• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素

    戴方尧 郝芳 胡海燕 林俊峰 黎祺

    戴方尧, 郝芳, 胡海燕, 林俊峰, 黎祺, 2017. 川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素. 地球科学, 42(7): 1185-1194. doi: 10.3799/dqkx.2017.096
    引用本文: 戴方尧, 郝芳, 胡海燕, 林俊峰, 黎祺, 2017. 川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素. 地球科学, 42(7): 1185-1194. doi: 10.3799/dqkx.2017.096
    Dai Fangyao, Hao Fang, Hu Haiyan, Lin Junfeng, Li Qi, 2017. Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin. Earth Science, 42(7): 1185-1194. doi: 10.3799/dqkx.2017.096
    Citation: Dai Fangyao, Hao Fang, Hu Haiyan, Lin Junfeng, Li Qi, 2017. Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin. Earth Science, 42(7): 1185-1194. doi: 10.3799/dqkx.2017.096

    川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素

    doi: 10.3799/dqkx.2017.096
    基金项目: 

    国家重大油气专项 2016ZX05034-002-003

    中国地质调查局项目 12120114046901

    国家自然科学基金项目 41472122

    详细信息
      作者简介:

      戴方尧(1987-), 男, 博士研究生, 主要从事石油天然气地质学研究.ORCID:0000-0003-3878-7016.E-mail:dfy_cug@163.com

      通讯作者:

      胡海燕, ORCID:0000-0002-6682-7444.E-mail:hyhucom@163.com

    • 中图分类号: P618.13

    Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin

    • 摘要: 页岩气是重要的非常规天然气资源,主要以游离气与吸附气状态赋存于页岩中,研究和阐明其含量、主控因素和演化规律对于揭示页岩气成藏机理具有重要意义.采用不同条件下页岩高温高压等温吸附实验、FE-EM、CO2吸附、N2吸附、压汞等实验方法综合研究页岩气藏中的游离气与吸附气的主控因素.结果表明,游离气主要受页岩孔隙类型、孔隙结构、储层温度与压力等条件控制;OC、成熟度和水分影响吸附气含量.基于吸附气体积校正、地质模型和数值计算综合表征,五峰-龙马溪组页岩中以游离气为主,其平均含量约为%,吸附气含量约为4%.在抬升阶段,储层温度和压力发生改变,页岩气赋存形式随之变化,游离气减少,吸附气增加.

       

    • 图  1  焦石坝构造简图(a)和焦页1井地层柱状图(b)

      据项目报告《焦石坝及其邻区页岩气富集机理》,中国石化集团南方勘探分公司,2014

      Fig.  1.  The regional tectonic of Jiaoshiba (a) and stratigraphic histogram of well JY1 (b)

      图  2  焦页1井五峰-龙马溪组页岩孔隙类型

      图a和图b来自样品JY1-2;图c和图d来自样品JY1-5

      Fig.  2.  Pore types in the Wufeng-Longmaxi shales of well JY1

      图  3  数学模型拟合的五峰-龙马溪组页岩中不同类型孔隙的孔隙度(a)及其比例(b)

      Fig.  3.  Porosity (a) and relatively ratio (b) of different pore types in Wufeng-Longmaxi shales using mathematic models

      图  4  焦页1井五峰-龙马溪组页岩孔径分布

      Fig.  4.  Pore size distribution in the Wufeng-Longmaxi shales of well JY1

      图  5  焦页1井五峰-龙马溪组页岩等温吸附曲线

      Fig.  5.  Isotherms of methane adsorbed in the Wufeng-Longmaxi shales of well JY1

      图  6  焦页1井五峰-龙马溪组有机碳含量和Langmuir最大吸附量关系

      Fig.  6.  The relation between TOC and Langmuir maximum adsorbed methane capacity in the Wufeng-Longmaxi shales of well JY1

      图  7  页岩吸附量与热成熟度的关系

      Fig.  7.  The relation between shale methane adsorbed amount and thermal maturity

      图  8  样品JY1-5的不同温度等温吸附实验曲线

      Fig.  8.  Adsorbed isotherm at different temperatures of sample JY1-5

      图  9  焦页1井游离气、吸附气和总含气量计算值与现场解析气含量对比

      Fig.  9.  Comparison of free gas, adsorbed gas and total gas contents obtained from mathematical model and desorbed gas content of well JY1

      图  10  焦页1井页岩吸附气与游离气随埋藏史的演化

      据项目报告《焦石坝及其邻区页岩气富集机理》,中国石化集团南方勘探分公司,2014

      Fig.  10.  Evolution of free gas and adsorbed gas in the Longmaxi shale of well JY1

      表  1  样品参数及矿物成分

      Table  1.   Geochemical parameters and mineral components of shale samples

      样品 深度(m) TOC(%) 粘土矿物(%) 石英(%) 钾长石(%) 斜长石(%) 方解石(%) 白云石(%) 黄铁矿(%)
      JY1-1 2 340.09 1.34 54.0 30.5 1.9 9.3 - - 4.3
      JY1-2 2 361.44 2.09 33.5 33.1 2.1 10.8 5.9 9.9 4.7
      JY1-3 2 375.06 2.08 36.0 32.5 3.5 11.8 3.5 9.9 2.8
      JY1-4 2 384.18 2.98 34.5 38.2 3.3 8.6 5.9 5.8 3.7
      JY1-5 2 404.43 4.09 35.1 42.7 2.0 7.2 6.5 3.7 2.8
      JY1-6 2 414.56 6.45 38.0 36.6 5.7 9.1 1.9 5.6 3.1
      下载: 导出CSV

      表  2  抬升期计算的游离气与吸附气含量

      Table  2.   Free gas content and adsorbed gas content during the uplift

      深度
      (m)
      年代
      (Ma)
      地层温度*
      (K)
      地层压力α
      (MPa)
      游离气
      (m3/t·岩石)
      吸附气
      (m3/t·岩石)
      5 500 100 473 79 3.16 1.35
      4 500 60 403 60 3.06 1.52
      2 414 0 358 36 2.58 1.60
       注:地层温度*和地层压力α来自盆地模拟.
      下载: 导出CSV
    • Bernard, S., Wirth, R., Schreiber, A., et al., 2012.Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin).International Journal of Coal Geology, 103:3-11.doi: 10.1016/j.coal.2012.04.010
      Bowker, K.A., 2007.Barnett Shale Gas Production, Fort Worth Basin:Issues and Discussion.AAPG Bulletin, 91(4):523-533.doi: 10.1306/06190606018
      Cardott, B.J., Landis, C.R., Curtis, M.E., 2015.Post-Oil Solid Bitumen Network in the Woodford Shale, USA-A Potential Primary Migration Pathway.International Journal of Coal Geology, 139:106-113.doi: 10.1016/j.coal.2014.08.012
      Curtis, M.E., Cardott, B.J., Sondergeld, C.H., et al., 2012a.Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity.International Journal of Coal Geology, 103:26-31.doi: 10.1016/j.coal.2012.08.004
      Curtis, M.E., Sondergeld, C.H., Ambrose, R.J., et al., 2012b.Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging.AAPG Bulletin, 96(4):665-677.doi: 10.1306/08151110188
      Dai, J.X., Zou, C.N., Liao, S.M., et al., 2014.Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin.Organic Geochemistry, 74:3-12.doi: 10.1016/j.orggeochem.2014.01.018
      Deng, B., Liu, S.G., Liu, S., et al., 2009.Restoration of Exhumation Thickness and Its Significance in Sichuan Basin, China.Journal of Chengdu University of Technology (Science & Technology Edition), 36(6):675-686(in Chinese with English abstract). https://www.researchgate.net/publication/279895760_Restoration_of_exhumation_thickness_and_its_significance_in_Sichuan_Basin_China
      Gasparik, M., Bertier, P., Gensterblum, Y., et al., 2014.Geological Controls on the Methane Storage Capacity in Organic-Rich Shales.International Journal of Coal Geology, 123:34-51.doi: 10.1016/j.coal.2013.06.010
      Gasparik, M., Ghanizadeh, A., Bertier, P., et al., 2012.High-Pressure Methane Sorption Isotherms of Black Shales from the Netherlands.Energy & Fuels, 26(8):4995-5004.doi: 10.1021/ef300405g
      Guo, T.L., Zhang, H.R., 2014.Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin.Petroleum Exploration and Development, 41(1):28-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201401003.htm
      Guo, X.S., Hu, D.F., Li, Y.P., et al., 2016.Analyses and Thoughts on Accumulation Mechanisms of Marine and Lacustrine Shale Gas:A Case Study in Shales of Longmaxi Formation and Da'anzhai Section of Ziliujing Formation in Sichuan Basin.Earth Science Frontiers, 23(2):18-28(in Chinese with English abstract).
      Hao, F., Guo, T.L., Zhu, Y.M., et al., 2008.Evidence for Multiple Stages of Oil Cracking and Thermochemical Sulfate Reduction in the Puguang Gas Field, Sichuan Basin, China.AAPG Bulletin, 92(5):611-637.doi: 10.1306/01210807090
      Hao, F., Zou, H.Y., 2013.Cause of Shale Gas Geochemical Anomalies and Mechanisms for Gas Enrichment and Depletion in High-Maturity Shales.Marine and Petroleum Geology, 44:1-12.doi: 10.1016/j.marpetgeo.2013.03.005
      Hao, F., Zou, H.Y., Lu, Y.C., 2013.Mechanisms of Shale Gas Storage:Implications for Shale Gas Exploration in China.AAPG Bulletin, 97(8):1325-1346.doi: 10.1306/02141312091
      Hu, H.Y., 2013.Porosity Evolution of the Organic-Rich Shale with Thermal Maturity Increasing.Acta Petrolei Sinica, 34(5):820-825(in Chinese with English abstract). https://www.researchgate.net/publication/282738523_Porosity_evolution_of_the_organic-rich_shale_with_thermal_maturity_increasing
      Hu, H.Y., Zhang, T.W., Wiggins-Camacho, J.D., et al., 2015.Experimental Investigation of Changes in Methane Adsorption of Bitumen-Free Woodford Shale with Thermal Maturation Induced by Hydrous Pyrolysis.Marine and Petroleum Geology, 59:114-128.doi: 10.1016/j.marpetgeo.2014.07.029
      Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068
      Ji, L.M., Zhang, T.W., Milliken, K.L., et al., 2012.Experimental Investigation of Main Controls to Methane Adsorption in Clay-Rich Rocks.Applied Geochemistry, 27(12):2533-2545.doi: 10.1016/j.apgeochem.2012.08.027
      Löhr, S.C., Baruch, E.T., Hall, P.A., et al., 2015.Is Organic Pore Development in Gas Shales Influenced by the Primary Porosity and Structure of Thermally Immature Organic Matter?Organic Geochemistry, 87:119-132.doi: 10.1016/j.orggeochem.2015.07.010
      Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2009.Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79(12):848-861.doi: 10.2110/jsr.2009.092
      Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.doi: 10.1306/08171111061
      Ma, Y.S., Guo, X.S., Guo, T.L., et al., 2007.The Puguang Gas Field:New Giant Discovery in the Mature Sichuan Basin, Southwest China.AAPG Bulletin, 91(5):627-643.doi: 10.1306/11030606062
      Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013.Porosity of Devonian and Mississippian New Albany Shale Across a Maturation Gradient:Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion.AAPG Bulletin, 97(10):1621-1643.doi: 10.1306/04011312194
      Milliken, K.L., Rudnicki, M., Awwiller, D.N., et al., 2013.Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania.AAPG Bulletin, 97(2):177-200.doi: 10.1306/07231212048
      Modica, C.J., Lapierre, S.G., 2012.Estimation of Kerogen Porosity in Source Rocks as a Function of Thermal Transformation:Example from the Mowry Shale in the Powder River Basin of Wyoming.AAPG Bulletin, 96(1):87-108.doi: 10.1306/04111110201
      Montgomery, S.L., Jarvie, D.M., Bowker, K.A., et al., 2005.Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas:Gas-Shale Play with Multi-trillion Cubic Foot Potential.AAPG Bulletin, 89(2):155-175.doi: 10.1306/09170404042
      Ross, D.J.K., Bustin, R.M., 2007.Shale Gas Potential of the Lower Jurassic Gordondale Member, Northeastern British Columbia, Canada.Bulletin of Canadian Petroleum Geology, 55(1):51-75.doi: 10.2113/gscpgbull.55.1.51
      Ross, D.J.K., Bustin, R.M., 2008.Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation.AAPG Bulletin, 92(1):87-125.doi: 10.1306/09040707048
      Ross, D.J.K., Bustin, R.M., 2009.The Importance of Shale Composition and Pore Structure Upon Gas Storage Potential of Shale Gas Reservoirs.Marine and Petroleum Geology, 26(6):916-927.doi: 10.1016/j.marpetgeo.2008.06.004
      Slatt, R.M., O'Brien, N.R., 2011.Pore Types in the Barnett and Woodford Gas Shales:Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks.AAPG Bulletin, 95(12):2017-2030.doi: 10.1306/03301110145
      Su, X.B., Zhang, L.P., 2004.Prediction of Reservoir Pressure for Coal-Bed Gas.Natural Gas Industry, 24(5):88-90(in Chinese with English abstract). https://www.researchgate.net/profile/Shimin_Liu4/publication/257003249_Permeability_prediction_of_coalbed_methane_reservoirs_during_primary_depletion/links/0a85e52d7e1fdd5bac000000.pdf?disableCoverPage=true
      Tian, H., Li, T.F., Zhang, T.W., et al., 2016.Characterization of Methane Adsorption on Overmature Lower Silurian-Upper Ordovician Shales in Sichuan Basin, Southwest China:Experimental Results and Geological Implications.International Journal of Coal Geology, 156:36-49.doi: 10.1016/j.coal.2016.01.013
      Wang, Y.M., Dong, D.Z., Yang, H., et al., 2014.Quantitative Characterization of Reservoir Space in the Lower Silurian Longmaxi Shale, Southern Sichuan, China.Science in China (Series D), 57:313-322(in Chinese with English abstract). doi: 10.1007/s11430-013-4645-y
      Wu, S.T., Zhou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823(in Chinese with English abstract). https://www.researchgate.net/publication/288230011_Reservoir_quality_characterization_of_upper_triassic_Chang_7_Shale_in_Ordos_Basin
      Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833(in Chinese with English abstract). https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales
      Zhang, T.W., Ellis, G.S., Ruppel, S.C., et al., 2012.Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems.Organic Geochemistry, 47:120-131.doi: 10.1016/j.orggeochem.2012.03.012
      Zhao, W.Z., Li, J.Z., Yang, T., et al., 2016.Geological Difference and Its Significance of Marine Shale Gases in South China.Petroleum Exploration and Development, 43(4):547-559(in Chinese with English abstract). doi: 10.1016/S1876-3804(16)30065-9
      Zhu, G.Y., Zhang, S.C, Liang, Y.B., et al., 2006.The Characteristics of Natural Gas in Sichuan Basin and Its Sources.Earth Science Frontiers, 13(2):234-248(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200602027.htm
      Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2015.Shale Gas in China:Characteristics, Challenges and Prospects (Ⅰ).Petroleum Exploration and Development, 42(6):689-701(in Chinese with English abstract). http://d.g.wanfangdata.com.cn/Periodical_syktykf201506001.aspx
      邓宾, 刘树根, 刘顺, 等, 2009.四川盆地地表剥蚀量恢复及其意义.成都理工大学学报(自然科学版), 36(6):675-686. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200906016.htm
      郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 41(1):28-36. doi: 10.11698/PED.2014.01.03
      郭旭升, 胡东风, 李宇平, 等, 2016.海相和湖相页岩气富集机理分析与思考:以四川盆地龙马溪组和自流井组大安寨段为例.地学前缘, 23(2):18-28. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602005.htm
      胡海燕, 2013.富有机质Woodford页岩孔隙演化的热模拟实验.石油学报, 34(5):820-825. doi: 10.7623/syxb201305002
      苏现波, 张丽萍, 2004.煤层气储层压力预测方法.天然气工业, 24(5):88-90. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200405031.htm
      王玉满, 董大忠, 杨桦, 等, 2014.川南下志留统龙马溪组页岩储集空间定量表征.中国科学(D辑), 44(6):1348-1356. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201406025.htm
      吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11):1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188
      张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11):1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189
      赵文智, 李建忠, 杨涛, 等, 2016.中国南方海相页岩气成藏差异性比较与意义.石油勘探与开发, 43(4):499-510. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm
      朱光有, 张水昌, 梁英波, 等, 2006.四川盆地天然气特征及气源.地学前缘, 13(2):234-248. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602027.htm
      邹才能, 董大忠, 王玉满, 等, 2015.中国页岩气特征、挑战及前景(一).石油勘探与开发, 42(6):689-701. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506002.htm
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  4827
    • HTML全文浏览量:  2401
    • PDF下载量:  48
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-05-16
    • 刊出日期:  2017-07-15

    目录

      /

      返回文章
      返回