Discovery of Neoproterozoic A-Type Granite in Northern Yangtze Craton and Its Tectonic Significance
-
摘要: 对大磊山片麻状花岗岩的研究可以为新元古代罗迪尼亚超大陆在扬子克拉通北缘裂解提供约束.在详细野外地质调查和岩相学工作基础上,对该片麻状花岗岩进行了系统的锆石U-Pb定年、全岩地球化学和锆石原位Lu-Hf同位素分析,研究发现,这些片麻状花岗岩富硅(SiO2=73.18%~77.40%)、碱(Na2O+K2O=8.07%~8.70%)、贫铝(Al2O3=12.11%~13.92%)和镁(MgO=0.10%~0.34%),富集LILE、Ga、Rb、Th,Zr和Hf元素具明显正异常,Nb、Sr、P、Ti等元素具明显负异常,表现出后造山A型花岗岩(A2型)的特征.这些花岗岩中,锆石均具典型的震荡环带,Th/U比值均大于0.5,为岩浆成因;两个样品的LA-ICP-MS(laser ablation inductively coupled plasma mass spectrometry)锆石的谐和分别是:801.3±3.0 Ma(MSWD=0.62,n=21) 和796.1±6.3 Ma(MSWD=1.70,n=15),其中一个样品继承锆石谐和年龄为845.0±12.0 Ma(MSWD=1.30,n=6),表示他们是新元古代岩浆结晶产物.锆石εHf(t)值变化于-7.5~+8.0,正εHf(t)值对应的亏损地幔单阶段模式年龄(tDM1)为1 242~1 059 Ma,负εHf(t)值对应的地壳两阶段模式年龄(tDM2)为1 636~1 981 Ma,显示该地区存在的最古老物质是古元古代(老至1 981 Ma).这些数据结果表明形成大磊山A型花岗岩的初始物质主要为元古代古老地壳物质,暗示该岩浆源自于壳幔混合作用,幔源端元可能源自于伸展拉张背景下地幔岩浆上涌.结合区域研究成果认为,该A型花岗岩的形成与罗迪尼亚超大陆聚合后-裂解中的陆缘弧后拉张环境所引起的深部古元古代地壳拉张垮塌有关.Abstract: Researches on the Daleishan gneissic granites can constrain Neoproterozoic Rodinia supercontinent breakup in the northern margin of Yangtze craton. In this paper, zircon U-Pb dating, in-situ Lu-Hf isotope and whole-rock geochemical compositions analyses are presented for the Daleishan gneissic granites in the northern margin of the Yangtze craton. The results show that the Daleishan gneissic granites have high contents of SiO2 (73.18%-77.40%) and alkali (8.07%-8.70%), but low contents of Al2O3 (12.11%-13.92%) and MgO (0.10%-0.34%), and display enrichment in Ga, Rb, Th, Zr, Hf but depletion in Nb, Sr, P, Ti, which indicates the post-orogenic A-type affinity. Zircons selected from two Daleishan gneissic granitic samples show typical oscillatory zone structure with high ratios of Th/U (greater than 0.5), exhibiting the magmatic zircon genesis. LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) zircon U-Pb data from the two samples yield Neoproterozoic crystallization ages of 801.3±3.0 Ma (MSWD=0.62) and 796.1±6.3 Ma (MSWD=1.70), respectively, which are interpreted to represent the intrusion time. In-situ Hf isotopic compositions show that the two gneissic granitic samples have wide range of εHf(t) values that are indicative of a heterogeneity property. εHf(t) values of these zircon ranges from -7.5 to +8.0, with the positive εHf(t) values, coinciding with the single phase model age (tDM1) of the depleted mantle of (1 242-1 059 Ma), and the negative εHf(t) values coinciding with two-phase model age (tDM2) of the crustal of (1 636-1 981 Ma), suggesting that the oldest existing material in the region belongs to Paleoproterozoic (as old as 1 981 Ma). These data show that the source materials of the Daleishan A-type granites were usually derived from Palaeoproterozoic ancient crust. The magmatic source of the granites was originated from the crust-mantle migmatization, and the mantle composition could have been generated from the upwelling of the mantle magma in the extensional background. Combining with the pre-existing regional publications, it is proposed that the Daleishan A-type granite was formed at the crustal extensional background in the continental back-arc setting associated with the assembly-break up process of the Rodinia supercontinent.
-
图 1 扬子克拉通北缘大地构造简图(a)和研究区大地构造格架(b)
图a中CYB.华夏陆块,YZB.扬子陆块,COO.中央造山带,NCC.华北克拉通;a.据杨巍然等(2000);b.据Yang et al.(2000)和Xu et al.(2009)
Fig. 1. Simplified tectonic map of the northern Yangtze craton (a) and tectonic framework of the research area (b)
图 4 大磊山岩体片麻状花岗岩SiO2-(Na2O+K2O)(a)和SiO2-K2O(b)判别图解
a.据Le Maitre(1989); b.实线据Peccerillo et al.(1976),虚线据Middlemost(1985); 红色圆圈代表中粗粒片麻状花岗岩,黑色圆圈代表细粒片麻状花岗岩
Fig. 4. Discrimination diagrams SiO2-(Na2O+K2O) (a) and SiO2-K2O (b)for Daleishan gneissic granite
图 5 大磊山岩体片麻状花岗岩稀土元素配分图(a)和微量元素蛛网图(b)球粒陨石和原始地幔标准化值
据Sun and McDonough(1989); 红色填充圆圈为中粗粒片麻状花岗岩,黑色方形为细粒片麻状花岗岩
Fig. 5. (a) Chondrite-and (b) primitive mantle-normalized diagrams for gneissic granite of the Daleishan area
图 6 (a)细粒(D6597) 和(b)中-粗粒(PM301/1) 片麻状花岗岩样品锆石阴极发光、LA-MS-ICP-MS测年及Hf同位素分析点
实心圆圈为U-Pb分析点,虚线圈为Lu-Hf同位素分析点
Fig. 6. Cathodolominescence (CL) images、LA-MS-ICP-MS dating and Hf isotopic analysis of zircons for (a) fine-grain sample D6597 and (b) medium-coarse sample PM301/1 of Daleishan gneissic granite zircon
图 10 大磊山岩体片麻状花岗岩(a)10 000×Ga/Al-Ce和(b)10 000×Ga/Al-Zr判别图解
据Whalen et al.(1987);红色圆圈代表中粗粒片麻状花岗岩,黑色圆圈代表细粒片麻状花岗岩
Fig. 10. Dicrimination diagrams of (a) 10 000×Ga/Al-Ce and (10 000×Ga/Al-Zr) for the Daleishan gneissic granite
图 12 (a)Y/Nb-Ce/N和(b)Nb-Y-Ce判别图解
A1.非造山环境; A2.后碰撞环境; OIB.洋岛; IAB.岛弧; 图据Eby et al.(1992),Pearce et al.(1984); 黑色圆圈代表细粒片麻状花岗岩,红色圆圈代表中粗粒片麻状花岗岩
Fig. 12. Dicrimination diagrams of (a) Y/Nb-Ce/ Nb and (b) Nb-Y-Ce for the Daleishan gneissic granite
表 1 大磊山岩体片麻状花岗岩主量(%)及微量元素(10-6)分析结果
Table 1. Major (%) and trace element (10-6) compositions of the Daleishan gneissic granite
岩性样号 中粗粒片麻状花岗岩 细粒片麻状花岗岩 D3034/1 D2114/1 D3155/1 D4213/1 D3016/1 D6597/1 D3155/1 D3006/1 SiO2 75.59 74.55 76.20 74.70 73.18 77.40 76.34 76.79 TiO2 0.16 0.11 0.19 0.21 0.26 0.10 0.09 0.09 Al2O3 13.06 13.92 12.70 13.50 13.83 12.11 12.35 12.26 Fe2O3 0.89 1.24 1.02 1.07 1.80 0.39 0.41 0.73 FeO 0.37 0.25 0.32 0.58 0.68 0.67 0.49 0.59 FeOT 1.17 1.37 1.24 1.54 2.30 1.02 0.85 1.25 MnO 0.06 0.02 0.03 0.04 0.11 0.02 < 0.01 0.02 MgO 0.21 0.25 0.31 0.34 0.31 0.19 0.10 0.15 CaO 0.60 0.13 0.19 0.64 0.68 0.10 0.21 0.08 Na2O 3.50 4.28 3.49 3.92 3.89 2.77 3.33 3.63 K2O 4.69 4.14 4.78 4.24 4.19 5.84 5.37 4.77 P2O5 0.03 0.03 0.04 0.05 0.06 0.01 0.01 < 0.01 LOI 0.64 0.90 0.58 0.57 0.80 0.35 0.71 0.52 Rb 184.40 188.10 180.54 147.00 107.64 197.59 229.00 188.50 Ba 421.55 419.80 233.65 1164.35 761.70 179.13 179.13 268.69 Th 18.51 20.34 26.94 12.85 8.50 24.00 24.50 26.60 U 1.94 2.09 1.73 1.60 1.42 5.45 2.85 4.88 Nb 19.03 12.32 20.87 12.30 18.12 15.80 20.90 19.60 Sr 50.89 40.78 28.14 89.60 64.51 18.80 25.60 34.20 Nd 31.50 15.52 28.07 32.70 56.47 33.60 49.20 18.30 Zr 128.00 160.50 131.50 179.00 300.20 119.00 139.00 126.00 Hf 3.42 4.59 5.06 4.80 9.43 4.70 5.60 5.20 Yb 4.17 3.30 4.05 2.89 4.52 2.94 5.74 5.00 Lu 0.67 0.55 0.62 0.42 0.70 0.51 0.85 0.77 Y 36.20 30.41 30.68 23.50 49.56 20.40 60.30 39.80 La 38.95 21.99 43.14 43.20 66.11 28.60 58.10 20.90 Ce 82.05 38.44 100.30 91.00 92.46 80.60 93.00 33.80 Pr 8.69 4.44 8.47 8.89 14.74 10.80 13.75 5.15 Nd 31.5 15.52 28.07 32.70 56.47 33.60 49.20 18.30 Sm 5.98 3.23 4.90 5.79 10.44 6.62 10.40 4.09 Eu 0.57 0.45 0.52 0.92 1.26 0.35 0.59 0.24 Gd 5.38 3.36 4.50 4.60 9.34 3.79 9.70 3.88 Tb 1.01 0.73 0.80 0.72 1.57 0.59 1.64 0.73 Dy 6.13 4.79 4.75 4.26 8.41 3.71 9.91 5.33 Ho 1.31 1.02 1.08 0.92 1.79 0.78 1.98 1.28 Er 3.93 3.01 3.37 2.53 4.83 2.32 5.56 4.09 Tm 0.64 0.50 0.61 0.41 0.74 0.39 0.88 0.70 Yb 4.17 3.30 4.05 2.89 4.52 2.94 5.74 5.00 Lu 0.67 0.55 0.62 0.42 0.70 0.51 0.85 0.77 ΣREE 191.00 101.32 205.18 199.25 273.40 175.60 261.30 104.26 LREE/HREE 7.21 4.87 9.37 10.90 7.57 10.68 6.21 3.79 LaN/YbN 6.70 4.78 7.63 10.72 10.48 6.98 7.26 3.00 δEu 0.30 0.41 0.33 0.53 0.38 0.20 0.18 0.18 表 2 大磊山岩体片麻状花岗岩D6597 LA-ICP-MS岩浆锆石U-Pb定年结果
Table 2. LA-ICP-MS zircon U-Pb data of the gneissic granite sample D6597 in the Daleishan granitoid
点号 含量(10-6) Th/U U-Th-Pb同位素比值±1σ 同位素年龄(Ma)±1σ 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U D6597-01 531.90 490.23 1.085 0.065 3±0.002 4 1.173 2±0.043 6 0.130 2±0.001 3 783.34±77.77 788.12±20.36 789.03±7.37 D6597-02 408.63 444.65 0.919 0.068 9±0.002 2 1.261 7±0.040 6 0.133 0±0.001 4 894.45±66.67 828.69±18.24 804.98±7.93 D6597-03 640.43 553.35 1.157 0.067 8±0.001 9 1.215 5±0.033 0 0.130 4±0.001 1 861.11±56.64 807.72±15.13 790.34±6.45 D6597-04 1 998.20 430.26 4.644 0.064 7±0.001 9 1.180 2±0.034 9 0.132 4±0.001 1 764.82±62.96 791.41±16.25 801.41±6.27 D6597-05 796.04 892.36 78.250 0.101 7±0.002 7 1.733 2±0.044 8 0.124 3±0.001 1 1 654.63±48.92 1 020.95±16.66 755.40±6.18 D6597-06 467.19 309.26 1.511 0.068 1±0.002 6 1.235 9±0.046 4 0.133 3±0.001 4 872.22±79.63 817.03±21.10 806.60±8.00 D6597-07 621.16 600.89 1.034 0.068 7±0.001 8 1.247 7±0.033 8 0.132 0±0.001 1 900.00±55.55 822.37±15.28 799.28±6.22 D6597-08 596.53 460.37 1.296 0.066 0±0.002 1 1.199 7±0.037 3 0.132 3±0.001 1 805.56±66.66 800.45±17.23 801.12±6.34 D6597-09 1341.2 966.65 5.488 0.049 8±0.003 3 0.133 7±0.008 5 0.019 8±0.000 3 187.12±149.06 127.38±7.61 126.26±1.72 D6597-10 513.78 546.20 91.760 0.087 9±0.002 6 1.687 8±0.051 0 0.138 6±0.001 3 1 379.94±55.56 1 003.93±19.26 836.70±7.39 D6597-11 388.97 447.97 0.868 0.063 4±0.002 3 1.158 8±0.041 5 0.133 1±0.001 5 720.38±79.62 781.41±19.53 805.25±8.4 D6597-12 569.85 598.38 0.952 0.067 7±0.001 9 1.248 9±0.035 5 0.133 8±0.001 2 858.94±59.26 822.89±16.04 809.54±7.07 D6597-13 897.38 414.37 2.166 0.062 6±0.002 2 1.142 9±0.038 9 0.132 7±0.001 3 694.46±74.07 773.90±18.43 803.51±7.27 D6597-14 638.29 593.35 1.076 0.065 3±0.001 7 1.196 5±0.031 7 0.132 3±0.001 1 783.34±55.55 798.98±14.65 800.92±6.08 D6597-15 483.17 584.33 0.827 0.070 0±0.001 8 1.2833±0.0316 0.132 5±0.001 1 927.78±56.48 838.34±14.05 802.37±6.11 D6597-16 908.71 596.97 1.522 0.067 3±0.002 1 1.224 3±0.035 6 0.131 8±0.001 1 850.00±69.44 811.74±16.26 798.00±6.40 D6597-17 1 211.20 391.78 3.091 0.064 2±0.001 9 1.1904±0.034 7 0.133 8±0.001 3 746.30±62.96 796.17±16.08 809.78±7.48 D6597-18 366.78 265.91 1.379 0.065 6±0.002 5 1.2028±0.044 1 0.133 8±0.001 4 792.28±81.47 801.89±20.33 809.55±7.97 D6597-19 284.32 241.60 1.177 0.061 3±0.002 7 1.110 1±0.047 6 0.131 2±0.001 4 650.02±94.43 758.22±22.90 794.85±7.91 D6597-20 412.69 315.25 1.309 0.062 4±0.002 4 1.131 9±0.043 4 0.132 2±0.001 4 700.01±81.47 768.64±20.68 800.19±8.00 D6597-21 567.14 491.47 1.154 0.0656±0.002 4 1.190 3±0.046 6 0.131 6±0.001 2 792.28±77.77 796.09±21.61 797.15±6.68 D6597-22 439.25 468.36 0.938 0.063 8±0.002 6 1.159 0±0.050 7 0.132 2±0.001 1 744.45±85.18 781.50±23.86 800.56±6.42 D6597-23 423.42 455.92 0.929 0.061 4±0.002 7 1.114 0±0.054 7 0.132 7±0.001 2 651.56±87.95 760.11±26.27 803.46±7.04 D6597-24 306.31 293.09 1.045 0.062 2±0.003 5 1.133 8±0.07 1 0.133 4±0.001 4 679.64±113.87 769.54±33.78 807.03±8.07 表 3 大磊山岩体片麻状花岗岩PM301/1 LA-ICP-MS岩浆锆石U-Pb定年结果
Table 3. 3LA-ICP-MS zircon U-Pb data of the gneissic granite sample PM301/1 in the Daleishan granitoid
点号 含量(10-6) Th/U U-Th-Pb同位素比值±1σ 同位素年龄(Ma)±1σ 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U PM302/1-01 493.22 509.06 0.969 0.070 5±0.002 2 1.260 2±0.037 7 0.128 7±0.001 2 942.6±63.0 828.0±17.0 780.5±6.9 PM302/1-02 463.13 282.87 1.637 0.068 2±0.002 9 1.213 0±0.050 8 0.128 8±0.001 7 875.9±88.1 806.6±23.3 781.1±9.8 PM302/1-03 229.98 234.10 0.982 0.072 5±0.003 3 1.333 2±0.058 9 0.133 2±0.000 2 999.1±91.5 860.3±25.6 805.9±11.6 PM302/1-04 302.45 266.40 1.135 0.071 4±0.002 8 1.285 2±0.048 3 0.130 6±0.001 7 968.5±84.3 839.2±21.5 791.2±9.8 PM302/1-05 978.17 367.85 2.659 0.066 5±0.002 9 1.205 2±0.054 9 0.129 6±0.001 8 821.9±91.5 803.0±25.3 785.5±10.3 PM302/1-06 547.85 490.63 1.117 0.065 7±0.002 6 1.308 9±0.050 0 0.142 8±0.001 6 798.2±78.7 849.7±22.0 860.5±8.9 PM302/1-07 407.41 251.32 1.621 0.063 3±0.002 7 1.157 7±0.047 7 0.132 5±0.001 5 720.4±86.1 780.9±22.5 802.2±8.6 PM302/1-08 396.84 384.01 1.033 0.069 6±0.002 2 1.263 7±0.037 5 0.131 7±0.001 2 916.7±65.6 829.6±16.8 797.6±7.0 PM302/1-09 333.75 379.50 0.879 0.064 7±0.002 3 1.180 0±0.040 7 0.132 2±0.001 4 764.8±75.9 791.3±19.0 800.4±7.8 PM302/1-10 1033.79 352.16 2.936 0.067 9±0.002 6 1.297 5±0.049 0 0.138 0±0.001 6 877.8±77.8 844.6±21.7 833.2±9.3 PM302/1-11 288.34 250.45 1.151 0.064 2±0.003 1 1.203 6±0.054 4 0.137 7±0.002 2 750.0±103.7 802.2±25.1 831.7±12.4 PM302/1-12 84.01 106.6 0.788 0.075 0±0.005 5 1.409 8±0.091 7 0.141 0±0.002 5 1 069.4±146.3 893.1±38.7 850.2±14.1 PM302/1-13 603.18 257.29 2.344 0.071 3±0.003 0 1.284 1±0.054 0 0.131 7±0.001 5 964.8±87.0 838.7±24.0 797.5±8.6 PM302/1-14 265.49 342.78 0.775 0.065 7±0.002 6 1.208 8±0.046 4 0.134 5±0.001 4 794.4±82.6 804.6±21.3 813.7±8.2 PM302/1-15 494.92 515.50 0.960 0.075 0±0.002 9 1.330 4±0.051 5 0.128 8±0.001 2 1 133.3±79.6 859.1±22.4 781.3±7.0 PM302/1-16 456.10 398.82 1.144 0.065 5±0.002 7 1.199 7±0.050 4 0.132 6±0.0018 790.7±87.0 800.4±23.2 802.6±10.1 PM302/1-17 417.77 404.34 1.033 0.066 7±0.002 5 1.2183±0.045 3 0.133 0±0.001 8 827.8±79.6 809.0±20.7 804.7±10.2 PM302/1-18 218.38 295.86 0.738 0.065 5±0.002 9 1.194 9±0.052 3 0.133 0±0.001 6 790.7±92.6 798.2±24.2 804.7±8.8 PM302/1-19 418.33 407.06 1.028 0.064 3±0.002 2 1.239 5±0.041 1 0.140 4±0.001 3 750.0±78.7 818.7±18.6 846.8±7.3 PM302/1-20 228.57 211.42 1.081 0.060 7±0.003 1 1.111 0±0.055 2 0.134 1±0.001 8 627.8±105.4 758.7±26.6 811.5±10.0 PM302/1-21 243.23 272.66 0.892 0.064 7±0.002 8 1.222 7±0.053 1 0.138 3±0.002 4 764.8±60.2 811.0±24.3 834.9±13.6 表 4 大磊山岩体片麻状花岗岩D6597岩浆锆石Hf同位素组成
Table 4. Lu-Hf isotope compositions of the gneissic granite sample D6597 in the Daleishan granitoid
点号 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ t(Ma) εHf(0) 1σ εHf(t) 1σ tDM1 (Ma) tDM2 (Ma) fLu/Hf 1 0.282 125 0.000 017 0.001 091 0.000 008 0.033 252 0.000 48 796 -22.87 0.8 -5.87 0.84 1 590.61 1 901.71 -0.97 2 0.282 275 0.000 027 0.001 962 0.000 043 0.061 676 0.001 86 796 -17.56 1.09 -1.02 1.13 1 413.81 1 635.68 -0.94 3 0.282 558 0.000 037 0.003 757 0.000 032 0.118 907 0.000 55 796 -7.579 1.41 8.02 1.44 1 059.84 1 136.98 -0.89 4 0.282 112 0.000 026 0.001 013 0.000 016 0.028 364 0.000 68 796 -23.33 1.04 -6.30 1.08 1 605.60 1 924.94 -0.97 5 0.282 176 0.000 019 0.001 063 0.000 002 0.030 677 0.000 28 861 -21.09 0.84 -2.68 0.88 1 519.65 1 778.22 -0.97 6 0.282 249 0.000 024 0.001 529 0.000 058 0.045 529 0.001 37 796 -18.51 0.98 -1.74 1.04 1 435.15 1 674.98 -0.95 7 0.282 245 0.000 025 0.002 027 0.000 026 0.059 721 0.000 38 833 -18.64 1.01 -1.36 1.05 1 459.81 1 683.41 -0.94 8 0.282 135 0.000 021 0.001 050 0.000 006 0.030 248 0.000 10 832 -22.52 0.91 -4.73 0.95 1 575.37 1 867.56 -0.97 9 0.282 175 0.000 021 0.001 107 0.000 009 0.031 941 0.000 40 796 -21.13 0.9 -4.14 0.94 1 522.64 1 806.71 -0.97 10 0.282 215 0.000 020 0.001 211 0.000 009 0.036 462 0.000 55 796 -19.69 0.87 -2.76 0.91 1 469.94 1 730.81 -0.96 表 5 大磊山岩体片麻状花岗岩PM301-1岩浆锆石Hf同位素组成
Table 5. Lu-Hf isotope compositions of the gneissic granite sample PM301-1 in the Daleishan granitoid
点号 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ t(Ma) εHf(0) 1σ εHf(t) 1σ tDM1 (Ma) tDM2 (Ma) fLu/Hf 1 0.282 420 0.000 032 0.003 008 0.000 059 0.091 968 0.001 575 781 -12.5 1.2 3.2 1.3 1 242 1 390 -0.91 2 0.282 105 0.000 019 0.001 089 0.000 028 0.029 445 0.000 898 806 -23.6 0.8 -6.4 0.9 1 619 1 937 -0.97 3 0.282 146 0.000 026 0.001 103 0.000 007 0.031 471 0.000 352 791 -22.2 1.0 -5.3 1.1 1 563 1 865 -0.97 4 0.282 510 0.000 035 0.003 061 0.000 047 0.091 394 0.001 780 786 -9.3 1.4 6.5 1.4 1 110 1 212 -0.91 5 0.282 242 0.000 023 0.001 584 0.000 010 0.047 003 0.000 394 861 -18.8 1.0 -0.6 1.0 1 447 1 666 -0.95 6 0.282 167 0.000 026 0.001 228 0.000 013 0.034 397 0.000 292 800 -21.4 1.0 -4.4 1.1 1 538 1 823 -0.96 7 0.282 488 0.000 034 0.003 183 0.000 031 0.095 571 0.000 469 833 -10.0 1.3 6.6 1.3 1 146 1 245 -0.90 8 0.282 182 0.000 028 0.001 306 0.000 053 0.038 229 0.001 508 832 -20.9 1.1 -3.2 1.2 1 520 1 784 -0.96 9 0.282 228 0.000 031 0.001 816 0.000 022 0.054 271 0.000 568 802 -19.2 1.2 -2.5 1.2 1 475 1 721 -0.95 10 0.282 241 0.000 027 0.001 609 0.000 071 0.046 716 0.001 961 798 -18.8 1.1 -2.0 1.1 1 449 1 691 -0.95 11 0.282 085 0.000 022 0.000920 0.000 008 0.026 532 0.000 377 781 -24.3 0.9 -7.5 1.0 1 639 1 981 -0.97 12 0.282 126 0.000 023 0.001 195 0.000 008 0.035 452 0.000 332 803 -22.8 1.0 -5.8 1.0 1 594 1 901 -0.96 13 0.282 221 0.000 029 0.001 675 0.000 113 0.053 218 0.004 902 805 -19.5 1.1 -2.6 1.2 1 479 1 729 -0.95 14 0.282 161 0.000 022 0.001 111 0.000 007 0.032 048 0.000 136 847 -21.6 0.9 -3.5 1.0 1 541 1 812 -0.97 15 0.282 196 0.000 025 0.001 712 0.000 024 0.046 725 0.000 816 812 -20.4 1.0 -3.3 1.1 1 516 1 776 -0.95 -
Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth Searliest Crust from Hafnium Isotopes in Single Detrital Zircons.Nature, (399):252-255. http://cat.inist.fr/?aModele=afficheN&cpsidt=1794955 Ao, W.H., Zhang, Y.K., Zhang, R.Y., et al., 2014.Neoproterozoic Crustal Accretion of the Northern Margin of Yangtze Plate:Constrains from Geochemical Characteristics, LA-ICP-MS Zircon U-Pb Chronology and Hf Isotopic Compositions of Trondhjemite from Zushidian Area, Harman Region.Geological Review, 60(6):1393-1408 (in Chinese with English abstract). Cui, X.Z., Jiang, X.S., Wang, J., et al., 2012.Zircon Shrimp U-Pb Age of Jinkouhe Diabase Dykes in Ebian Area of Western Sichuan Province and Its Implications for the Breakup of Rodinia.Geological Bulletin of China, 31(7):1131-1141(in Chinese with English abstract).doi: 10.3969/j.issn.1671-2552.2012.07.013 Deng, Q., Wang, J., Wang, Z.J., et al., 2013.Zircon U-Pb Ages for Tuffs from the Dashigou and Sanlangpu Formations of the Xixiang Group in the Northern Margin of Yangtze Block and Their Geological Significance.Journal of Jilin University(Earth Science Edition), 43(3):797-808, 819(in Chinese with English abstract). https://www.researchgate.net/publication/257684885_Zircon_SHRIMP_U-Pb_geochronology_of_the_Neoproterozoic_Chengjiang_Formation_in_central_Yunnan_Province_SW_China_and_its_geological_significance Diwu, C.R., Sun, Y., Liu, C.L., et al., 2007.Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China.Acta Petrologica Sinica, 23(2):253-262(in Chinese with English abstract). https://www.researchgate.net/publication/280015308_Zircon_U-Pb_ages_and_Hf_isotopes_and_their_geological_significance_of_Yiyang_TTG_gneisses_from_Henan_province_China Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20:641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 Harrison, T.M., Blichert-Toft, J., Müller, W., et al., 2005.Heterogeneous Hadean Hafnium:Evidence of Continental Crust at 4.4 to 4.5 Ga.Science, 310(5756):1947-1950. doi: 10.1126/science.1117926 Jia, X.H., Wang, Q., Tang, G.J., 2009.A-Type Granites:Research Progress and Implications.Geotectonica et Metallogenia, 33(3):465-480 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200903020.htm Jiang, X.F., Peng, S.B., Polat, A., et al., 2016.Geochemistry and Geochronology of Mylonitic Metasedimentary Rocks Associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze Craton, China:Implications for Geodynamic Events.Precambrian Research, (279):37-56.doi: 10.1016/j.precamres.2016.04.004 Le Maitre, R.W., 1989.A Classification of Igneous Rocks and Glossary of Terms.Blackwell, Oxford, 193. Li, H.K., Lu, S.N., Chen, Z.H., et al., 2003.Zircon U-Pb Geochronology of Rift-Type Volcanic Rocks of the Yaolinghe Group in the South Qinling Orogen.Geological Bulletin of China, 22(10):775-781(in Chinese with English abstract).doi: 10.3969/j.issn.1671-2552.2003.10.005 Li, X.H., Zhou, H.W., Li, Z.X., et al., 2001.Zircon U-Pb Age and Petrochemical Characteristics of the Neoproterozoic Bimodal Volcanics from Western Yangtze Block.Geochimica, 30(4):315-322(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200104002.htm Liu, X.C., Dong, S.W., Li, S.Z., et al., 2005.Timing of the Hongan Group in Hubei:Constraints from U-Pb Dating of Metagranitic Intrusions.Geology in China, 32(1):75-81(in Chinese with English abstract).doi: 10.3969/j.issn.1000-3657.2005.01.010 Liu, Y.S., Gao, S., Hu, Z.C., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082 Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/j.chemgeo.2008.08.004 Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546.doi: 10.1007/s11434-010-3052-4 Loiselle, M.C., Wones, D.R., 1979.Characteristics and Origin of Anorogenic Granites.Geological Society of America Abstracts, 11:468. Lu, C.Z., Dong, C.W., Gu, M.G., et al., 2006.Discorery of the Neoproterozoic Daolinshan A-Type Granite in Zhejiang and Its Tectonic Implications.Geology in China, 33(5):1044-1051(in Chinese with English abstract).doi: 10.3969/j.issn.1000-3657.2006.05.013 Lu, S.N., 1998.A Review of Advance in the Research on the Neoproterozoic Rodinia Supercontinent.Geological Review, 44(5):489-495 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp199805006.htm Lu, S.N., Li, H.K., Chen, Z.H., et al., 2004.Relationship between Neoproterozoic Cratons of China and the Rodinia.Earth Science Frontiers, 11(2):515-523(in Chinese with English abstract). https://www.researchgate.net/publication/285862139_Relationship_between_Neoproterozoic_cratons_of_China_and_the_Rodinia Ludwig, K.R., 2003.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley, California, 39. McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253.doi: 10.1016/0009-2541(94)00140-4 Middlemost, E.A.K., 1985.Magmas and Magmatic Rocks.Longman, London. Niu, B.G., Fu, Y.L., Liu, Z.G., et al., 1994.Main Tectonothermal Events and 40Ar/39Ar Dating of the Tongbai-Dabie Mts.Acta Geoscientia Sinica, 1(2):20-32(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB4Z1.004.htm Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956 Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.doi: 10.1007/bf00384745 Peng, S.B., Kusky, T.M., Jiang, X.F., et al., 2012.Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Ctaton:Implications for South Chinas Amalgamation History with Rodinia Supercontinent.Gondwana Research, 21(2012):577-594. https://www.researchgate.net/publication/251666408_Geology_geochemistry_and_geochronology_of_the_Miaowan_ophiolite_Yangtze_craton_Implications_for_South_China%27s_amalgamation_history_with_the_Rodinian_supercontinent Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016a.Early Paleozoic Subduction in Cathaysia (Ⅰ):New Evidence from Nuodong Ophiolite.Earth Science, 41(5):765-778 (in Chinese with English abstract). https://www.researchgate.net/publication/305144667_Early_paleozoic_subduction_in_Cathaysia_I_New_evidence_from_Nuodong_Ophiolite Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016b.Early Paleozoic Subduction in Cathaysia(Ⅱ):New Evidence from the Dashuang High Magnesian-Magnesian Andesite.Earth Science, 41(6):931-947(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201606003.htm Pitcher, W.S., 1993.The Nature and Origin of Granite.Blackie Academic and Professional, Chapman and Hall, London. Qi, L., Hu, J., Gregoire, D.C., 2000.Determination of Trace Elements in Granites by Inductively Coupled Plasma-Mass Spectrometry.Talanta, 51:507-513. doi: 10.1016/S0039-9140(99)00318-5 Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 Wang, D.Z., Zhao, G.T., Qiu, J.S., 1995.The Tectonic Constraint on the Late Mesozoic A-Type Granitoids in Eastern China.Geological Journal of Universities, 1(2):13-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX502.001.htm Wang, M.X., Wang, Y., Zhao, J.H., 2012.Zircon U-Pb Dating and Hf-O Isotopes of the Zbouan Ultramafic Intrusion in the Northern Margin of the Yangtze Block, SW China:Constraints on the Nature of Mantle Source and Timing of the Supercontinent Rodinia Breakup.Chinese Science Bulletin, 57(34):3283-3294(in Chinese). http://mall.cnki.net/magazine/Article/JXTW201307012.htm Wang, Q., Zhao, Z.H., Xiong, X.L., 2000.The Ascertainment of Late-Yanshanian A-Type Granite in Tongai-Dabie Orogenic Belt.Acta Petrologica et Mineralogica, 19(4):297-306(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200004001.htm Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419.doi: 10.1007/bf00402202 Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1586-1604(in Chinese with English abstract). https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/225204011_Genesis_of_zircon_and_its_constraints_on_interpretation_of_U-Pb_age/links/53fe74800cf21edafd151294.pdf Xu, B., 2001.Recent Study of the Rodinia Supercontinent Evolution and Its Main Goal.Geological Science and Technology Information, 20(1):15-19(in Chinese with English abstract).doi: 10.3969/j.issn.1000-7849.2001.01.003 Xu, X.Y., Xia, L.Q., Chen, J.L., et al., 2009.Zircon U-Pb Dating and Geochemical Study of Volcanic Rocks from Sunjiahe Formation of Xixiang Group in Northern Margin of Yangtze Plate.Acta Petrologica Sinica, 25(12):3309-3326 (in Chinese with English abstract). https://www.researchgate.net/publication/288701911_Zircon_U-Pb_dating_and_geochemical_study_of_volcanic_rocks_from_Sunjiahe_Formation_of_Xixiang_Group_in_northern_margin_of_Yangtze_Plate Xu, Y., Yang, K.G., Polat, A., et al., 2016.The 860 Ma Mafic Dikes and Granitoids from the Northern Margin of the Yangtze Block, China:A Record of Oceanic Subduction in the Early Neoproterozoic.Precambrian Research, 275:310-331.doi: 10.1016/j.precamres.2016.01.021 Xue, H.M., Ma, F., 2013.Detrital-Zircon Geochronology from the Metasedimentary Rocks of the Suizhou Group in the Southern Foot of the Tongbaishan Orogen and Their Geological Significance.Acta Petrologica Sinica, 29(2):564-580(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201302016.htm Yang, W.R., Wang, G.C., Jian, P., 2000.Study on the Tectono-Chronology of the Dabie Orogenic Belt.China University of Geosciences Press, Wuhan, 533(in Chinese). Yang, W.R., Yang, K.G., Liu, Z.M., et al., 1999.Caledonian Tectono-Thermal Event in Tongbai-Dabie Orogenic Belt and Its Significance.Earth Science Frontiers, 6(4):247-253(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY199904011.htm Zhang, J.Y., Ma, C.Q., She, Z.B., et al., 2007.The Early Paleozoic Tiefosi Syn-Collisional Granite in the Northern Dabie Orogen:Geochronological and Geochemical Constraints.Science in China (Series D), 37(1):1-9(in Chinese). http://www.academia.edu/15502406/The_Early_Paleozoic_Tiefosi_syn-collisional_granite_in_the_northern_Dabie_Orogen_Geochronological_and_geochemical_constraints Zhang, Q., Ran, H., Li, C.D., 2012.A-Type Granite:What is the Essence? Acta Petrologica et Mineralogica, 31(4):621-626(in Chinese with English abstract).doi: 10.3969/j.issn.1000-6524.2012.04.014 Zhang, S.M., Jiang, G.L., Liu, K.F., et al., 2014.Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Qinling-Dabie Orogenic Belt.Earth Scicnce, 39(8):1185-1199(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201408019.htm Zhang, Y.Z., Wang, Y.J., Guo, X.F., et al., 2015.Geochronology and Geochemistry of Cihua Neoproterozoic High-Mg Andesites in Jiangnan Orogen and Their Tectonic Implications.Earth Science, 40(11):1781-1795 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201511001.htm Zhao, J.H., Zhou, M.F., 2008.Neoproterozoic Adakitic Plutons in the Northern Margin of the Yangtze Block, China:Partial Melting of a Thickened Lower Crust and Implications for Secular Crustal Evolution.Lithos, 104(1-4):231-248.doi: 10.1016/j.lithos.2007.12.009 Zhao, J.H., Zhou, M.F., 2009.Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China.Lithos, 107(3-4):152-168.doi: 10.1016/j.lithos.2008.09.017 Zhao, Z.H., Xiong, X.L., Wang, Q., et al., 2008.Some Aspects on Geochemistry of Nb and Ta.Geochimica, 37(4):304-320(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200804004.htm Zheng, Y.F., 2003, Neoproterozoic Magmatic Activity and Global Change.Chinese Science Bulletin, 48(16):1639-1656(in Chinese). doi: 10.1360/03wd0342 Zhou, J.B., Li, X.H., Ge, W.C., et al., 2007.Geochronology, Mantle Source and Geological Implications of Neoproterozoic Ultramafic Rocks from Yuanbaoshan Area of Northern Guangxi.Geological Science and Technology Information, 26(1):11-18(in Chinese with English abstract).doi: 10.3969/j.issn.1000-7849.2007.01.002 敖文昊, 张宇昆, 张瑞英, 等, 2014.新元古代扬子北缘地壳增生事件:来自汉南祖师店奥长花岗岩地球化学、锆石LA-ICP-MS U-Pb年代学和Hf同位素证据.地质论评, 60(6):1393-1408. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201406020.htm 崔晓庄, 江新胜, 王剑, 等, 2012.川西峨边地区金口河辉绿岩脉SHRIMP锆石U-Pb年龄及其对Rodinia裂解的启示.地质通报, 31(7):1131-1141. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207014.htm 邓奇, 王剑, 汪正江, 等, 2013.扬子北缘西乡群大石沟组和三郎铺组凝灰岩锆石U-Pb年龄及其地质意义.吉林大学学报(地球科学版), 43(3):797-808, 819. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201303016.htm 第五春荣, 孙勇, 林慈銮, 等, 2007.豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学.岩石学报, 23(2):253-262. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702007.htm 贾小辉, 王强, 唐功建, 2009.A型花岗岩的研究进展及意义.大地构造与成矿学, 33(3):465-480. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903020.htm 李怀坤, 陆松年, 陈志宏, 等, 2003.南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学.地质通报, 22(10):775-781. doi: 10.3969/j.issn.1671-2552.2003.10.005 李献华, 周汉文, 李正祥, 等, 2001.扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征.地球化学, 30(4):315-322. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200104002.htm 刘晓春, 董树文, 李三忠, 等, 2005.湖北红安群的时代:变质花岗质侵入体U-Pb定年提供的制约.中国地质, 32(1):75-81. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200501010.htm 卢成忠, 董传万, 顾明光, 等, 2006.浙江道林山新元古代A型花岗岩的发现及其构造意义.中国地质, 33(5):1044-1051. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200605014.htm 陆松年, 1998.新元古时期Rodinia超大陆研究进展述评.地质论评, 44(5):489-495. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199805006.htm 陆松年, 李怀坤, 陈志宏, 等, 2004.新元古时期中国古大陆与罗迪尼亚超大陆的关系.地学前缘, 11(2):515-523. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200402029.htm 牛宝贵, 富云莲, 刘志刚, 等, 1994.桐柏-大别山主要构造热事件及40Ar/39Ar地质定年研究.地球学报, 1(2):20-32. 彭松柏, 刘松峰, 林木森, 等, 2016a.华夏早古生代俯冲作用(Ⅰ):来自糯洞蛇绿岩的新证据.地球科学, 41(5):765-778. http://www.earth-science.net/WebPage/Article.aspx?id=3295 彭松柏, 刘松峰, 林木森, 等, 2016b.华夏早古生代俯冲作用(Ⅱ):大爽高镁-镁质安山岩新证据.地球科学, 41(6):931-947. http://www.earth-science.net/WebPage/Article.aspx?id=3309 王德滋, 赵广涛, 邱检生, 1995.中国东部晚中生代A型花岗岩的构造制约.高校地质学报, 1(2):13-21. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX502.001.htm 王梦玺, 王焰, 赵军红, 2012.扬子板块北缘周庵超镁铁质岩体锆石U/Pb年龄和Hf-O同位素特征:对源区性质和Rodinia超大陆裂解时限的约束.科学通报, 57(34):3283-3294. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201234009.htm 王强, 赵振华, 熊小林, 2000.桐柏-大别造山带燕山晚期A型花岗岩的厘定.岩石矿物学杂志, 19(4):297-306. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200004001.htm 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 徐备, 2001.Rodinia超大陆构造演化研究的新进展和主要目标.地质科技情报, 20(1):15-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200101002.htm 徐学义, 夏林圻, 陈隽璐, 等, 2009.扬子地块北缘西乡群孙家河组火山岩形成时代及元素地球化学研究.岩石学报, 25(12):3309-3326. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200912020.htm 薛怀民, 马芳, 2013.桐柏山造山带南麓随州群变沉积岩中碎屑锆石的年代学及其地质意义.岩石学报, 29(2):564-580. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302016.htm 杨巍然, 杨坤光, 刘忠明, 等, 1999.桐柏-大别造山带加里东期构造热事件及其意义.地学前缘, 6(4):247-253. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199904011.htm 杨巍然, 王国灿, 简平, 2000.大别造山带构造年代学.武汉:中国地质大学出版社, 533. 张金阳, 马昌前, 佘振兵, 等, 2007.大别造山带北部铁佛寺早古生代同碰撞型花岗岩:地球化学和年代学证据.中国科学(D辑), 37(1):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701000.htm 张旗, 冉皞, 李承东, 2012.A型花岗岩的实质是什么?岩石矿物学杂志, 31(4):621-626. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201302014.htm 张思敏, 姜高磊, 柳坤峰, 等, 2014.秦岭-大别新元古代-中生代沉积盆地演化.地球科学, 39(8):1185-1199. http://www.earth-science.net/WebPage/Article.aspx?id=2926 张玉芝, 王岳军, 郭小飞, 等, 2015.江南中段慈化地区新元古代高镁安山岩的厘定及其构造意义.地球科学, 40(11):1781-1795. http://www.earth-science.net/WebPage/Article.aspx?id=3185 赵振华, 熊小林, 王强, 等, 2008.铌与钽的某些地球化学问题.地球化学, 37(4):304-320. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200804004.htm 郑永飞, 2003.新元古代岩浆活动与全球变化.科学通报, 48(16):1639-1656. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200316000.htm 周继彬, 李献华, 葛文春, 等, 2007.桂北元宝山地区超镁铁岩的年代、源区及其地质意义.地质科技情报, 26(1):11-18. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200701001.htm