• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    潜流带水文-生物地球化学:原理、方法及其生态意义

    杜尧 马腾 邓娅敏 廖曼 郑倩琳

    杜尧, 马腾, 邓娅敏, 廖曼, 郑倩琳, 2017. 潜流带水文-生物地球化学:原理、方法及其生态意义. 地球科学, 42(5): 661-673. doi: 10.3799/dqkx.2017.054
    引用本文: 杜尧, 马腾, 邓娅敏, 廖曼, 郑倩琳, 2017. 潜流带水文-生物地球化学:原理、方法及其生态意义. 地球科学, 42(5): 661-673. doi: 10.3799/dqkx.2017.054
    Du Yao, Ma Teng, Deng Yamin, Liao Man, Zheng Qianlin, 2017. Hydro-Biogeochemistry of Hyporheic Zone: Principles, Methods and Ecological Significance. Earth Science, 42(5): 661-673. doi: 10.3799/dqkx.2017.054
    Citation: Du Yao, Ma Teng, Deng Yamin, Liao Man, Zheng Qianlin, 2017. Hydro-Biogeochemistry of Hyporheic Zone: Principles, Methods and Ecological Significance. Earth Science, 42(5): 661-673. doi: 10.3799/dqkx.2017.054

    潜流带水文-生物地球化学:原理、方法及其生态意义

    doi: 10.3799/dqkx.2017.054
    基金项目: 

    国家水体污染控制与治理科技重大专项 No.2012ZX07204-003-04

    中国地质调查局项目 Nos.121201001000150121

    中国地质调查局项目 12120114069301

    详细信息
      作者简介:

      杜尧(1989-),男,博士研究生,主要从事地表水-地下水相互作用、同位素水文学方面的研究.ORCID:0000-0002-5934-9288. E-mail:cugduyao@aliyun.com

      通讯作者:

      马腾,ORCID:0000-0003-2827-9579.E-mail:mateng@cug.edu.cn

    • 中图分类号: P641.3

    Hydro-Biogeochemistry of Hyporheic Zone: Principles, Methods and Ecological Significance

    • 摘要: 精确量化潜流带水文交换和生物地球化学反应一直是一个挑战,潜流带水文-生物地球化学研究的核心任务是将小尺度上的水文通量及生物地球化学反应动力学与更大尺度上它们对河流水质和生态的累积效应关联起来.基于潜流带水文-生物地球化学耦合原理,系统综述了渗流仪测量、测压管测量、示踪剂注射试验、温度示踪等潜流带水文学研究方法以及野外示踪试验、室内培养试验等生物地球化学研究方法,针对性地评述了潜流带水文-生物地球化学过程在更大尺度上的累积效应及其对河流生态系统的重要意义,并指出未来的研究将从潜流带研究技术方法的先进化、水文地貌理论与模型的深入化和潜流带生物地球化学过程的尺度化等方面持续地发展.

       

    • 图  1  水文迁移与生物地球化学反应对潜流带反应程度控制的原理

      潜流带反应程度在浅层潜流路径上可能受限于反应而在深层潜流路径上可能受限于迁移,反应时间尺度和迁移时间尺度的差异会导致潜流带反应的有效深度与实际潜流带深度不一致.改自Harvey et al.(2013)

      Fig.  1.  The sketch for the control of hydrologic transport and biogeochemical process on hyporheic zone reaction progress

      图  2  暂时性储积模型的概念图解

      a.表示仅考虑垂向交换;b.表示同时考虑垂向和侧向交换.改自Harvey and Gooseff(2015)

      Fig.  2.  Conceptual scheme of transient storage model (TSM)

      图  3  反应意义因子(RSF)的概念图解

      改自Harvey et al.(2013)

      Fig.  3.  Conceptual scheme of reaction significance factor (RSF)

      图  4  多尺度与多维潜流路径的模型

      改自Stonedahl et al.(2010)

      Fig.  4.  Conceptual scheme of multiscale and multidimensional hyporheic flow

      图  5  基于反应意义因子估算的密西西比河流网络反硝化潜力

      图a表示总体的反硝化RSF,值越高表示反硝化反应意义越大;图b表示垂向与横向RSF的比值,值越高表示垂向交换影响下的反硝化效率相对于侧向交换越大.改自Gomez-Velez et al.(2015)

      Fig.  5.  Denitrification potential of Mississippi River network based on RSF

      表  1  量化潜流交换的主要方法

      Table  1.   Primary methods for quantifying hyporheic exchange

      方法 空间尺度 时间尺度 优势 劣势
      渗流仪测量 cm2~m2 数小时~数月 可直接量化渗流速率、可多次使用、价格低廉 只能针对时间和空间点、交换量较小时结果可能存在不确定性
      测压管测量 cm2~m2 数秒~数分 可简单而精确地获取水力梯度 只能针对时间和空间点、需人工密集安装
      示踪剂注射试验 10 m2~km2 数小时~数天 可评价整个河段的流量、损失及侧向流入量 无法识别长时间尺度的潜流路径;结果可能因示踪剂被吸附而受影响
      河底温度示踪 cm2~m2 数秒~数月 低廉的价格、精确的温度测量、长时间的热记录、可识别渗流速率和方向 只能针对空间点、不能识别地下流动的补给
      环境示踪剂 cm2~m2 数分~数天 可直接测定示踪剂浓度、简单的质量平衡计算 只能针对时间和空间点、要求不同水体端元的浓度差异显著
      质量平衡 10 m2~km2 数小时~数年 直接测量河水流量、简单的水量均衡计算 当流量较低或是紊流时难以测定、要求所有监测点的流量特征曲线
       注:改自Hatch et al.(2006)Gonzalez-Pinzon et al.(2015)Harvey and Gooseff(2015).
      下载: 导出CSV
    • Anderson, M.P., 2005.Heat as a Ground Water Tracer.Ground Water, 43(6):951-968.doi: 10.1111/j.1745-6584.2005.00052.x
      Baker, M.A., Valett, H.M., Dahm, C.N., 2000.Organic Carbon Supply and Metabolism in a Shallow Groundwater Ecosystem.Ecology, 81(11):3133-3148.doi:10.1890/0012-9658(2000)081[3133:ocsami]2.0.co; 2
      Battin, T.J., Kaplan, L.A., Findlay, S., et al., 2008.Biophysical Controls on Organic Carbon Fluxes in Fluvial Networks.Nature Geoscience, 1(2):95-100.doi: 10.1038/ngeo101
      Battin, T.J., Kaplan, L.A., Newbold, J.D., et al., 2003.Contributions of Microbial Biofilms to Ecosystem Processes in Stream Mesocosms.Nature, 426(6965):439-442.doi: 10.1038/nature02152
      Baxter, C., Hauer, F.R., Woessner, W.W., 2003.Measuring Groundwater-Stream Water Exchange: New Techniques for Installing Minipiezometers and Estimating Hydraulic Conductivity.Transactions of the American Fisheries Society, 132(3):493-502.doi:10.1577/1548-8659(2003)132<0493:mgwent>2.0.co;2
      Bencala, K.E., Kennedy, V.C., Zellweger, G.W., et al., 1984.Interactions of Solutes and Streambed Sediment: 1.An Experimental Analysis of Cation and Anion Transport in a Mountain Stream.Water Resources Research, 20(12):1797-1803.doi: 10.1029/wr020i012p01797
      Bencala, K.E., Walters, R.A., 1983.Simulation of Solute Transport in a Mountain Pool-and-Riffle Stream:A Transient Storage Model.Water Resources Research, 19(3):718-724.doi: 10.1029/wr019i003p00718
      Boano, F., Harvey, J.W., Marion, A., et al., 2014.Hyporheic Flow and Transport Processes:Mechanisms, Models, and Biogeochemical Implications.Reviews of Geophysics, 52(4):603-679.doi: 10.1002/2012rg000417
      Böhlke, J.K., Antweiler, R.C., Harvey, J.W., et al., 2009.Multi-Scale Measurements and Modeling of Denitrification in Streams with Varying Flow and Nitrate Concentration in the Upper Mississippi River Basin, USA.Biogeochemistry, 93(1-2):117-141.doi: 10.1007/s10533-008-9282-8
      Böhlke, J.K., Harvey, J.W., Voytek, M.A., 2004.Reach-Scale Isotope Tracer Experiment to Quantify Denitrification and Related Processes in a Nitrate-Rich Stream, Midcontinent United States.Limnology and Oceanography, 49(3):821-838.doi: 10.4319/lo.2004.49.3.0821
      Bourg, A.C.M., Bertin, C., 1993.Biogeochemical Processes during the Infiltration of River Water into an Alluvial Aquifer.Environmental Science & Technology, 27(4):661-666.doi: 10.1021/es00041a009
      Bouwer, H., Rice, R.C., 1976.A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells.Water Resources Research, 12(3):423-428.doi: 10.1029/wr012i003p00423
      Briggs, M.A., Lautz, L.K., McKenzie, J.M., et al., 2012.Using High-Resolution Distributed Temperature Sensing to Quantify Spatial and Temporal Variability in Vertical Hyporheic Flux.Water Resources Research, 48(2):W02527.doi: 10.1029/2011wr011227
      Buffington, J.M., Tonina, D., 2009.Hyporheic Exchange in Mountain Rivers Ⅱ:Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange.Geography Compass, 3(3):1038-1062.doi: 10.1111/j.1749-8198.2009.00225.x
      Cardenas, M.B., 2015.Hyporheic Zone Hydrologic Science:A Historical Account of Its Emergence and a Prospectus.Water Resources Research, 51(5):3601-3616.doi: 10.1002/2015wr017028
      Cecil, L.D., Green, J.R., 2000.222Rn, in Environmental Tracers in Subsurface Hydrology.Springer US, New York, 175-194.
      Christensen, S., Rasmussen, K.R., Moller, K., 1998.Prediction of Regional Ground Water Flow to Streams.Ground Water, 36(2):351-360.doi: 10.1111/j.1745-6584.1998.tb01100.x
      Conant, B., 2004.Delineating and Quantifying Ground Water Discharge Zones Using Streambed Temperatures.Ground Water, 42(2):243-257.doi: 10.1111/j.1745-6584.2004.tb02671.x
      Constantz, J.E., 1998.Interaction between Stream Temperature, Streamflow, and Groundwater Exchanges in Alpine Streams.Water Resources Research, 34(7):1609-1615.doi: 10.1029/98wr00998
      Cook, P.G., Lamontagne, S., Berhane, D., et al., 2006.Quantifying Groundwater Discharge to Cockburn River, Southeastern Australia, Using Dissolved Gas Tracers 222Rn and SF6.Water Resources Research, 42(10):W10411.doi: 10.1029/2006WR004921
      Cranswick, R.H., Cook, P.G., Lamontagne, S., 2014.Hyporheic Zone Exchange Fluxes and Residence Times Inferred from Riverbed Temperature and Radon Data.Journal of Hydrology, 519:1870-1881.doi: 10.1016/j.jhydrol.2014.09.059
      Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract).
      Duff, J.H., Triska, F.J., 2000.Nitrogen Biogeochemistry and Surface-Subsurface Exchange in Streams, in Streams and Groundwaters.Academic Press, San Diego, 197-220.
      Elliott, A.H., Brooks, N.H., 1997.Transfer of Nonsorbing Solutes to a Streambed with Bed Forms:Theory.Water Resources Research, 33(1):123-136.doi: 10.1029/96wr02784
      Findlay, S., 1995.Importance of Surface-Subsurface Exchange in Stream Ecosystems:The Hyporheic Zone.Limnology and Oceanography, 40(1):159-164.doi: 10.4319/lo.1995.40.1.0159
      Fuller, C.C., Harvey, J.W., 2000.Reactive Uptake of Trace Metals in the Hyporheic Zone of a Mining-Contaminated Stream, Pinal Creek, Arizona.Environmental Science & Technology, 34(7):1150-1155.doi: 10.1021/es990714d
      Gandy, C.J., Smith, J.W.N., Jarvis, A.P., 2007.Attenuation of Mining-Derived Pollutants in the Hyporheic Zone:A Review.Science of the Total Environment, 373(2-3):435-446.doi: 10.1016/j.scitotenv.2006.11.004
      Gomez-Velez, J.D., Harvey, J.W., 2014.A Hydrogeomorphic River Network Model Predicts Where and Why Hyporheic Exchange is Important in Large Basins.Geophysical Research Letters, 41(18):6403-6412.doi: 10.1002/2014gl061099
      Gomez-Velez, J.D., Harvey, J.W., Cardenas, M.B., et al., 2015.Denitrification in the Mississippi River Network Controlled by Flow through River Bedforms.Nature Geoscience, 8(12):941-945.doi: 10.1038/ngeo2567
      González-Pinzón, R., Ward, A.S., Hatch, C.E., et al., 2015.A Field Comparison of Multiple Techniques to Quantify Groundwater-Surface-Water Interactions.Freshwater Science, 34(1):139-160.doi: 10.1086/679738
      Gordon, R.P., Lautz, L.K., Briggs, M.A., et al., 2012.Automated Calculation of Vertical Pore-Water Flux from Field Temperature Time Series Using the VFLUX Method and Computer Program.Journal of Hydrology, 420-421:142-158.doi: 10.1016/j.jhydrol.2011.11.053
      Gu, C.H., Hornberger, G.M., Mills, A.L., et al., 2007.Nitrate Reduction in Streambed Sediments:Effects of Flow and Biogeochemical Kinetics.Water Resources Research, 43(12):W12413.doi: 10.1029/2007wr006027
      Harvey, J.W., Bencala, K.E., 1993.The Effect of Streambed Topography on Surface-Subsurface Water Exchange in Mountain Catchments.Water Resources Research, 29(1):89-98.doi: 10.1029/92wr01960
      Harvey, J.W., Böhlke, J.K., Voytek, M.A., et al., 2013.Hyporheic Zone Denitrification:Controls on Effective Reaction Depth and Contribution to Whole-Stream Mass Balance.Water Resources Research, 49(10):6298-6316.doi: 10.1002/wrcr.20492
      Harvey, J.W., Drummond, J.D., Martin, R.L., et al., 2012.Hydrogeomorphology of the Hyporheic Zone:Stream Solute and Fine Particle Interactions with a Dynamic Streambed.Journal of Geophysical Research:Biogeosciences, 117(G4):G00N11.doi: 10.1029/2012jg002043
      Harvey, J.W., Fuller, C.C., 1998.Effect of Enhanced Manganese Oxidation in the Hyporheic Zone on Basin-Scale Geochemical Mass Balance.Water Resources Research, 34(4):623-636.doi: 10.1029/97wr03606
      Harvey, J.W., Wagner, B.J., Bencala, K.E., 1996.Evaluating the Reliability of the Stream Tracer Approach to Characterize Stream-Subsurface Water Exchange.Water Resources Research, 32(8):2441-2451.doi: 10.1029/96wr01268
      Harvey, J., Gooseff, M., 2015.River Corridor Science:Hydrologic Exchange and Ecological Consequences from Bedforms to Basins.Water Resources Research, 51(9):6893-6922.doi: 10.1002/2015wr017617
      Harvey, J.W., Wagner, B.J., 2000.Quantifying Hydrologic Interactions between Streams and Their Subsurface Hyporheic Zones, in Streams and Ground Waters.Academic Press, San Diego, 3-44.
      Hatch, C.E., Fisher, A.T., Revenaugh, J.S., et al., 2006.Quantifying Surface Water-Groundwater Interactions Using Time Series Analysis of Streambed Thermal Records:Method Development.Water Resources Research, 42(10):W10410.doi: 10.1029/2005wr004787
      Hendricks, S.P., White, D.S., 2000.Stream and Groundwater Influences on Phosphorus Biogeochemistry, in Streams and Groundwaters.Academic Press, San Diego, 221-235.
      Hester, E.T., Doyle, M.W., 2008.In-Stream Geomorphic Structures as Drivers of Hyporheic Exchange.Water Resources Research, 44(3):W03417.doi: 10.1029/2006wr005810
      Ho, R.T., Gelhar, L.W., 1973.Turbulent Flow with Wavy Permeable Boundaries.Journal of Fluid Mechanics, 58(2):403.doi: 10.1017/s0022112073002661
      Kalbus, E., Reinstorf, F., Schirmer, M., 2006.Measuring Methods for Groundwater-Surface Water Interactions:A Review.Hydrology and Earth System Sciences, 10(6):873-887.doi: 10.5194/hess-10-873-2006
      Keery, J., Binley, A., Crook, N., et al., 2007.Temporal and Spatial Variability of Groundwater-Surface Water Fluxes:Development and Application of an Analytical Method Using Temperature Time Series.Journal of Hydrology, 336(1-2):1-16.doi: 10.1016/j.jhydrol.2006.12.003
      Kilpatrick, F.A., Cobb, E.D., 1985.Measurement of Discharge Using Tracers.U.S.Geological Survey, Techniques of Water-Resources Investigations, Book 3, Chapter A-16.United States Government Printing Office, Washington.
      Kim, H., Hemond, H.F., Krumholz, L.R., et al., 1995.In-Situ Biodegradation of Toluene in a Contaminated Stream.Part 1.Field Studies.Environmental Science & Technology, 29(1):108-116.doi: 10.1021/es00001a014
      Lamontagne, S., Cook, P.G., 2007.Estimation of Hyporheic Water Residence Time In-Situ Using 222Rn Disequilibrium.Limnology and Oceanography:Methods, 5(11):407-416.doi: 10.4319/lom.2007.5.407
      Lee, D.R., 1977.A Device for Measuring Seepage Flux in Lakes and Estuaries 1.Limnology and Oceanography, 22(1):140-147.doi: 10.4319/lo.1977.22.1.0140
      Liu, C.X., Shang, J.Y., Kerisit, S., et al., 2013.Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments.Geochimica et Cosmochimica Acta, 105:326-341.doi: 10.1016/j.gca.2012.12.003
      Liu, C.X., Shang, J.Y., Shan, H.M., et al., 2014.Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemical Reactions:A Case of U(Ⅵ) Desorption.Environmental Science & Technology, 48(3):1745-1752.doi: 10.1021/es404224j
      Liu, Y., Shao, J.L., Chen, C.S., 2015.Hydrogeological Parameter Estimations for Slug Test in Sloping Confined Aquifer.Earth Science, 40(5):925-932 (in Chinese with English abstract).
      Ma, R., Dong, Q.M., Sun, Z.Y., et al., 2013.Using Heat to Trace and Model the Surface Water-Groundwater Interactions:A Review.Geological Science and Technology Information, 32(2):131-137 (in Chinese with English abstract).
      McClain, M.E., Boyer, E.W., Dent, C.L., et al., 2003.Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems.Ecosystems, 6(4):301-312.doi: 10.1007/s10021-003-0161-9
      McKnight, D.M., Runkel, R.L., Tate, C.M., et al., 2004.Inorganic N and P Dynamics of Antarctic Glacial Meltwater Streams as Controlled by Hyporheic Exchange and Benthic Autotrophic Communities.Journal of the North American Benthological Society, 23(2):171-188.doi:10.1899/0887-3593(2004)023<0171:inapdo>2.0.co;2
      Mulholland, P.J., Helton, A.M., Poole, G.C., et al., 2008.Stream Denitrification across Biomes and Its Response to Anthropogenic Nitrate Loading.Nature, 452(7184):202-205.doi: 10.1038/nature06686
      Mulholland, P.J., Marzolf, E.R., Webster, J.R., et al., 1997.Evidence that Hyporheic Zones Increase Heterotrophic Metabolism and Phosphorus Uptake in Forest Streams.Limnology and Oceanography, 42(3):443-451.doi: 10.4319/lo.1997.42.3.0443
      Murdoch, L.C., Kelly, S.E., 2003.Factors Affecting the Performance of Conventional Seepage Meters.Water Resources Research, 39(6):1163.doi: 10.1029/2002wr001347
      Newbold, J.D., Thomas, S.A., Minshall, G.W., et al., 2005.Deposition, Benthic Residence, and Resuspension of Fine Organic Particles in a Mountain Stream.Limnology and Oceanography, 50(5):1571-1580.doi: 10.4319/lo.2005.50.5.1571
      Packman, A.I., Brooks, N.H., 1995.Colloidal Particles Exchange between Stream and Stream Bed in a Laboratory Flume.Marine and Freshwater Research, 46(1):233-236.
      Palumbo-Roe, B., Wragg, J., Banks, V.J., 2012.Lead Mobilisation in the Hyporheic Zone and River Bank Sediments of a Contaminated Stream:Contribution to Diffuse Pollution.Journal of Soils and Sediments, 12(10):1633-1640.doi: 10.1007/s11368-012-0552-7
      Paulsen, R.J., Smith, C.F., O'Rourke, D., et al., 2001.Development and Evaluation of an Ultrasonic Ground Water Seepage Meter.Ground Water, 39(6):904-911.doi: 10.1111/j.1745-6584.2001.tb02478.x
      Ren, J.H., Packman, A.I., 2004.Stream-Subsurface Exchange of Zinc in the Presence of Silica and Kaolinite Colloids.Environmental Science & Technology, 38(24):6571-6581.doi: 10.1021/es035090x
      Ren, J.H., Packman, A.I., 2005.Coupled Stream-Subsurface Exchange of Colloidal Hematite and Dissolved Zinc, Copper, and Phosphate.Environmental Science & Technology, 39(17):6387-6394.doi: 10.1021/es050168q
      Risgaard-Petersen, N., Nielsen, L.P., Rysgaard, S., et al., 2003.Application of the Isotope Pairing Technique in Sediments Where Anammox and Denitrification Coexist.Limnology and Oceanography:Methods, 1(1):63-73.doi: 10.4319/lom.2003.1.63
      Rivett, M.O., Ellis, P.A., Greswell, R.B., et al., 2008.Cost-Effective Mini Drive-Point Piezometers and Multilevel Samplers for Monitoring the Hyporheic Zone.Quarterly Journal of Engineering Geology and Hydrogeology, 41(1):49-60.doi: 10.1144/1470-9236/07-012
      Rosenberry, D.O., Morin, R.H., 2004.Use of an Electromagnetic Seepage Meter to Investigate Temporal Variability in Lake Seepage.Ground Water, 42(1):68-77.doi: 10.1111/j.1745-6584.2004.tb02451.x
      Rosenberry, D.O., Sheibley, R.W., Cox, S.E., et al., 2013.Temporal Variability of Exchange between Groundwater and Surface Water Based on High-Frequency Direct Measurements of Seepage at the Sediment-Water Interface.Water Resources Research, 49(5):2975-2986.doi: 10.1002/wrcr.20198
      Ruff, J.F., Gelhar, L.W., 1972.Turbulent Shear Flow in Porous Boundary.Journal of Engineering Mechanics, 98(EM4):975-991.
      Sawyer, A.H., Cardenas, M.B., Buttles, J., 2011.Hyporheic Exchange Due to Channel-Spanning Logs.Water Resources Research, 47(8):W08502.doi: 10.1029/2011wr010484
      Shepherd, R.G., 1989.Correlations of Permeability and Grain Size.Ground Water, 27(5):633-638.doi: 10.1111/j.1745-6584.1989.tb00476.x
      Simon, A., Bennett, S.J., Castro, J.M., 2013.Stream Restoration in Dynamic Fluvial Systems:Scientific Approaches, Analyses, and Tools.Geomorphology, 93(5):206-207.doi: 10.1029/gm194
      Sophocleous, M., 2002.Interactions between Groundwater and Surface Water:The State of the Science.Hydrogeology Journal, 10(1):52-67.doi: 10.1007/s10040-001-0170-8
      Stallman, R.W., 1965.Steady One-Dimensional Fluid Flow in a Semi-Infinite Porous Medium with Sinusoidal Surface Temperature.Journal of Geophysical Research, 70(12):2821-2827.doi: 10.1029/jz070i012p02821
      Stanford, J.A., Ward, J.V., 1993.An Ecosystem Perspective of Alluvial Rivers:Connectivity and the Hyporheic Corridor.Journal of the North American Benthological Society, 12(1):48-60.doi: 10.2307/1467685
      Stonedahl, S.H., Harvey, J.W., Wörman, A., et al., 2010.A Multiscale Model for Integrating Hyporheic Exchange from Ripples to Meanders.Water Resources Research, 46(12):W12539.doi: 10.1029/2009wr008865
      Storey, R.G., Howard, K.W.F., Williams, D.D., 2003.Factors Controlling Riffle-Scale Hyporheic Exchange Flows and Their Seasonal Changes in a Gaining Stream:A Three-Dimensional Groundwater Flow Model.Water Resources Research, 39(2):1034.doi: 10.1029/2002wr001367
      Stream Solute Workshop, 1990.Concepts and Methods for Assessing Solute Dynamics in Stream Ecosystems.Journal of the North American Benthological Society, 9(2):95-119.doi: 10.2307/1467445
      Swanson, T.E., Cardenas, M.B., 2011.Ex-Stream:A MATLAB Program for Calculating Fluid Flux through Sediment-Water Interfaces Based on Steady and Transient Temperature Profiles.Computers & Geosciences, 37(10):1664-1669.doi: 10.1016/j.cageo.2010.12.001
      Taniguchi, M., Fukuo, Y., 1993.Continuous Measurements of Ground-Water Seepage Using an Automatic Seepage Meter.Ground Water, 31(4):675-679.doi: 10.1111/j.1745-6584.1993.tb00601.x
      Thibodeaux, L.J., Boyle, J.D., 1987.Bedform-Generated Convective Transport in Bottom Sediment.Nature, 325(6102):341-343.doi: 10.1038/325341a0
      Todd, D.K., Mays, L.W., 2005.Groundwater Hydrology.Wiley, Hoboken.
      Tonina, D., 2012.Surface Water and Streamed Sediment Interaction:The Hyporheic Exchange, in Fluid Mechanics of Environmental Interfaces.CRC Press, Taylor and Francis Group, London, 255-294.
      Tóth, J., 1963.A Theoretical Analysis of Groundwater Flow in Small Drainage Basins.Journal of Geophysical Research, 68(16):4795-4812.doi: 10.1029/jz068i016p04795
      Triska, F.J., Duff, J.H., Avanzino, R.J., 1993.The Role of Water Exchange between a Stream Channel and Its Hyporheic Zone in Nitrogen Cycling at the Terrestrial-Aquatic Interface.Hydrobiologia, 251(1-3):167-184.doi: 10.1007/bf00007177
      Triska, F.J., Kennedy, V.C., Avanzino, R.J., et al., 1989.Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California:Hyporheic Processes.Ecology, 70(6):1893-1905.doi: 10.2307/1938120
      Vaux, W.G., 1968.Intergravel Flow and Interchange of Water in a Streamed.Fishery Bulletin, 66(3):479-489.
      Winter, T.C., Harvey, J.W., Franke, O.L., et al., 1998.Groundwater and Surface Water:A Single Resource.USGS Circular, Reston, 1139.
      Wondzell, S.M., Swanson, F.J., 1996a.Seasonal and Storm Dynamics of the Hyporheic Zone of a 4th-Order Mountain Stream.Ⅰ:Hydrologic Processes.Journal of the North American Benthological Society, 15(1):3-19.doi: 10.2307/1467429
      Wondzell, S.M., Swanson, F.J., 1996b.Seasonal and Storm Dynamics of the Hyporheic Zone of a 4th-Order Mountain Stream.Ⅱ:Nitrogen Cycling.Journal of the North American Benthological Society, 15(1):20-34.doi: 10.2307/1467430
      Wroblicky, G.J., Campana, M.E., Valett, H.M., et al., 1998.Seasonal Variation in Surface-Subsurface Water Exchange and Lateral Hyporheic Area of Two Stream-Aquifer Systems.Water Resources Research, 34(3):317-328.doi: 10.1029/97wr03285
      Zarnetske, J.P., Haggerty, R., Wondzell, S.M., et al., 2012.Coupled Transport and Reaction Kinetics Control the Nitrate Source-Sink Function of Hyporheic Zones.Water Resources Research, 48(11):W11508.doi: 10.1029/2012wr011894
      Zhang, L.J., Xia, B., Gui, Z.S., et al., 2007.Contaminative Conditions Evaluation of Sixteen Main Rivers Flowing into Sea around Bohai Sea, in Summer of 2005.Environmental Science, 28(11):2409-2415 (in Chinese with English abstract).
      邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. doi: 10.1029/2012wr011894
      刘颖,邵景力,陈家洵,2015. 基于微水试验倾斜承压含水层水文地质参数的推估.地球科学,40(5):925-932 http://www.earth-science.net/WebPage/Article.aspx?id=3084
      马瑞, 董启明, 孙自永, 等, 2013.地表水与地下水相互作用的温度示踪与模拟研究进展.地质科技情报, 32(2):131-137. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201302018.htm
      张龙军, 夏斌, 桂祖胜, 等, 2007.2005年夏季环渤海16条主要入海河流的污染状况.环境科学, 28(11):2409-2415. doi: 10.3321/j.issn:0250-3301.2007.11.001
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  8122
    • HTML全文浏览量:  2379
    • PDF下载量:  134
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-01-03
    • 刊出日期:  2017-05-15

    目录

      /

      返回文章
      返回