Geochemical Characteristics and Implications of Shale Gas in Jiaoshiba, Eastern Sichuan, China
-
摘要: 焦石坝地区五峰组-龙马溪组页岩富集有大量的天然气,但针对页岩气地球化学特征研究还较薄弱,其蕴含的地质意义不甚明确.通过页岩气组分及其碳同位素特征和页岩干酪根的碳同位素特征分析,讨论了页岩气的来源、成因类型和完全倒转的碳同位素分布特征.五峰组-龙马溪组页岩具有很好的生烃能力、有机质丰度与含气量的关系有明显的正相关性、甲烷与干酪根相似的碳同位素特征、地层的超压特征等,综合表明研究区天然气应为页岩自生自储的页岩气;页岩气的甲烷含量均超过98%,其碳同位素平均为-29.93‰,反映了成熟度已经达到过成熟干气阶段;相对稳定的ln(C1/C2)和快速增大的ln(C2/C3)揭示其成因主要为二次裂解气;页岩气碳同位素完全倒转的分布特征主要受到在相对封闭环境中的原油裂解生气作用的影响,其完全倒转的碳同位素分布特征也反映了研究区良好的页岩气保存、富集条件.Abstract: The Wufeng-Longmaxi shales in Jiaoshiba is rich in natural gas. However, the research on the geochemical characteristic of the shale gas is weak, and its geological significance is still unclear. This article discusses the origin type and the "full reversal" carbon isotopic composition of shale gas from Wufeng Formation-Longmaxi Formation based on the analysis of the shale gas component and its isotope. The high hydrocarbon generation potential of Wufeng-Longmaxi shales, the positive correlation of the abundance of organic carbon and the content of gas, the similar carbon isotope distribution between methane and kerogen and the overpressure in Wufeng Formation-Longmaxi Formation suggest the shale gas should be generated from and preserved in the Wufeng Formation-Longmaxi Formation. The content of methane and its isotope indicate the stage of thermal maturity for shale gas has reached the overmature phase and the shale gas is mainly dry gas. The shale gas is mainly formed from the cracking of oil generated early based on the ratio of ln(C1/C2) and ln(C2/C3). The "full reversal" carbon isotope distribution of shale gas resulted from the oil cracking in a relatively closed system and it also reflects a favorable preservation and accumulation conditions for shale gas.
-
Key words:
- carbon isotope /
- shale gas /
- Wufeng Formation /
- Longmaxi Formation /
- Jiaoshiba /
- petroleum geology
-
表 1 焦页1井龙马溪组干酪根镜检测定
Table 1. Microcomponents of kerogen for Longmaxi Formation in well JY1
井深(m) 地层 岩性 显微组分(%) 类型指数 类型 腐泥无定形体 藻类体 动物碎屑 2 339.33 龙马溪组 灰黑色页岩 40.27 52.57 7.16 92.8 Ⅰ 2 349.23 龙马溪组 灰黑色页岩 71.21 28.79 / 100.0 Ⅰ 表 2 焦石坝地区龙马溪组干酪根碳同位素分布特征
Table 2. The carbon isotopic composition of kerogen for Longmaxi Formation in Jiaoshiba
编号 地层 岩性 TOC (%) δ13C干酪根(‰) JSB-1 龙马溪组 灰黑色页岩 1.49 -29.20 JSB-2 龙马溪组 黑色碳质页岩 2.09 -29.30 JSB-3 龙马溪组 黑灰色含碳质泥岩 0.49 -29.70 JSB-4 龙马溪组 灰黑色页岩 0.45 -29.24 JSB-5 龙马溪组 灰黑色页岩 2.41 -29.24 JSB-6 龙马溪组 灰黑色页岩 1.67 -28.61 JSB-7 龙马溪组 黑色碳质页岩 1.46 -29.06 JSB-8 龙马溪组 黑色碳质页岩 2.02 -29.11 JSB-9 龙马溪组 黑色碳质页岩 3.40 -29.94 JSB-10 龙马溪组 黑灰色含碳质泥岩 5.65 -29.83 JSB-11 龙马溪组 黑灰色含碳质泥岩 3.85 -29.83 表 3 焦石坝地区天然气组成特征
Table 3. The characteristics of shale gas in Jiaoshiba
井号 气体组分(%) 稳定碳同位素δ13C (‰) CH4 C2H6 C3H8 CO2 N2 CH4 C2H6 C3H8 焦页1HF① 98.35 0.63 0.02 0.20 0.80 -28.36 -34.18 -36.72 焦页1HF② 98.31 0.60 0.02 0.32 0.75 -30.51 -34.10 焦页1HF③ 98.41 0.52 0.02 0.27 0.78 -30.33 -34.34 -37.56 焦页7-2HF① 97.90 0.94 0.02 0.18 0.96 -29.03 -34.47 -37.05 焦页7-2HF② 98.18 0.50 0.02 0.36 0.94 -30.71 -34.37 焦页7-2HF③ 98.32 0.51 0.33 0.84 -30.51 -34.47 焦页8-2HF① 98.37 0.54 0.02 0.25 0.82 -29.07 -34.34 -37.14 焦页8-2HF② 98.33 0.65 0.02 0.27 0.73 -30.12 -34.31 焦页8-2HF③ 98.65 0.43 0.18 0.74 -30.41 -34.33 -36.09 焦页12-2HF② 98.15 0.67 0.02 0.46 0.70 -30.20 -34.60 ①.采样日期2013年10月25日;②.采样日期2014年4月10日;③.采样日期2014年8月6日. -
Baldassare, F.J., McCaffrey, M.A., Harper, J.A., 2014.A Geochemical Context for Stray Gas Investigations in the Northern Appalachian Basin:Implications of Analyses of Natural Gases from Neogene-Through Devonian-Age Strata.AAPG Bulletin, 98(2):341-372.doi: 10.1306/06111312178 Bernard, B.B., 1978.Light Hydrocarbons in Marine Sediments (Dissertation).Texas A & M University, Texas. Cao, C.H., Zhang, M.J., Tang, Q.Y., et al., 2015.Geochemical Characteristics and Implications of Shale Gas in Longmaxi Formation, Sichuan Basin, China.Natural Gas Geoscience, 26(8):1604-1612 (in Chinese with English abstract). Dai, J.X., 1993.Carbon/Hydrogen Isotope Characteristics and Identification of Various Type Gas.Nature Gas Geoscience, 4(2-3):1-40 (in Chinese). Dai, J.X., Xia, X.Y., Qin, S.F., et al., 2004.Origins of Partially Reversed Alkane δ13C Values for Biogenic Gases in China.Organic Geochemistry, 35(4):405-411.doi: 10.1016/j.orggeochem.2004.01.006 Dai, J.X., Zou, C.N., Liao, S.M., et al., 2014.Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin.Organic Geochemistry, 74:3-12.doi: 10.1016/j.orggeochem.2014.01.018 Deng, B., Liu, S.G., Liu, S., et al., 2009.Restoration of Exhumation Thickness and Its Significance in Sichuan Basin, China.Journal of Chengdu University of Technology (Science & Technology Edition), 36(6):675-686 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200906016.htm Gao, Z.Z., He, Y.B., Li, L.Z.et al., 2008.Genesis of the Guanyinqiao Member of Upper Ordovician Wufeng Formation in Southern China:"Shallow Water Shelly Facies" or Deep-Water Allogenic Deposition?Journal of Paleogeography, 10(5):487-494 (in Chinese with English abstract). Guo, T.L., 2013.Evaluation of Highly Thermally Mature Shale-Gas Reservoirs in Complex Structural Parts of the Sichuan Basin.Journal of Earth Science, 24(6):863-873.doi: 10.1007/s12583-013-0384-4 Guo, T.L., Zhang, H.R., 2014.Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin.Petroleum Exploration and Development, 41(1):28-36 (in Chinese with English abstract). https://www.researchgate.net/publication/260213494_Formation_and_enrichment_mode_of_Jiaoshiba_shale_gas_field_Sichuan_Basin Guo, X.S., Hu, D.F., Li, Y.P., et al., 2016.Analyses and Thoughts on Accumulation Mechanisms of Marine and Lacustrine Shale Gas:A Case Study in Shales of Long maxi Formation and Daanzhai Section of Ziliujing Formation in Sichuan Basin.Earth Science Frontiers, 23(2):18-28 (in Chinese with English abstract). Guo, X.W., Liu, K.Y., Song, Y., et al., 2016.Relationship between Tight Sandstone Reservoir Formation and Petroleum Charge in Dabei Area of Kuqa.Earth Science, 41(3):394-402 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603005.htm Gürgey, K., Philp, R.P., Clayton, C., et al., 2005.Geochemical and Isotopic Approach to Maturity/Source/Mixing Estimations for Natural Gas and Associated Condensates in the Thrace Basin, NW Turkey.Applied Geochemistry, 20(11):2017-2037.doi: 10.1016/j.apgeochem.2005.07.012 Hao, F., Zou, H.Y., 2013.Cause of Shale Gas Geochemical Anomalies and Mechanisms for Gas Enrichment and Depletion in High-Maturity Shales.Marine and Petroleum Geology, 44:1-12.doi: 10.1016/j.marpetgeo.2013.03.005 Hao, F., Zou, H.Y., Lu, Y.C., 2013.Mechanisms of Shale Gas Storage:Implications for Shale Gas Exploration in China.AAPG Bulletin, 97(8):1325-1346.doi: 10.1306/02141312091 Hao, F., Guo, T.L., Zhu, Y.M., et al., 2008.Evidence for Multiple Stages of Oil Cracking and Thermochemical Sulfate Reduction in the Puguang Gas Field, Sichuan Basin, China.AAPG Bulletin, 92(5):611-637.doi: 10.1306/01210807090 Hao, S.S., Huang, Z.L., Gao, Y.B., 1991.A Study of the Diffusion of Light Hydrocarbon and the Dynamic Equilibrium Principle in the Migration and Accumulation of Natural Gas.Acta Petrolei Sinica, 12(3):17-24 (in Chinese with English abstract). He, X.Y., Yao, G.S., Cai, C.F., et al., 2012.Geochemical Characteristics and Origins of the Lower Cambrian Source Rocks from the Southern Guizhou Depression, SW China.Acta Sedimentologica Sinica, 30(4):761-769 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201204019.htm Hu, G.C., Xie, Y.X., 1997.Carboniferous Gas Fields in High Steep Structures of Eastern Sichuan.Petroleum Industry Press, Beijing, 186. James, A.T., 1983.Correlation of Natural Gas by Use of Carbon Isotopic Distribution between Hydrocarbon Components.AAPG Bulletin, 67(7):1176-1191.doi: 10.1306/03b5b722-16d1-11d7-8645000102c1865d James, A.T., 1990.Correlation of Reservoired Gases Using the Carbon Isotopic Compositions of Wet Gas Components.AAPG Bulletin, 74(9):1441-1458.doi: 10.1306/0c9b24f7-1710-11d7-8645000102c1865d Jiang, C.F., Wang, X.Z., Zhang, L.X., et al., 2013.Geological Characteristics of Shale and Exploration Potential of Continental Shale Gas in 7th Member of Yanchang Formation, Southeast Ordos Basin.Geology in China, 40(6):1880-1888 (in Chinese with English abstract). https://www.researchgate.net/publication/286691401_Geological_characteristics_of_shale_and_exploration_potential_of_continental_shale_gas_in_7th_member_of_Yanchang_Formation_southeast_Ordos_Basin Jacob, H., 1985.Disperse Solid Bitumens as an Indicator for Migration and Maturity in Prospecting for Oil and Gas.Erdöl Kohle, 38:365. Li, P.P., Guo, X.S., Hao, F., et al., 2016.Paleo-Oil-Reservoirs Reconstruction and Oil Correlation of Changxing Formation in the Yuanba Gas Field, Sichuan Basin.Earth Science, 41(3):452-462 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603011.htm Liang, D.G., Guo, T.L., Chen, J.P., et al., 2009.Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 2):Geochemical Characteristics of Four Suits of Regional Marine Source Rocks, South China.Marine Origin Petroleum Geology, 14(1):1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ200802001.htm Ma, Y.S, Cai, X.Y., Zhao, P.R., et al., 2010.Distribution and Further Exploration of the Large-Medium Sized Gas Fields in Sichuan Basin.Acta Petrolei Sinica, 31(3):347-354 (in Chinese with English abstract). doi: 10.1038/aps.2009.204 Ma, Y.S., Guo, X.S., Guo, T.L., et al., 2007.The Puguang Gas Field:New Giant Discovery in the Mature Sichuan Basin, Southwest China.AAPG Bulletin, 91(5):627-643.doi: 10.1306/11030606062 Martini, A.M., Walter, L.M., McIntosh, J.C., 2008.Identification of Microbial and Thermogenic Gas Components from Upper Devonian Black Shale Cores, Illinois and Michigan Basins.AAPG Bulletin, 92(3):327-339.doi: 10.1306/10180706037 Martini, A.M., Walter, L.M., Ku, T.C.W., et al., 2003.Microbial Production and Modification of Gases in Sedimentary Basins:A Geochemical Case Study from a Devonian Shale Gas Play, Michigan Basin.AAPG Bulletin, 87(8):1355-1375.doi: 10.1306/031903200184 Mei, L.F., Liu, Z.Q., Tang, J.G., et al., 2010.Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China:Evidence from Apatite Fission Track and Balanced Cross-Section.Earth Science, 35(2):161-174 (in Chinese with English abstract). Prinzhofer, A.A., Huc, A.Y., 1995.Genetic and Post-Genetic Molecular and Isotopic Fractionations in Natural Gases.Chemical Geology, 126(3-4):281-290.doi: 10.1016/0009-2541(95)00123-9 Rodriguez, N.D., Philp, R.P., 2010.Geochemical Characterization of Gases from the Mississippian Barnett Shale, Fort Worth Basin, Texas.AAPG Bulletin, 94(11):1641-1656.doi: 10.1306/04061009119 Schoell, M., 1984.Recent Advances in Petroleum Isotope Geochemistry.Organic Geochemistry, 6:645-663.doi: 10.1016/0146-6380(84)90086-x Stahl, W.J., Carey, B.D., 1975.Source-Rock Identification by Isotope Analyses of Natural Gases from Fields in the Val Verde and Delaware Basins, West Texas.Chemical Geology, 16(4):257-267.doi: 10.1016/0009-2541(75)90065-0 Tilley, B., Muehlenbachs, K., 2013.Isotope Reversals and Universal Stages and Trends of Gas Maturation in Sealed, Self-Contained Petroleum Systems.Chemical Geology, 339:194-204.doi: 10.1016/j.chemgeo.2012.08.002 Wang, Q.L., 2012.Carbon Isotopic Compositions of Highly Matured Cambrian Source Rocks from the Tarim Basin (Dissertation).Chinese Academy of Sciences, Beijing. Whiticar, J.M., 1994.Correlation of Natural Gases with Their Sources.In:Magoon, L.B., Dow, W.G., eds., The Petroleum System——From Source to Trap.AAPG Memoir, 60:261-283. Xia, X.Y., Chen, J., Braun, R., et al., 2013.Isotopic Reversals with Respect to Maturity Trends Due to Mixing of Primary and Secondary Products in Source Rocks.Chemical Geology, 339:205-212.doi: 10.1016/j.chemgeo.2012.07.025 Zhao, W.Z., Li, J.Z., Yang, T., et al., 2016.Geological Difference and Its Significance of Marine Shale Gases in South China.Petroleum Exploration and Development, 43(4):1-12 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380416300659 Zhu, G.Y., Zhang, S.C, Liang, Y.B., et al., 2006.The Characteristics of Natural Gas in Sichuan Basin and Its Sources.Earth Science Frontiers, 13(2):234 -248 (in Chinese with English abstract). Zou, C.N, Zhu, R.K, Bai, B., et al., 2011.First Discovery of Nano-Pore Throat in Oil Andgas Reservoir in China and Its Scientific Value.Acta Petrologica Sinica, 27(6):1857-1864 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201106024.htm Zumberge, J., Ferworn, K., Brown, S., 2012.Isotopic Reversal ("Rollover") in Shale Gases Produced from the Mississippian Barnett and Fayetteville Formations.Marine and Petroleum Geology, 31(1):43-52.doi: 10.1016/j.marpetgeo.2011.06.009 曹春辉, 张铭杰, 汤庆艳, 等, 2015.四川盆地志留系龙马溪组页岩气气体地球化学特征及意义.天然气地球科学, 26(8): 1604-1612. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508024.htm 戴金星, 1993.天然气碳氢同位素特征和各类天然气鉴别.天然气地球科学, 4(2-3): 1-40. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX1993Z1000.htm 邓宾, 刘树根, 刘顺, 等, 2009.四川盆地地表剥蚀量恢复及其意义.成都理工大学学报(自然科学版), 36(6): 675-686. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200906016.htm 高振中, 何幼斌, 李罗照, 等, 2008.中国南方上奥陶统五峰组观音桥段成因讨论:是"浅水介壳相", 还是深水异地沉积?古地理学报, 10(5): 487-494. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200805009.htm 郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 41(1): 28-36. doi: 10.11698/PED.2014.01.03 郭旭升, 胡东风, 李宇平, 等, 2016.海相和湖相页岩气富集机理分析与思考:以四川盆地龙马溪组和自流井组大安寨段为例.地学前缘, 23(2): 18-28. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602005.htm 郭小文, 刘可禹, 宋岩, 等, 2016.库车前陆盆地大北地区砂岩储层致密化与油气充注的关系.地球科学, 41(3): 394-402. http://www.earth-science.net/WebPage/Article.aspx?id=3270 郝石生, 黄志龙, 高耀斌, 1991.轻烃扩散系数的研究及天然气运聚动平衡原理.石油学报, 12(3): 17-24. doi: 10.7623/syxb199103003 贺训云, 姚根顺, 蔡春芳, 等, 2012.黔南坳陷下寒武统烃源岩地球化学特征及成因.沉积学报, 30(4): 761-769. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201204019.htm 胡光灿, 谢姚祥, 1997.中国四川东部高陡构造石炭系气田.北京:石油工业出版社, 186. 姜呈馥, 王香增, 张丽霞, 等, 2013.鄂尔多斯盆地东南部延长组长7段陆相页岩气地质特征及勘探潜力评价.中国地质, 40(6): 1880-1888. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201306018.htm 李平平, 郭旭升, 郝芳, 等, 2016.四川盆地元坝气田长兴组古油藏的定量恢复及油源分析.地球科学, 41(3): 452-462. http://www.earth-science.net/WebPage/Article.aspx?id=3263 梁狄刚, 郭彤楼, 陈建平, 等, 2009.中国南方海相生烃成藏研究的若干新进展(二)南方四套区域性海相烃源岩的地球化学特征.海相油气地质, 14(1): 1-15. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200901004.htm 马永生, 蔡勋育, 赵培荣, 等, 2010.四川盆地大中型天然气田分布特征与勘探方向.石油学报, 31(3): 347-354. doi: 10.7623/syxb201003001 梅廉夫, 刘昭茜, 汤济广, 等, 2010.湘鄂西-川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据.地球科学, 35(2): 161-174. http://www.earth-science.net/WebPage/Article.aspx?id=1941 王秋玲, 2012. 塔里木盆地寒武系高-过成熟度烃源岩的碳同位素特征研究(硕士学位论文). 北京: 中国科学院. http://www.irgrid.ac.cn/handle/1471x/748912?mode=full&submit_simple=Show+full+item+record 徐永昌, 1994.天然气成因理论及应用.北京:科学出版社, 414. 赵文智, 李建忠, 杨涛, 等, 2016.中国南方海相页岩气成藏差异性比较与意义.石油勘探与开发, 43(4): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm 朱光有, 张水昌, 梁英波, 等, 2006.四川盆地天然气特征及气源.地学前缘, 13(2): 234-248. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602027.htm 邹才能, 朱如凯, 白斌, 等, 2011.中国油气储层中纳米孔首次发现及其科学价值.岩石学报, 27(6): 1857-1864. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm