Record of Late Yanshanian Mafic Magmatic Activity in the Middle-Lower Yangtze River Metallogenic Belt
-
摘要: 江苏省宁镇地区位于长江中下游沿江成矿带的最东端,是长江中下游成矿带的重要组成部分,蒋庙岩体是宁镇地区唯一的基性岩体.对此岩体进行了锆石U-Pb年代学、矿物化学、岩石地球化学和Sr-Nd-Hf同位素研究,讨论了其成因及地幔源区性质.岩体主要由橄榄辉长岩、角闪辉长岩和辉石闪长岩组成,其中辉石闪长岩的锆石LA-ICP-MS(laser ablation inductively coupled plasma mass spectrometry) U-Pb年龄为121±1 Ma.锆石εHf(t)值介于-2.9~-6.4.全岩地球化学研究显示岩石样品富钠低钾,富集轻稀土元素,重稀土元素亏损不明显,富集大离子亲石元素(如K、Ba、Sr等),亏损高场强元素(如Nb、Ta、Ti、Zr、Hf等).蒋庙基性侵入岩在长江中下游地区中生代岩浆岩中具有最高的εNd(t)值以及最低的(87Sr/86Sr)i值,其Sr-Nd同位素组成介于软流圈地幔(depleted MORB mantle,DMM)-富集岩石圈地幔(enriched mantle Ⅱ,EMⅡ)之间.研究认为,蒋庙岩体应来源于软流圈地幔和富集岩石圈地幔的混合组分,可能有少量的俯冲板片物质加入源区,并在成岩过程中经历了一定程度的结晶分异.结合区域地质、年代学、矿物学和地球化学资料,表明蒋庙岩体的形成可能与古太平洋板块俯冲事件密切相关.Abstract: The Ningzhen region in Jiangsu Province, representing the easternmost magmatic region within the Middle-Lower Yangtze River Metallogenic belt, and is an important component of the Middle-Lower Yangtze River magmatic rock belt. The Jiangmiao pluton is the only mafic intrusive body in the Ningzhen region, and its zircon U-Pb dating, petrological, mineralogical and geochemical data were obtained in this paper to constrain its origin and mantle source characteristics. Olivine gabbros, hornblende gabbros and pyroxene diorites are the main rock types of the pluton. The zircons from the pyroxene diorite yield a U-Pb age of 121±1 Ma. The zircon εHf(t) values are from -2.9 to -6.4. The Jiangmiao mafic rocks in the Ningzhen region are sodic, and are characterized by an enriched light rare earth elements(LREEs) pattern. They are enriched in large ion lithophile elements (LIEEs) such as K, Ba, Sr, but depleted in high field strength elements such as Nb, Ta, Ti, Zr and Hf.Jiangmiao mafic intrusive rocks have the highest εNd(t) and the lowest value of (87Sr/86Sr)i values among Mesozoic magmatic rocks in the Middle-Lower reaches of Yangtze River belt. Sr-Nd isotopic data suggest that asthenosphere-lithosphere interaction plays an important role in the generation of the Jiangmiao pluton. The trace element and isotopic data are consistent with crystallization fractionation and there is no significant crustal contamination during magma ascending and crystallization. Enriched LREEs and LILEs, together with depleted Nb, Ta, Ti, Zr and Hf, suggest that the mantle sources were metasomatized by slab-derived fluid/melt. Combining with regional geological, geochronological, mineralogical and geochemical data, the Jiangmiao maflc rocks in the Ningzhen region were probably formed in an extensional regime associated with westward subduction of the paleo-Paciflc plate.
-
Key words:
- Jiangmiao pluton /
- zircon U-Pb chronology /
- petrology /
- geochemistry /
- Ningzhen region
-
图 1 长江中下游成矿带主要矿集区分布示意
区段:1.鄂东南;2.九瑞;3.安庆-贵池;4.庐枞;5.铜陵;6.宁芜;7.宁镇;据翟裕生等(1992)和薛怀民等(2010)修改
Fig. 1. Schematic illustration of the seven magmatic and metallogenic districts of the Middle-Lower Yangtze River metallogenic belt
图 2 宁镇地区燕山期侵入岩分布
据夏嘉生(2000)修改
Fig. 2. The distribution of Mesozoic intrusive rocks in the Ningzhen region
图 3 蒋庙岩体地质简图
1.角闪橄榄辉长岩相;2.辉长岩相;3.闪长岩相;4.碱基性交代-混染岩相;5.青龙群(T1-2);6.黄马青组(T3);7.象山群(J1-2);8.第四系(Q);据周新民(1964)修改
Fig. 3. Sketch geological map of the Jiangmiao intrusion
图 4 蒋庙岩体野外及镜下照片
a.航空公墓辉石闪长岩野外露头;b.蒋庙橄榄辉长岩辉长结构(正交偏光);c.蒋庙橄榄辉长岩中斜长石呈嵌晶产于橄榄石中(正交偏光);d.蒋庙橄榄辉长岩中斜方辉石外的角闪石反应边(单偏光);e.蒋庙角闪辉长岩中辉石的席勒构造(单偏光);f.蒋庙角闪辉长岩中角闪石包裹辉石、斜长石和磁铁矿产出(正交偏光);g.蒋庙辉石闪长岩中黑云母包裹辉石产出(单偏光);Opx.斜方辉石;Cpx.单斜辉石;Ol.橄榄石;Hb.普通角闪石;Bi.黑云母;Pl.斜长石;Mt.磁铁矿
Fig. 4. Field photographs and photomicrographs of the Jiangmiao intrusion
图 8 蒋庙岩体的(a)稀土配分图解和(b)微量元素蛛网图
球粒陨石标准值和原始地幔标准值均引自Sun and McDonough(1989)
Fig. 8. (a)Chondrite-normalized REE patterns and (b) primitive mantle normalized element spider diagram for the Jiangmiao intrusion
图 9 蒋庙岩体的(87Sr/86Sr)i-εNd(t)图
DMM.亏损地幔单元;EM(Ⅰ,Ⅱ).富集地幔单元引自Zindler and Hart(1986);角闪岩相元古代崆岭群引自Ma et al.(2000)和Ames et al.(1996);长江中下游地区早白垩世基性岩引自Yan et al.(2008);新生代玄武岩数据引自Zou et al.(2000);上地壳引自Taylor and McLennan(1985);扬子下地壳引自Jahn et al.(1999);文献洪文涛等(2010)
Fig. 9. Initial 87Sr/86Sr vs. εNd(t) diagram of the Jiangmiao intrusion
图 10 蒋庙岩体(a)SiO2-εNd(t)和(b)(87Sr/86Sr)i-1 000/Sr关系
Fig. 10. (a)SiO2 vs. εNd(t) and (b) (87Sr/86Sr)i vs. 1 000/Sr diagram of the Jiangmiao intrusion
图 11 蒋庙岩体(a)Y-Zr图解和(b)10×Ba/Zr-100×Nb/Zr图解
文献1洪文涛等(2010);文献2李顺庭(2008);据李昌年(1992)
Fig. 11. (a) Y versus Zr and (b) 10×Ba/Zr vs. 100×Nb/Zr diagram of the Jiangmiao intrusion
图 12 (a)单斜辉石F1-F2图解和(b)单斜辉石AlZ-TiO2图解
图a中WPT.板内拉斑玄武岩;WPA.板内碱性玄武岩;VAB.岛弧玄武岩;OFB.洋底玄武岩;图b中AlZ是指单斜辉石中进入四面体位置的Al占全铝的百分比;图a据Nisbet and Pearce(1977);图b据Loucks(1990);F1=-0.012 0SiO2-0.080 7TiO2+0.002 6Al2O3-0.001 2FeO-0.062 6MnO+0.008 7MgO-0.012 8CaO-0.041 9Na2O;F2=-0.046 9SiO2-0.081 8TiO2-0.021 2Al2O3-0.004 1FeO-0.143 5MnO-0.002 9MgO+0.008 5CaO+0.016 0Na2O
Fig. 12. (a)F1 versus F2 diagram of clinoproxenes and (b) AlZ versus TiO2 diagram of clinoproxenes
表 1 蒋庙辉石闪长岩的LA-ICP-MS锆石U-Pb年龄分析结果
Table 1. LA-ICP-MS zircon U-Pb data for the Jiangmiao pyroxene diorite
点号 元素(10-6) 同位素比值 年龄(Ma) Th U PbTotal Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 601 542 14.69 1.11 0.048 53 0.001 69 0.127 14 0.004 53 0.018 96 0.000 17 0.006 04 0.000 11 122 4 121 1 2 618 1 027 24.15 0.60 0.047 17 0.001 21 0.121 71 0.003 15 0.018 69 0.000 14 0.005 74 0.000 10 117 3 119 1 3 2 198 1 417 42.32 1.55 0.048 55 0.001 06 0.127 67 0.002 88 0.019 04 0.000 15 0.005 86 0.000 08 122 3 122 1 4 2 267 1 886 52.94 1.20 0.049 59 0.001 11 0.132 67 0.003 16 0.019 33 0.000 16 0.006 14 0.000 10 126 3 123 1 5 2 298 1 418 43.45 1.62 0.047 62 0.001 16 0.127 66 0.003 21 0.019 39 0.000 17 0.005 91 0.000 10 122 3 124 1 6 919 738 20.23 1.25 0.048 05 0.001 49 0.123 92 0.003 92 0.018 66 0.000 16 0.005 74 0.000 10 119 4 119 1 7 638 904 22.04 0.71 0.049 90 0.001 31 0.128 20 0.003 36 0.018 64 0.000 15 0.005 91 0.000 10 122 3 119 1 8 617 625 16.57 0.99 0.050 35 0.001 56 0.131 96 0.004 23 0.019 04 0.000 20 0.006 05 0.000 11 126 4 122 1 9 2 001 1 595 44.21 1.25 0.050 63 0.001 14 0.131 34 0.003 07 0.018 79 0.000 14 0.005 92 0.000 08 125 3 120 1 10 786 1 324 31.33 0.59 0.048 98 0.001 21 0.126 12 0.003 17 0.018 66 0.000 14 0.005 73 0.000 10 121 3 119 1 11 1 599 1 436 39.74 1.11 0.050 33 0.001 15 0.133 93 0.003 07 0.019 34 0.000 17 0.006 20 0.000 11 128 3 123 1 12 635 851 21.55 0.75 0.049 69 0.001 38 0.131 71 0.003 59 0.019 31 0.000 18 0.006 33 0.000 11 126 3 123 1 13 1 931 1 059 32.59 1.82 0.050 43 0.001 34 0.129 93 0.003 39 0.018 69 0.000 14 0.005 77 0.000 09 124 3 119 1 14 451 607 14.79 0.74 0.047 69 0.001 57 0.124 50 0.003 96 0.018 96 0.000 16 0.005 91 0.000 11 119 4 121 1 15 538 532 13.78 1.01 0.050 14 0.001 79 0.131 28 0.004 48 0.019 06 0.000 18 0.005 99 0.000 13 125 4 122 1 16 362 385 9.90 0.94 0.052 06 0.002 11 0.138 19 0.005 50 0.019 27 0.000 19 0.005 95 0.000 14 131 5 123 1 17 708 854 21.59 0.83 0.050 29 0.001 28 0.134 35 0.003 67 0.019 27 0.000 16 0.006 01 0.000 10 128 3 123 1 18 561 664 16.83 0.85 0.048 87 0.001 68 0.129 86 0.004 54 0.019 25 0.000 17 0.005 93 0.000 12 124 4 123 1 19 365 502 12.46 0.73 0.045 98 0.002 06 0.121 69 0.005 39 0.019 27 0.000 22 0.006 18 0.000 14 117 5 123 1 表 2 蒋庙辉石闪长岩的锆石Lu-Hf同位素组成
Table 2. Zircon Lu-Hf isotopes for the Jiangmiao pyroxene diorite
点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(t) 2σ tDM1(Ma) 2σ tDM2(Ma) 2σ fLu/Hf 1 0.027 591 0.001 063 0.282 615 0.000 013 0.282 276 -3.0 0.5 904 36 1 365 57 -0.97 2 0.038 367 0.001 453 0.282 524 0.000 013 0.282 298 -6.2 0.5 1 043 37 1 571 58 -0.96 3 0.023 648 0.000 946 0.282 605 0.000 012 0.282 281 -3.3 0.4 916 34 1 388 55 -0.97 6 0.045 574 0.001 701 0.282 528 0.000 013 0.282 297 -6.1 0.5 1 044 38 1 563 60 -0.95 7 0.041 393 0.001 612 0.282 521 0.000 015 0.282 283 -6.4 0.5 1 052 42 1 579 66 -0.95 8 0.033 299 0.001 295 0.282 572 0.000 011 0.282 241 -4.5 0.4 971 31 1 462 48 -0.96 9 0.048 941 0.001 900 0.282 529 0.000 011 0.282 257 -6.1 0.4 1 048 32 1 562 49 -0.94 10 0.050 310 0.001 982 0.282 529 0.000 013 0.282 274 -6.1 0.5 1 051 39 1 563 60 -0.94 11 0.036 302 0.001 439 0.282 574 0.000 011 0.282 192 -4.5 0.4 972 31 1 460 49 -0.96 12 0.033 546 0.001 274 0.282 532 0.000 012 0.282 292 -5.9 0.4 1 027 35 1 553 55 -0.96 14 0.024 261 0.000 945 0.282 616 0.000 014 0.282 279 -2.9 0.5 900 39 1 363 63 -0.97 15 0.017 886 0.000 724 0.282 593 0.000 013 0.282 221 -3.7 0.5 927 36 1 414 57 -0.98 16 0.034 840 0.001 324 0.282 544 0.000 014 0.282 285 -5.5 0.5 1 011 41 1 525 65 -0.96 17 0.032 442 0.001 260 0.282 570 0.000 012 0.282 313 -4.6 0.4 973 33 1 467 52 -0.96 18 0.033 450 0.001 281 0.282 569 0.000 011 0.282 198 -4.6 0.4 975 31 1 471 49 -0.96 19 0.031 932 0.001 254 0.282 551 0.000 016 0.282 297 -5.3 0.6 999 46 1 509 73 -0.96 表 3 蒋庙橄榄辉长岩中辉石的电子探针分析结果(%)
Table 3. Chemical compositions of the clinopyroxenes from the Jiangmiao olivine gabbros
样品编号 09NZ44-1 09NZ44-2 09NZ44-3 09NZ44-4 09NZ44-5 09NZ44-6 09NZ44-7 09NZ44-8 09NZ44-9 09NZ44-10 10NZ07-1 10NZ07-2 10NZ07-3 10NZ07-4 10NZ07-5 10NZ07-6 10NZ07-7 SiO2 50.86 52.11 53.04 51.94 50.96 51.62 47.54 49.91 51.27 50.78 51.77 51.49 51.52 51.92 51.25 52.00 52.07 TiO2 1.03 0.58 0.31 0.72 0.67 0.69 0.70 0.53 0.72 0.66 0.46 0.41 0.60 0.48 0.60 0.37 0.33 Al2O3 3.83 2.18 1.35 2.42 2.63 2.52 2.73 2.15 2.37 2.45 1.48 1.57 2.09 1.67 2.22 1.58 1.64 Cr2O3 0.02 0.00 0.00 0.05 0.09 0.04 0.03 0.00 0.01 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.04 FeO 7.76 7.61 7.72 7.77 8.32 7.69 6.50 6.18 7.79 7.64 8.64 8.78 8.28 8.69 8.74 8.93 8.72 MnO 0.24 0.30 0.38 0.29 0.33 0.25 0.23 0.24 0.24 0.35 0.44 0.39 0.38 0.39 0.38 0.33 0.39 MgO 13.86 15.51 15.32 15.21 14.74 14.88 14.33 15.24 14.94 15.08 14.94 14.79 14.74 15.58 15.39 15.47 15.19 CaO 21.60 22.01 20.94 21.84 21.98 21.11 19.27 20.60 21.92 21.96 21.48 21.88 22.16 20.90 21.04 20.89 21.52 Na2O 0.39 0.39 0.36 0.34 0.43 0.37 0.34 0.30 0.36 0.39 0.40 0.43 0.30 0.38 0.36 0.38 0.38 K2O 0.02 0.01 0.00 0.00 0.03 0.01 0.03 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 Total 99.60 100.70 99.41 100.57 100.19 99.17 91.70 95.16 99.62 99.32 99.63 99.75 100.06 100.03 99.99 99.99 100.29 Mg# 76.10 78.42 77.97 77.72 75.96 77.53 79.72 81.46 77.38 77.88 75.52 75.01 76.04 76.18 75.84 75.54 75.64 Si 1.894 1.908 1.971 1.908 1.882 1.924 1.909 1.927 1.902 1.887 1.925 1.912 1.908 1.918 1.895 1.924 1.921 Al(Ⅳ) 0.104 0.078 0.027 0.082 0.100 0.071 0.085 0.067 0.085 0.095 0.060 0.069 0.079 0.067 0.088 0.061 0.063 Al(Ⅵ) 0.064 0.017 0.032 0.024 0.016 0.040 0.044 0.032 0.019 0.013 0.005 0.001 0.013 0.007 0.010 0.008 0.009 Ti 0.029 0.016 0.009 0.020 0.018 0.019 0.021 0.015 0.020 0.018 0.013 0.011 0.017 0.013 0.017 0.010 0.009 Cr 0.001 0.000 0.000 0.001 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 Fe3+ 0.227 0.150 0.234 0.179 0.146 0.212 0.181 0.160 0.167 0.131 0.183 0.163 0.179 0.182 0.167 0.190 0.179 Fe2+ 0.015 0.085 0.006 0.061 0.113 0.028 0.038 0.040 0.076 0.108 0.088 0.113 0.080 0.089 0.106 0.089 0.092 Mn 0.008 0.009 0.012 0.009 0.010 0.008 0.008 0.008 0.007 0.011 0.014 0.012 0.012 0.012 0.012 0.010 0.012 Mg 0.769 0.847 0.849 0.833 0.812 0.827 0.857 0.877 0.826 0.835 0.828 0.819 0.814 0.858 0.848 0.853 0.836 Ca 0.862 0.863 0.834 0.860 0.870 0.843 0.829 0.852 0.871 0.874 0.856 0.871 0.879 0.827 0.833 0.828 0.851 Na 0.028 0.028 0.026 0.024 0.031 0.027 0.026 0.023 0.026 0.028 0.029 0.031 0.021 0.027 0.026 0.027 0.027 K 0.001 0.001 0.000 0.000 0.002 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 Wo 45.83 44.18 43.10 44.27 44.58 43.96 43.33 43.97 44.72 44.60 43.47 44.04 44.79 42.03 42.39 42.03 43.19 En 40.90 43.33 43.88 42.90 41.60 43.11 44.82 45.28 42.42 42.63 42.08 41.41 41.45 43.61 43.14 43.32 42.42 Fs 13.27 12.49 13.02 12.82 13.82 12.93 11.85 10.74 12.86 12.77 14.45 14.55 13.76 14.37 14.48 14.65 14.39 注:单斜辉石阳离子数以4个氧原子为基础计算出,Fe3+和Fe2+利用电价差值法求得,Mg#=100×molarMgO/(MgO+FeO). 表 4 蒋庙岩体主量元素(%)、微量元素(10-6)及Sr-Nd同位素组成
Table 4. Major (%), trace element (10-6) and Sr-Nd isotopic compositions of the Jiangmiao intrusion
样品号 10NZ07 09NZ44 09NZ45 09NJ09 09NZ46 SiO2 46.09 44.25 53.67 57.14 55.16 TiO2 1.33 1.71 1.01 0.90 0.65 Al2O3 17.46 17.74 16.88 17.13 16.98 FeOt 11.84 12.95 8.25 7.06 3.28 MnO 0.20 0.22 0.15 0.13 0.05 MgO 6.52 6.17 4.26 3.13 5.29 CaO 11.03 10.53 7.25 6.26 12.94 Na2O 2.33 3.09 3.49 3.84 3.92 K2O 0.18 0.32 2.56 2.82 0.2 P2O5 0.79 1.21 0.45 0.41 0.18 H2O+ 1.19 0.76 1.24 0.56 0.89 CO2 0.15 0.08 0.06 0.08 0.06 LOI 0.71 0.04 0.88 - 0.89 Total 99.82 99.07 100.15 99.46 100.49 Na2O/K2O 12.94 9.66 1.36 1.36 19.60 Mg# 50 46 48 44 74 Li 6.57 2.68 16.50 13.20 9.87 Be 0.49 0.97 1.36 1.97 0.81 Sc 30.6 26.0 19.1 16.3 28.7 V 398 383 224 184 127 Cr 43.50 20.20 40.00 9.59 55.20 Co 53.9 49.4 24.2 20.3 11.0 Ni 36.2 28.1 22.4 11.0 22.2 Cu 169.0 25.0 182.0 72.0 38.5 Zn 106.0 140.0 86.7 81.2 17.3 Ga 21.4 24.6 20.0 21.0 17.3 Rb 1.70 2.56 79.30 104.00 2.49 Sr 1633 1345 870 853 896 Y 21.8 32.5 19.2 21.4 13.4 Zr 14.0 25.8 148.0 215.0 52.8 Nb 0.70 3.94 11.80 16.60 2.24 Cs 0.63 0.23 2.20 3.98 0.16 Ba 429 604 862 985 123 La 34.10 53.50 37.00 44.20 8.36 Ce 72.1 105.0 67.6 79.4 17.1 Pr 9.28 13.30 7.78 8.95 3.01 Nd 41.4 57.6 31.1 34.5 14.0 Sm 8.63 11.3 6.30 6.44 3.40 Eu 2.85 2.92 1.74 1.76 0.89 Gd 7.13 9.59 5.17 5.49 3.22 Tb 0.89 1.21 0.71 0.76 0.48 Dy 4.49 6.09 3.83 4.11 2.64 Ho 0.79 1.06 0.72 0.77 0.51 Er 1.89 2.76 1.97 2.12 1.34 Tm 0.24 0.34 0.27 0.31 0.20 Yb 1.48 2.04 1.80 2.04 1.24 Lu 0.22 0.28 0.25 0.32 0.19 Hf 0.62 1.05 3.96 5.44 1.71 Ta 0.08 0.22 0.63 0.92 0.19 Pb 2.40 7.63 10.90 18.70 4.30 Th 0.32 1.62 9.41 14.90 1.23 U 0.07 0.37 2.15 4.04 0.16 Sr/Y 74.9 41.4 45.3 39.9 66.8 (La/Yb)N 16.5 18.8 14.8 15.6 4.8 δEu 1.08 0.83 0.91 0.88 0.81 87Rb/86Sr - 0.005 5 0.263 7 - - 87Sr/86Sr(2σ) - 0.704 591(6) 0.705 065(4) - - 147Sm/144Nd - 0.118 9 0.122 3 - - 143Nd/144Nd(2σ) - 0.512 581(9) 0.512 487(5) - - 87Sr/86Sr(t) - 0.704 582 0.704 612 - - εNd(t) - 0.1 -1.8 - - 注:FeOt表示全铁;“-”处表示未测试或计算;Mg#=100×Mg2+/(Mg2++Fet2+),t=121 Ma. -
Ames, L., Zhou, G.Z., Xiong, B.C., 1996.Geochronology and Isotopic Character of Ultrahigh-Pressure Metamorphism with Implications for Collision of the Sino-Korean and Yangtze Cratons, Central China.Tectonics, 15(2):472-489.doi: 10.1029/95TC02552 Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258.doi: 10.1016/s0012-821x(97)00040-x Chang, Y.F., Liu, X.P., Wu, C.Y., 1991.The Copper-Iron Metallogenic Belt of the Lower and Middle Reaches of the Changjiang River.Geological Publishing House, Beijing, 379 (in Chinese). Chen, J.F., Yan, J., Xie, Z., et al., 2001.Nd and Sr Isotopic Compositions of Igneous Rocks from the Lower Yangtze Region in Eastern China:Constraints on Sources.Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10):719-731.doi: 10.1016/s1464-1895(01)00122-3 Chen, L., Zhao, Z.F., Zheng, Y.F., 2014.Origin of Andesitic Rocks:Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China.Lithos, 190-191:220-239.doi: 10.1016/j.lithos.2013.12.011 Di, Y.J., Wu, G.G., Zhang, D., et al., 2005.SHRIMP U-Pb Zircon Geochronology of the Xiaotongguanshan and Shatanjiao Intrusions and Its Petrological Implications in the Tongling Area, Anhui.Acta Geologica Sinica, 79(6):795-802.doi: 10.3321/j.issn:1000-9515.2005.06.010 Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004.Recycling Lower Continental Crust in the North China Craton.Nature, 432(7019):892-897.doi: 10.1038/nature03162 Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LA-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147.doi: 10.1016/s0016-7037(99)00343-9 Guan, J.P., Wei, F.B., Sun, G.X., et al., 2015.Zircon U-Pb Dating of Intermediate-Acid Intrusive Rocks in the Middle Section of Ningzhen District and Their Metallogenic Implications.Geotectonica et Metallogenia, 39(2):344-354(in Chinese with English abstract). https://www.researchgate.net/publication/282173617_Zircon_U-Pb_dating_of_intermediate-acid_intrusive_rocks_in_the_middle_section_of_Ningzhen_district_and_their_metallogenic_implications Hong, W.T., Xu, X.S., He, Z.Y., et al., 2010.Geochronology and Geochemistry of the Jiangmiao Intrusion in Nanjing:Its Geological Significance.Acta Petrologica Sinica, 26(5):1577-1588(in Chinese with English abstract). https://www.researchgate.net/publication/286004144_Geochronology_and_geochemistry_of_the_Jiangmiao_intrusion_in_Nanjing_Its_geological_significance Jahn, B.M., Wu, F.Y., Lo, C.H., et al., 1999.Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China.Chemical Geology, 157(1-2):119-146.doi: 10.1016/S0009-2541(98)00197-1 Li, C.N., 1992.Trace Element Petrology of Igneous Rocks.China University of Geosciences Press, Wuhan, 195(in Chinese). Li, H., Ling, M.X., Li, C.Y., et al., 2012.A-Type Granite Belts of Two Chemical Subgroups in Central Eastern China:Indication of Ridge Subduction.Lithos, 150(10):26-36.doi: 10.1016/j.lithos.2011.09.021 Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2009.Late Mesozoic Magmatism from the Daye Region, Eastern China:U-Pb Ages, Petrogenesis, and Geodynamic Implications.Contributions to Mineralogy and Petrology, 157(3):383-409.doi: 10.1007/s00410-008-0341-x Li, S.T., 2008.Characteristics and Petrogenesis of the Jiangmiao and Gushan Intrusions in the Ningwu Basin, Eastern China(Dissertation).China University of Geosciences, Beijing, 34 (in Chinese with English abstract). Li, X.H., Li, W.X., Wang, X.C., et al., 2010.SIMS U-Pb Zircon Geochronology of Porphyry Cu-Au-(Mo) Deposits in the Yangtze River Metallogenic Belt, Eastern China:Magmatic Response to Early Cretaceous Lithospheric Extension.Lithos, 119(3-4):427-438.doi: 10.1016/j.lithos.2010.07.018 Li, Z.X., Li, X.H., 2007.Formation of the 1 300 km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model.Geology, 35(2):179.doi: 10.1130/g23193a.1 Ling, M.X., Wang, F.Y., Ding, X., et al., 2011.Different Origins of Adakites from the Dabie Mountains and the Lower Yangtze River Belt, Eastern China:Geochemical Constraints.International Geology Review, 53(5-6):727-740.doi: 10.1080/00206814.2010.482349 Liu, J.M., Yan, J., Li, Q.Z., et al., 2014.Zircon LA-ICPMS Dating of the Anjishan Pluton in Nanjing-Zhenjiang Area and Its Significance.Geological Review, 60(1):190-200(in Chinese with English abstract). Liu, S.A., Li, S.G., Guo, S.S., et al., 2012.The Cretaceous Adakitic-Basaltic-Granitic Magma Sequence on South-Eastern Margin of the North China Craton:Implications for Lithospheric Thinning Mechanism.Lithos, 134-135:163-178.doi: 10.1016/j.lithos.2011.12.015 Liu, S.A., Li, S.G., He, Y.S., et al., 2010.Geochemical Contrasts between Early Cretaceous Ore-Bearing and Ore-Barren High-Mg Adakites in Central-Eastern China:Implications for Petrogenesis and Cu-Au Mineralization.Geochimica et Cosmochimica Acta, 74(24):7160-7178.doi: 10.1016/j.gca.2010.09.003 Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008a.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/j.chemgeo.2008.08.004 Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008b.Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates.Chemical Geology, 247(1-2):133-153.doi: 10.1016/j.chemgeo.2007.10.016 Loucks, R.R., 1990.Discrimination of Ophiolitic from Nonophiolitic Ultramafic-Mafic Allochthons in Orogenic Belts by the Al/Ti Ratio in Clinopyroxene.Geology, 18(4):346.doi:10.1130/0091-7613(1990)018<0346:doofnu>2.3.co;2 Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley, 71. http://www.oalib.com/references/17344292 Ma, C.Q., Ehlers, C., Xu, C.H., et al., 2000.The Roots of the Dabieshan Ultrahigh-Pressure Metamorphic Terrane:Constraints from Geochemistry and Nd-Sr Isotope Systematics.Precambrian Research, 102(3-4):279-301.doi: 10.1016/s0301-9268(00)00069-3 Mao, J.W., Duan, C., Liu, J.L., et al., 2012.Metallogeny and Corresponding Mineral Deposit Model of the Cretaceous Terrestrial Volcanic-Intrusive Rocks—Related Polymetallic Iron Deposits in Middle-Lower Yangtze River Valley.Acta Petrologica Sinica, 28(1):1-14(in Chinese with English abstract). https://www.researchgate.net/publication/298828899_Metallogeny_and_corresponding_mineral_deposit_model_of_the_Cretaceous_terrestrial_volcanic-intrusive_rocks-related_polymetallic_iron_deposits_in_Middle-Lower_Yangtze_River_Valley McCulloch, M.T., Gamble, J.A., 1991.Geochemical and Geodynamical Constraints on Subduction Zone Magmatism.Earth and Planetary Science Letters, 102(3-4):358-374.doi: 10.1016/0012-821x(91)90029-h Morimoto, N., 1988.Nomenclature of the Pyroxene.Acta Mineralogica Sinica, 8(4):289-305(in Chinese). Münker, C., Wörner, G., Yogodzinski, G., et al., 2004.Behaviour of High Field Strength Elements in Subduction Zones:Constraints from Kamchatka-Aleutian Arc Lavas.Earth and Planetary Science Letters, 224(3-4):275-293.doi: 10.1016/j.epsl.2004.05.030 Nisbet, E.G., Pearce, J.A., 1977.Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings.Contributions to Mineralogy and Petrology, 63(2):149-160.doi: 10.1007/bf00398776 Pan, Y.M., Dong, P., 1999.The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China:Intrusion-and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits.Ore Geology Reviews, 15(4):177-242.doi: 10.1016/s0169-1368(99)00022-0 Pearce, J.A., Peate, D.W., 1995.Tectonic Implications of the Composition of Volcanic ARC Magmas.Annual Review of Earth and Planetary Sciences, 23(1):251-285.doi: 10.1146/annurev.ea.23.050195.001343 Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016.Early Paleozoic Subduction in Cathaysia(Ⅱ):New Evidence from the Dashuang High Magnesian-Magnesian Andesite.Earth Science, 41(6):931-947(in Chinese with English abstract). https://www.researchgate.net/publication/305144667_Early_paleozoic_subduction_in_Cathaysia_I_New_evidence_from_Nuodong_Ophiolite Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 Sun, W.D., Ding, X., Hu, Y.H., et al., 2007.The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific.Earth and Planetary Science Letters, 262(3-4):533-542.doi: 10.1016/j.epsl.2007.08.021 Sun, W.D., Ling, M.X., Chung, S.L., et al., 2012.Geochemical Constraints on Adakites of Different Origins and Copper Mineralization.The Journal of Geology, 120(1):105-120.doi: 10.1086/662736 Sun, Y., Ma, C.Q., Liu, Y.Y., 2013.The Latest Yanshanian Magmatic and Metallogenic Events in the Middle-Lower Yangtze River Belt:Evidence from the Ningzhen Region.Chinese Science Bulletin, 58(34):4308-4318.doi: 10.1007/s11434-013-6015-8 Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution:An Examination of the Geochemical Record Preserved in Sedimentary Rocks.Blackwell Scientific Publications, Oxford. Wang, F.Y., Liu, S.A., Li, S.G., et al., 2013.Contrasting Zircon Hf-O Isotopes and Trace Elements between Ore-Bearing and Ore-Barren Adakitic Rocks in Central-Eastern China:Implications for Genetic Relation to Cu-Au Mineralization.Lithos, 156-159:97-111.doi: 10.1016/j.lithos.2012.10.017 Wang, F.Y., Liu, S.A., Li, S.G., et al., 2014.Zircon U-Pb Ages, Hf-O Isotopes and Trace Elements of Mesozoic High Sr/Y Porphyries from Ningzhen, Eastern China:Constraints on Their Petrogenesis, Tectonic Implications and Cu Mineralization.Lithos, 200-201:299-316.doi: 10.1016/j.lithos.2014.05.004 Wang, Q., Wyman, D.A., Xu, J.F., et al., 2006.Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China):Implications for Geodynamics and Cu-Au Mineralization.Lithos, 89(3-4):424-446.doi: 10.1016/j.lithos.2005.12.010 Xia, J.S., 2000.A Preliminary Division of Lineage Units of Granitoid Rocks in Ning-Zhen Region.Geology of Jiangsu, 24(2):81(in Chinese with English abstract). Xie, G.Q., Mao, J.W., Li, R.L., et al., 2008.Geochemistry and Nd-Sr Isotopic Studies of Late Mesozoic Granitoids in the Southeastern Hubei Province, Middle-Lower Yangtze River Belt, Eastern China:Petrogenesis and Tectonic Setting.Lithos, 104(1-4):216-230.doi: 10.1016/j.lithos.2007.12.008 Xie, G.Q., Mao, J.W., Zhao, H.J., 2011.Zircon U-Pb Geochronological and Hf Isotopic Constraints on Petrogenesis of Late Mesozoic Intrusions in the Southeast Hubei Province, Middle-Lower Yangtze River Belt (MLYRB), East China.Lithos, 125(1-2):693-710.doi: 10.1016/j.lithos.2011.04.001 Xie, J.C., Yang, X.Y., Sun, W.D., et al., 2012.Early Cretaceous Dioritic Rocks in the Tongling Region, Eastern China:Implications for the Tectonic Settings.Lithos, 150:49-61.doi: 10.1016/j.lithos.2012.05.008 Xie, Z., Li, Q.Z., Chen, J.F., et al., 2007.The Geochemical Characteristics of the Early-Cretaceous Volcanics in Luzong Region and Their Source Significances.Geological Journal of China Universities, 13(2):235-249(in Chinese with English abstract). https://www.researchgate.net/publication/306157729_The_geochemical_characteristics_of_the_Early-Cretaceous_volcanics_in_Luzhong_region_and_their_source_significances Xing, F.M., 1998.Geochemistry of Basic Rocks from the Eastern Part of the Yangtze Magmatic Rock Belt.Geochimica, 27(3):258-268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199803006.htm Xing, F.M., 1999.The Magmatic Metallogenetic Belt around the Yangtze River in Anhui.Geology of Anhui, 9(4):272-279 (in Chinese with English abstract). Xu, X., 2000.Genesis of Young Lithospheric Mantle in Southeastern China:An LA-ICP-MS Trace Element Study.Journal of Petrology, 41(1):111-148.doi: 10.1093/petrology/41.1.111 Xu, X.S., O'Reilly, S.Y., Griffin, W.L., et al., 2003.Enrichment of Upper Mantle Peridotite:Petrological, Trace Element and Isotopic Evidence in Xenoliths from SE China.Chemical Geology, 198(3-4):163-188.doi: 10.1016/s0009-2541(03)00004-4 Xue, H.M., Dong, S.W., Ma, F., 2010.Zircon U-Pb SHRIMP Ages of Sub-Volcanic Bodies Related with Porphyritic Fe-Deposits in the Luzong and Ningwu Basins, Middle and Lower Yangtze River Reaches, Central China.Acta Petrologica Sinica, 26(9):2653-2664(in Chinese with English abstract). Yan, J., Chen, J.F., Xie, Z., et al., 2005.Geochemistry of Late Mesozoic Basalts from Kedoushan in the Middle and Lower Yangtze Regions:Constraints on Characteristics and Evolution of the Lithospheric Mantle.Geochimica, 34(5):455-469(in Chinese with English abstract). Yan, J., Chen, J.F., Xu, X.S., 2008.Geochemistry of Cretaceous Mafic Rocks from the Lower Yangtze Region, Eastern China:Characteristics and Evolution of the Lithospheric Mantle.Journal of Asian Earth Sciences, 33(3-4):177-193.doi: 10.1016/j.jseaes.2007.11.002 Yan, J., Chen, J.F., Yu, G., et al., 2003.Pb Isotopic Characteristics of Late Mesozoic Mafic Rocks from the Lower Yangtze Region:Evidence for Enriched Mantle.Geological Journal of China Universities, 9(2):195-206(in Chinese with English abstract). Yan, J., Liu, H.Q., Song, C.Z., et al., 2009.Zircon U-Pb Geochronology of the Volcanic Rocks from Fanchang-Ningwu Volcanic Basins in the Lower Yangtze Region and Its Geological Implications.Chinese Science Bulletin, 54(12):1716-1724 (in Chinese). https://www.researchgate.net/publication/238479698_Zircon_U-Pb_geochronology_of_the_volcanic_rocks_from_Fanchang-Ningwu_volcanic_basins_in_the_Lower_Yangtze_region_and_its_geological_implications Yang, T.L., Jiang, S.Y., 2015.Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves(MMEs) from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province:Evidence from Zircon U-Pb Geochronology, Geochemsitry and Sr-Nd-Pb-Hf Isotopes.Earth Science, 40(12):2002-2020 (in Chinese with English abstract). Yuan, F., Zhou, T.F., Fan, Y., et al., 2008.Source, Evolution and Tectonic Setting of Mesozoic Volcanic Rocks in Luzong Basin, Anhui Province.Acta Petrologica Sinica, 24(8):1691-1702(in Chinese with English abstract). https://www.researchgate.net/publication/279756510_Source_evolution_and_tectonic_setting_of_Mesozoic_volcanic_rocks_in_Luzong_basin_Anhui_Province Yuan, H.L., Gao, S., Dai, M.N., et al., 2008.Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS.Chemical Geology, 247(1-2):100-118.doi: 10.1016/j.chemgeo.2007.10.003 Zeng, J.N., Li, J.W., Chen, J.H., et al., 2013.SHRIMP Zircon U-Pb Dating of Anjishan Intrusive Rocks in Ningzhen District, Jiangsu, and Its Geological Significance.Earth Science, 38(1):57-67 (in Chinese with English abstract). https://www.researchgate.net/publication/285968490_SHRIMP_zircon_U-Pb_dating_of_Anjishan_intrusive_rocks_in_Ningzhen_district_Jiangsu_and_its_geological_significance Zhai, Y.S., Yao, S.Z., Lin, X.D., et al., 1992.Fe-Cu-(Au) Metallogeny of the Middle-Lower Changjiang Region.Geological Publishing House, Beijing, 235(in Chinese). Zheng, Q.R., 1983.Calculation of the Fe3+ and Fe2+ Contents in Silicate and Ti-Fe Oxide Minerals from EPMA Data.Acta Mineralogica Sinica, 3(1):55-62(in Chinese with English abstract). Zhou, T.F., Fan, Y., Yuan, F., et al., 2010.Temporal-Spatial Framework of Magmatic Intrusions in Luzong Volcanic Basin in East China and Their Constrain to Mineralizations.Acta Petrologica Sinica, 26(9):2694-2714(in Chinese with English abstract). https://www.researchgate.net/publication/282372483_Temporal-spatial_framework_of_magmatic_intrusions_in_Luzong_volcanic_basin_in_East_China_and_their_constrain_to_mineralization Zhou, T.F., Fan, Y., Yuan, F., et al., 2012.Progress of Geological Study in the Middle-Lower Yangtze River Valley Metallogenic Belt.Acta Petrologica Sinica, 28(10):3051-3066(in Chinese with English abstract). https://www.researchgate.net/publication/283803005_Progress_of_geological_study_in_the_Middle-Lower_Yangtze_River_Valley_metallogenic_belt Zhou, T.F., Wu, M.A., Fan, Y., et al., 2011.Geological, Geochemical Characteristics and Isotope Systematics of the Longqiao Iron Deposit in the Lu-Zong Volcano-Sedimentary Basin, Middle-Lower Yangtze (Changjiang) River Valley, Eastern China.Ore Geology Reviews, 43(1):154-169.doi: 10.1016/j.oregeorev.2011.04.004 Zhou, X.M., 1964.The Differentiation Effect of the Jiangmiao Mafic Intrusion in Nanjing.Journal of Nanjing University(Natural Sciences), 8(4):559-573(in Chinese with English abstract). Zindler, A., Hart, S., 1986.Chemical Geodynamics.Annual Review of Earth and Planetary Sciences, 14(1):493-571.doi: 10.1146/annurev.ea.14.050186.002425 Zong, K.Q., Liu, Y.S., Gao, C.G., et al., 2010.In Situ U-Pb Dating and Trace Element Analysis of Zircons in Thin Sections of Eclogite:Refining Constraints on the Ultra High-Pressure Metamorphism of the Sulu Terrane, China.Chemical Geology, 269(3-4):237-251.doi: 10.1016/j.chemgeo.2009.09.021 Zou, H.B., Zindler, A., Xu, X.S., et al., 2000.Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China:Mantle Sources, Regional Variations, and Tectonic Significance.Chemical Geology, 171(1-2):33-47.doi: 10.1016/s0009-2541(00)00243-6 常印佛, 刘湘培, 吴昌言, 1991.长江中下游铜铁成矿带.北京:地质出版社, 379. 关俊朋, 韦福彪, 孙国曦, 等, 2015.宁镇中段中酸性侵入岩锆石U-Pb年龄及其成岩成矿指示意义.大地构造与成矿学, 39(2):344-354. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201502015.htm 洪文涛, 徐夕生, 贺振宇, 等, 2010.南京蒋庙岩体的年代学、地球化学及其地质意义.岩石学报, 26(5):1577-1588. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005022.htm 李昌年, 1992.火成岩微量元素岩石学.武汉:中国地质大学出版社, 195. 李顺庭, 2008. 宁芜地区蒋庙和姑山岩体的特征和成因(硕士学位论文). 北京: 中国地质大学, 34. 刘建敏, 闫峻, 李全忠, 等, 2014.宁镇地区安基山岩体锆石LA-ICPMS U-Pb定年及意义.地质论评, 60(1):190-200. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201001015.htm 毛景文, 段超, 刘佳林, 等, 2012.陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例.岩石学报, 28(1):1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201003.htm Morimoto, N., 1988.辉石命名法.矿物学报, 8(4):289-305. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198804000.htm 彭松柏, 刘松峰, 林木森, 等, 2016.华夏早古生代俯冲作用(Ⅱ):大爽高镁-镁质安山岩新证据.地球科学, 41(6):931-947. http://www.earth-science.net/WebPage/Article.aspx?id=3309 夏嘉生, 2000.宁镇地区花岗岩类岩石谱系单位的初步划分.江苏地质, 24(2):81. http://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ200002002.htm 谢智, 李全忠, 陈江峰, 等, 2007.庐枞早白垩世火山岩的地球化学特征及其源区意义.高校地质学报, 13(2):235-249. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200702007.htm 邢凤鸣, 1998.扬子岩浆岩带东段基性岩地球化学.地球化学, 27(3):258-268. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199803006.htm 邢凤鸣, 1999.安徽沿江地区岩浆成矿带.安徽地质, 9(4):272-279. http://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ199904005.htm 薛怀民, 董树文, 马芳, 2010.长江中下游地区庐(江)-枞(阳)和宁(南京)-芜(湖)盆地内与成矿有关潜火山岩体的SHRIMP锆石U-Pb年龄.岩石学报, 26(9):2653-2664. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009013.htm 闫峻, 陈江峰, 谢智, 等, 2005.长江中下游地区蝌蚪山晚中生代玄武岩的地球化学研究:岩石圈地幔性质与演化的制约.地球化学, 34(5):455-469. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200505004.htm 闫峻, 陈江峰, 喻钢, 等, 2003.长江中下游晚中生代中基性岩的铅同位素特征:富集地幔的证据.高校地质学报, 9(2):195-206. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200302004.htm 闫峻, 刘海泉, 宋传中, 等, 2009.长江中下游繁昌-宁芜火山盆地火山岩锆石U-Pb年代学及其地质意义.科学通报, 54(12):1716-1724. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200912016.htm 杨堂礼, 蒋少涌, 2015.江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石U-Pb年代学、地球化学与Sr-Nd-Pb-Hf同位素制约.地球科学, 40(12):2002-2020. http://www.earth-science.net/WebPage/Article.aspx?id=3205 袁峰, 周涛发, 范裕, 等, 2008.庐枞盆地中生代火山岩的起源、演化及形成背景.岩石学报, 24(8):1691-1702. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808003.htm 曾键年, 李锦伟, 陈津华, 等, 2013.宁镇地区安基山侵入岩SHRIMP锆石U-Pb年龄及其地质意义.地球科学, 38(1):57-67. http://www.earth-science.net/WebPage/Article.aspx?id=2344 翟裕生, 姚书振, 林新多, 等, 1992.长江中下游地区铁铜(金)成矿规律.北京:地质出版社, 235. 郑巧荣, 1983.由电子探针分析值计算Fe3+和Fe2+.矿物学报, 3(1):55-62. http://kns.cnki.net/kns/detail/detail.aspx?QueryID=8&CurRec=1&recid=&FileName=KWXB198301008&DbName=CJFD7984&DbCode=CJFQ&yx=&pr= 周涛发, 范裕, 袁峰, 等, 2010.庐枞盆地侵入岩的时空格架及其对成矿的制约.岩石学报, 26(9):2694-2714. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009016.htm 周涛发, 范裕, 袁峰, 等, 2012.长江中下游成矿带地质与矿产研究进展.岩石学报, 28(10):3051-3066. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201210003.htm 周新民, 1964.南京蒋庙基性侵入岩的分異作用.南京大学学报(自然科学版), 8(4):559-573. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ196404009.htm