Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes
-
摘要: 源-汇沉积过程的实质是沉积物的产生、搬运和沉积.陆表岩石的风化、侵蚀是沉积物产生的主要过程,受气候和构造因素的联合控制.现代陆表风化层研究揭示,在特定风化机制下(供给限制型化学风化)表层土壤的化学风化强度主要与陆表温度和湿度(降雨量)有关,其关系可通过建立经验气候转换方程来描述.经源-汇过程,这些气候信息可随陆源碎屑沉积物从源到汇传递,并最终可能形成沉积记录而保存于地层序列中.由于源-汇系统的复杂性和自发波动性,气候信息传递受源区侵蚀和沉积路径等的影响和扰动,具有明显的选择性,其时效性与气候变化本身的幅度和频度有关.基于陆源碎屑沉积进行深时古气候研究需要加深对源-汇沉积过程的理解,并考虑沉积系统响应和可能气候变化的时间尺度.Abstract: Source-to-Sink process involves the production, transportation and accumulation of terrigenous clastic sediments. Sediments are produced dominantly by weathering and eroding exposed rocks on continent surfaces, with processes mainly regulated by climate and tectonics. Modern regolith studies document that under specific weathering regime (supply-limited weathering), surface soils can be weathered to certain degrees related to temperature and moisture (precipitation vs. evaporation) and their relationships can be outlined by empirical climate transfer functions. Through Source-to-Sink process, the climate signal can be transmitted, along sediment transport, from the source to the sink and is finally preserved in the sedimentary archives. However, climate signals might be damped or shred by landscape erosion and sediment routing systems due to the complexity and autogenic fluctuations of Source-to-Sink process. The climate signal propagation can be selectively filtered, and its fidelity and efficiency are closely related to the frequency and amplitude of climate changes. Studies of deep-time paleoclimate of terrigenous clastic sequences require a thorough understanding of the Source-to-Sink process and the comparison between timescales of sedimentary system responding and potential climate change.
-
图 1 沉积物的路径系统的简化模型
由侵蚀、搬运和堆积3个区域构成,受控于构造隆升、沉降和气候条件;修改自Castelltort and Driessche(2003)和Romans et al.(2016)
Fig. 1. 2-D profile of a general sediment-routing system
图 3 土壤中可溶组分(a)和稳定组分(b)的质量平衡简图
土壤由下伏未风化基岩转变而成,其可溶组分经物理和化学侵蚀而丢失,稳定组分(如元素Zr)仅通过物理侵蚀而丢失,在平衡状态下土壤厚度(h)保持不变(修改自Riebe et al., 2003)
Fig. 3. Schematic showing mass balances of soluble (a) and insoluble (b) soil components
图 4 化学风化机制的(a)概念模型和(b)数学模型简图
Fig. 4. Schematic graphs for conceptual (a) and mathematic models of supply-limited and kinetic-limited weathering (b)
图 5 沉积记录响应时间与气候变化频度、幅度的关系
Fig. 5. Responding of sedimentary records to the timescale and frequency of climate change
-
Allen, P.A., 2008.From Landscapes into Geological History.Nature, 451(17):274-276.doi: 10.1038/nature06586 Armitage, J.J., Jones, T.D., Duller, R.A., et al., 2013.Temperal Buffering of Climate-Driven Sediment Flux Cycles by Transient Catchment Response.Earth and Planetary Science Letters, 369-370:200-210.doi: 10.1016/j.epsl.2013.03.020 Berner, R.A., 2006.Inclusion of the Weathering of Volcanic Rocks in the GEOCARBSULF Model.American Journal of Science, 306:295-302.doi: 10.2475/05.2006.01 Blöthe, J.H., Korup, O., 2013.Millennial Lag Times in the Himalayan Sediment Routing System.Earth and Planetary Science Letters, 382:38-46.doi: 10.1016/j.epsl.2013.08.044 Bouchez, J., Gaillarder, J., France-Lanord, C., et al., 2011.Grain Size Control of River Suspended Sediment Geochemistry:Clues from Amazon River Depth Profiles.Geochemistry Geophysics Geosystems, 12(3):428-452.doi: 10.1029/2010GC003380 Bridge, J., Demicco, R., 2008.Earth Surface Processes, Landforms and Sediment Deposits.Cambridge University Press, New York. Castelltort, S., Driessche, J.V.D., 2003.How Plausible are High-Frequency Sediment Supply-Driven Cycles in the Stratigraphic Record? Sedimentary Geology, 157(1-2):3-13.doi: 10.1016/S0037-0738(03)00066-6 Chen, Z., Ding, Z., Tang, Z., et al., 2017.Paleoweathering and Paleoenvironmental Change Recorded in Lacustrine Sediments of the Early to Middle Eocene in Fushun Basin, Northeast China.Geochemistry Geophysics Geosystems, 18:41-51.doi: 10.1002/2016GC006573 Chetelat, B., Liu, C.Q., Wang, Q., et al., 2013.Assessing the Influence of Lithology on Weathering Indices of Changjiang River Sediments.Chemical Geology, 359:108-115.doi: 10.1016/j.chemgeo.2013.09.018 Clift, P.D., Hodges, K.V., Heslop, D., et al., 2008.Correlation of Himalayan Exhumation Raes and Asian Monsoon History.Nature Geoscience, 1:875-880.doi: 10.1038/ngeo351 Clift, P.D., Wan, S., Blusztajn, J., 2014.Reconstructing Chemical Weathering, Physical Erosion and Monsoon Intensity since 25 Ma in the Northern South China Sea:A Review of Competing Proxies.Earth-Science Reviews, 130:86-102.doi: 10.1016/j.earscirev.2014.01.002 Cox, R., Lowe, D.R., Cullers, R.L., 1995.The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States.Geochimica et Cosmochimica Acta, 59(14):2919-2940.doi: 10.1016/0016-7037(95)00185-9 Cullers, R.L., 2000.The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA:Implications for Provenance and Metamorphic Studies.Lithos, 51:181-203.doi: 10.1016/S0024-4937(99)00063-8 Dere, A.L., White, T.S., April, R.H., et al., 2015.Mineralogical Transformations and Soil Development in Shale across a Latitudinal Climosequence.Soil Sci.Soc.Am.J., 80:623-636.doi: 10.2136/sssaj2015.05.0202 Dere, A.L., White, T.S., April, R.H., et al., 2013.Climate Dependence of Feldspar Weathering in Shales Soils along a Latitudinal Gradient.Geochimica et Cosmochimica Acta, 122:101-126.doi: 10.1016/j.gca.2013.08.001 Ding, H., Ma, D., Yao, C.et al., 2009.Sedimentary Environment of Ediacaran Glacigenic Diamictite in Guozigou of Xinjiang, China.Chinese Science Bulletin, 54:3283-3294.doi: 10.1007/s11434-009-0443-5 Dixon, J.L., Hartshorn, A.S., Heimsath, A.M., et al., 2012.Chemical Weathering Response to Tectonic Forcing:A Soils Perspective from the San Gabriel Mountains, California.Earth and Planetary Science Letters, 323-324:40-49.doi: 10.1016/j.epsl.2012.01.010 Donders, T.H., Weijers, J.W.H., Munsterman, D.K., et al., 2009.Strong Climate Coupling of Terrestrial and Marine Environments in the Miocene of Northwest Europe.Earth and Planetary Science Letters, 281:215-225.doi: 10.1016/j.epsl.2009.02.034 Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance.Geology, 23(10):921-924.doi:10.1130/0091-7613(1995)023<0921 Feng, L.J., Chu, X.L., Zhang, Q.R., et al., 2004.New Evidence of Deposition under Cold Climate for the Xieshuihe Formation of the Nanhua System in Northwestern Hunan, China.Chinese Science Bulletin, 49(13):1420-1427.doi: 10.1360/03wd0572 Ferrier, K.L., Kirchner, J.W., 2008.Effects of Physical Erosion on Chemical Denudation Rates:A Numerical Modeling Study of Soil-Mantled Hillslopes.Earth and Planetary Science Letters, 272:591-599.doi: 10.1016/j.epsl.2008.05.024 Ferrier, K.L., Riebe, C.S., Hahm, W.J., 2016.Testing for Supply-Limited and Kinetic-Limited Chemical Erosion in Field Measurements of Regolith Production and Chemical Depletion.Geochemistry Geophysics Geosystems, 17:2270-2285.doi: 10.1002/2016GC006273 Foreman, B.Z., Heller, P.L., Clementz, M.T., 2012.Fluvial Response to Abrupt Global Warming at the Palaeocene/Eocene Boundary.Nature, 49:92-95.doi: 10.1038/nature11513 Gabet, E.J., Mudd, S.M., 2009.A Theoretical Model Coupling Chemical Weathering Rates with Denudation Rates.Geology, 37(2):151-154.doi: 10.1130/G25270A.1 Gaillardet, J., Dupré, B., Allegrè, C.J., 1999.Geochemistry of Large River Suspended Sediments:Silicate Weathering or Recycling Tracer? Geochimica et Cosmochimica Acta, 63(23/24):4037-4051.doi: 10.1016/S0016-7037(99)00307-5 Garzanti, E., Andó, S., France-Lanord, C., et al., 2011.Mineralogical and Chemical Variability of Fluvial Sediments 2.Suspended-Load Silt (Ganga-Brahmaputra, Bangladesh).Earth and Planetary Science Letters, 302:107-120.doi: 10.1016/j.epsl.2010.11.043 Garzanti, E., Doglioni, C., Vezzoli, G.et al., 2007.Orogenic Belts and Orogenic Sediment Provenance.The Journal of Geology, 115:315-334.doi: 10.1086/512755 Garzanti, E., Padoan M., Setti, M., et al., 2013.Weathering Geochemistry and Sr-Nd Fingerprints of Equatorial Upper Nile and Congo Muds.Geochemistry Geophysics Geosystems, 14(2):292-316.doi: 10.1002/ggge.20060 Garzanti, E., Padoan, M., Setti, M., et al., 2014.Provenance versus Weathering Control on the Composition of Tropical River Mud Southern Africa.Chemical Geology, 366:61-74.doi: 10.1016/j.chemgeo.2013.12.016 Ge, H.M., Zhang, C.L., 2016.Advances in GDGT Research in Chinese Marginal Seas:A Review.Science China:Earth Sciences, 46(4):473-488 (in Chinese).doi: 10.1007/s11430-015-5242-z Gehrels, G., 2014.Detrital Zircon U-Pb Geochronology Applied to Tectonics.Annual Review of Earth and Planetary Sciences, 42:127-149.doi: 10.1146/annurev-earth-050212-124012 Goodbred-Jr., S.L., 2003.Response of the Ganges Dispersal System to Climate Change:A Source-to-Sink View since the Last Inerstade.Sedimentary Geology, 162:83-104.doi: 10.1016/S0037-0738(03)00217-3 Harnois, L., 1988.The CIW Index:A New Chemical Index of Weathering.Sedimentary Geology, 55(3-4):319-322.doi: 10.1016/0037-0738(88)90137-6 Hietpas, J., Samson, S., Moecher, D., et al., 2010.Recovering Tectonic Events from the Sedimentary Record:Detrital Monazite Plays in High Fidelity.Geology, 38(2):167-170.doi: 10.1130/G30265.1 Hu, X., Garzanti, E., Moore, T.et al., 2015.Direct Stratigraphic Dating of India-Asia Collision Onset at the Selandian (Middle Paleocene, 59±1 Ma).Geology, 43(10):859-862.doi: 10.1130/G36872.1 Jerolmack, D.J., Paola, C., 2010.Shredding of Environmental Signals by Sediment Transport.Geophysical Research Letters, 37:L19401.doi: 10.1029/2010GL044638