dx.doi.org/10.3321/j.issn:1000-2383.2006.01.008 Zhang, H.F., Zhang, B.R., Harris, N., et al., 2006.U-Pb Zircon SHRIMP Ages, Geochemical and Sr-Nd-Pb Isotopic Compositions of Intrusive Rocks from the Longshan-Tianshui Area in the Southeast Corner of the Qilian Orogenic Belt, China:Constraints on Petrogenesis and Tectonic Affinity.Journal of Asian Earth Sciences, 27(6):751-764. https://dx.doi.org/10.1016/j.jseaes.2005.07.008 Zhang, J.X., Yu, S.Y., Mattinson, C.G., 2017.Early Paleozoic Polyphase Metamorphism in Northern Tibet, China.Gondwana Research, 41:267-289. https://dx.doi.org/10.1016/j.gr.2015.11.009 Zhang, J.X., Yu, S.Y., Meng, F.C., et al., 2009.Paired High-Pressure Granulite and Eclogite in Collision Orogens and Their Geodynamic Implications.Acta Petrologica Sinica, 25(9):2050-2066 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090902 Zhang, J.X., Yu, S.Y., Meng, F.C., 2011.Ployphase Early Paleozoic Metamorphism in the Northern Qinling Orogenic Belt.Acta Petrologica Sinica, 27(4):1179-1190 (in Chinese with English abstract). https://www.researchgate.net/publication/279625971_Ployphase_Early_Paleozoic_metamorphism_in_the_northern_Qinling_orogenic_belt Zhang, Z.J., 1999.Metamorphic Evolution of Garnet-Clinopyroxene-Amphibole Rocks from the Proterozoic Songshugou Mafic-Ultramafic Complex, Qinling Mountains, Central China.The Island Arc, 8(2):259-280. https://dx.doi.org/10.1046/j.1440-1738.1999.00236.x Zhou, Y., Liang X.Q., Cai, Y.F., et al., 2017.Petrogenesis and Mineralization of Xitian Tin-Tungsten Polymetallic Deposit:Constraints from Mineral Chemistry of Biotite from Xitian A-Type Granite, Eastern Hunan Province.Earth Science, 42(10):1647-1657 (in Chinese with English abstract). https://dx.doi.org/10.3799/dqkx.2017.557 陈隽璐, 李好斌, 王洪亮, 等, 2007.秦祁结合部位王家岔石英闪长岩体锆石LA-ICPMS定年及地质意义.吉林大学学报(地球科学版), 37(3):423-431. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201209013.htm 丁仨平, 裴先治, 李勇, 等, 2004.西秦岭天水地区"李子园群"的解体及其构造环境浅析.地质通报, 23(12):1209-1214. doi: 10.3969/j.issn.1671-2552.2004.12.007 何世平, 王洪亮, 徐学义, 等, 2007a.北祁连东段红土堡基性火山岩锆石LA-ICP-MS U-Pb年代学及其地质意义.地球科学进展, 22(2):143-151. doi: 10.3321/j.issn:1001-8166.2007.02.004 何世平, 王洪亮, 徐学义, 等, 2007b.北祁连东段红土堡基性火山岩和陈家河中酸性火山岩地球化学特征及构造环境.岩石矿物学杂志, 26(4):295-309. http://www.adearth.ac.cn/CN/Y2007/V22/I2/143 何艳红, 孙勇, 陈亮, 等, 2005.陇山杂岩的LA-ICP-MS锆石U-Pb年龄及其地质意义.岩石学报, 21(1):125-134. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20050113 胡能高, 赵东林, 徐柏青, 等, 1995.北秦岭官坡地区高压-超高压榴辉岩岩相学及变质作用研究.矿物岩石, 15(4):1-9. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20130513&journal_id=ysxb&year_id=2013 刘良, 周鼎武, 董云鹏, 等, 1995.东秦岭松树沟高压变质基性岩石及其退变质作用的P-T-t演化轨迹.岩石学报, 11(2):127-136. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb199502002&dbname=CJFD&dbcode=CJFQ 刘良, 周鼎武, 王焰, 等, 1996.东秦岭秦岭杂岩中的长英质高压麻粒岩及其地质意义初探.中国科学(D辑), 26(增刊):56-63. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD803.006.htm 陆松年, 陈志宏, 李怀坤, 等, 2005.秦岭造山带中两条新元古代岩浆岩带.地质学报, 79(2):165-173. http://www.oalib.com/paper/4876291 毛小红, 张建新, 于胜尧, 等, 2017.西秦岭造山带北部早古生代麻粒岩相变质作用及深熔作用:锆石和独居石U-Pb年代学的制约.中国科学(D辑), 47(5):601-616. https://www.researchgate.net/publication/317046080_xiqinlingzaoshandaibeibuzaogushengdaimaliyanxiangbianzhizuoyongjishenrongzuoyong_gaoshihedujushiU-Pbniandaixuedezhiyue 裴先治, 丁仨平, 胡波, 等, 2004.西秦岭天水地区关子镇蛇绿岩的厘定及其地质意义.地质通报, 23(12):1202-1208. doi: 10.3969/j.issn.1671-2552.2004.12.006 裴先治, 丁仨平, 李佐臣, 等, 2007a.西秦岭北缘关子镇蛇绿岩的形成时代:来自辉长岩中LA-ICP-MS锆石U-Pb年龄的证据.地质学报, 81(11):1550-1561. doi: 10.11867/j.issn.1001-8166.2007.08.0818 裴先治, 丁仨平, 张国伟, 等, 2007b.西秦岭北缘新元古代花岗质片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义.地质学报, 81(6):772-786. doi: 10.3321/j.issn:0001-5717.2007.06.005 裴先治, 丁仨平, 张国伟, 等, 2007c.西秦岭天水地区百花基性岩浆杂岩的LA-ICP-MS锆石U-Pb年龄及地球化学特征.中国科学(D辑), 37(增刊1):224-234. doi: 10.11867/j.issn.1001-8166.2007.08.0818 裴先治, 李佐臣, 李瑞保, 等, 2012.祁连造山带东段早古生代葫芦河群变质碎屑岩中碎屑锆石LA-ICP-MS U-Pb年龄:源区特征和沉积时代的限定.地学前缘, 19(5):205-224. http://mall.cnki.net/magazine/Article/DXQY201205022.htm 裴先治, 孙仁奇, 丁仨平, 等, 2007d.陇东地区阎家店闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义.中国地质, 34(1):8-16. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201209013.htm 裴先治, 丁仨平, 李佐臣, 等, 2009.西秦岭北缘早古生代天水-武山构造带及其构造演化.地质学报, 83(11):1547-1564. doi: 10.3321/j.issn:0001-5717.2009.11.002 孙洋, 马昌前, 刘彬, 2017.长江中下游地区燕山晚期基性岩浆活动的记录.地球科学, 42(6):891-908. http://www.earth-science.net/WebPage/Article.aspx?id=3586 王浩, 吴元保, 2013.秦岭造山带早古生代高压-超高压变质作用.科学通报, 58(22):2124-2131. https://www.researchgate.net/profile/Hao_Wang108/publication/264936238_Early_Paleozoic_HP-UHP_metamorphism_of_the_Qinling_orogen/links/5421758f0cf203f155c6c5bb/Early-Paleozoic-HP-UHP-metamorphism-of-the-Qinling-orogen.pdf 王洪亮, 陈亮, 孙勇, 等, 2007.北秦岭西段奥陶纪火山岩中发现近4.1Ga的捕虏锆石.科学通报, 52(14):1685-1693. doi: 10.3321/j.issn:0023-074x.2007.14.015 王婧, 张宏飞, 徐旺春, 等, 2008.西秦岭党川地区花岗岩的成因及其构造意义.地球科学, 33(4):474-486. http://www.earth-science.net/WebPage/Article.aspx?id=1715 王涛, 胡能高, 裴先治, 等, 1997.秦岭杂岩的组成、构造格局及演化.地球学报, 18(4):345-351. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqxb704.001&dbname=CJFD&dbcode=CJFQ 吴元保, 郑永飞, 2013.华北陆块古生代南向增生与秦岭-桐柏-红安造山带构造演化.科学通报, 58(23):2246-2250. http://www.oalib.com/paper/4273663 闫全人, 王宗起, 陈隽璐, 等, 2007.北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束、SHRIMP年代及其意义.地质学报, 81(4):488-500. http://www.oalib.com/paper/4794426 杨经绥, 许志琴, 裴先治, 等, 2002.秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别.地质学报, 76(4):484-495. doi: 10.3321/j.issn:0001-5717.2002.04.007 杨钊, 董云鹏, 柳小明, 等, 2006.西秦岭天水地区关子镇蛇绿岩锆石LA-ICP-MS U-Pb定年.地质通报, 25(11):1321-1325. doi: 10.3969/j.issn.1671-2552.2006.11.012 张成立, 刘良, 王涛, 等, 2013.北秦岭早古生代大陆碰撞过程中的花岗岩浆作用.科学通报, 58(23):2323-2329. https://www.wenkuxiazai.com/doc/a1933287960590c69ec376fc-2.html 张国伟, 郭安林, 姚安平, 2004.中国大陆构造中的西秦岭-松潘大陆构造结.地学前缘, 11(3):23-32. http://www.doc88.com/p-0418323463317.html 张国伟, 张宗清, 董云鹏, 1995.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义.岩石学报, 11(2):101-114. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=19950215 张宏飞, 靳兰兰, 张利, 等, 2005.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制.中国科学(D辑), 35(10):914-926. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200510001.htm 张宏飞, 靳兰兰, 张利, 等, 2006.基底岩系和花岗岩类Pb-Nd同位素组成限制祁连造山带的构造属性.地球科学, 31(1):57-65. http://www.earth-science.net/WebPage/Article.aspx?id=1537 张建新, 于胜尧, 孟繁聪, 等, 2009.造山带中成对出现的高压麻粒岩与榴辉岩及其地球动力学意义.岩石学报, 25(9):2050-2066. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090902 张建新, 于胜尧, 孟繁聪.2011.北秦岭造山带的早古生代多期变质作用.岩石学报, 27(4):1179-1190. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20140822&journal_id=ysxb 周云, 梁新权, 蔡永丰, 等, 2017.湘东锡田燕山期A型花岗岩黑云母矿物化学特征及其成岩成矿意义.地球科学, 42(10):1647-1657. http://www.earth-science.net/WebPage/Article.aspx?id=3671