• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江汉平原高砷地下水中DOM三维荧光特征及其指示意义

    鲁宗杰 邓娅敏 杜尧 沈帅 马腾

    鲁宗杰, 邓娅敏, 杜尧, 沈帅, 马腾, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065
    引用本文: 鲁宗杰, 邓娅敏, 杜尧, 沈帅, 马腾, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065
    Lu Zongjie, Deng Yamin, Du Yao, Shen Shuai, Ma Teng, 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782. doi: 10.3799/dqkx.2017.065
    Citation: Lu Zongjie, Deng Yamin, Du Yao, Shen Shuai, Ma Teng, 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782. doi: 10.3799/dqkx.2017.065

    江汉平原高砷地下水中DOM三维荧光特征及其指示意义

    doi: 10.3799/dqkx.2017.065
    基金项目: 

    中央高校基本科研业务费专项基金“摇篮计划” CUGL140412

    国家自然科学基金面上项目 41572226

    中国地质调查局项目 12120114069301

    中国地质调查局项目 121201001000150121

    详细信息
      作者简介:

      鲁宗杰(1991-),男,硕士研究生,主要从事地下水污染与防治、水文地球化学等方面的科研工作.ORCID:0000-0002-1562-724X. E-mail:nicklulu@126.com

      通讯作者:

      邓娅敏,ORCID:0000-0002-4815-7176.E-mail:yamin.deng@cug.edu.cn

    • 中图分类号: P592

    EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain

    • 摘要: 水体中溶解性有机质(dissolved organic matter, DOM)是含水层中砷释放的主控因素之一.江汉平原河湖众多、沟渠广布,地表水体与浅层地下水的交互作用使得DOM的组分特征及其强度有显著差异.为查明江汉平原地下水中溶解性有机质在砷迁移转化过程中的作用,对江汉平原地表水和浅层地下水进行三维荧光光谱分析,使用平行因子分析法提取水体中有机质的分子组成、功能特点和荧光特征,并分析各组分相对含量与地下水中砷与铁的关联.江汉平原水体中DOM包括3种主要组分,组分C1、C2为类腐殖质,C2是生物降解过程中产生的小分子,C3为类蛋白物质.地下水DOM以类腐殖质组分C1、C2为主,地表水以类蛋白类物质C3和小分子腐殖质C2为主.高砷地下水中DOM以陆源为主,主要通过两种途径促进As的迁移转化:(1) DOM的腐殖质组分充当微生物群落的电子运输工具,促进微生物作用下的有机质氧化和铁氧化物的还原,并伴随As的释放及大量溶解性有机碳(dissolved organic carbon, DOC)和HCO3-的产生;(2) As以铁等金属阳离子为桥接物与腐殖质结合,通过形成As-Fe-DOM络合物,导致地下水中砷的迁移.

       

    • 图  1  研究区及采样点分布

      Fig.  1.  Location of the study area and sampling sites for surface water and groundwater

      图  2  平行因子鉴别出的3个荧光组分及其荧光特征

      Fig.  2.  Spectral characteristics of the 3 components model identified by EEM-PARAFAC

      图  3  研究区地表水与浅层地下水中DOM各组分相对含量

      Fig.  3.  Distribution of DOM in groundwater and surface water of Jianghan plain

      图  4  地下水中As含量与荧光指数的关系

      Fig.  4.  Relationship between As concentrations and f450/500 value of groundwater in Jianghan plain

      图  5  江汉平原浅层地下水中DOC、HCO3-、Fe与As浓度的关系

      Fig.  5.  Relationships between As and DOC, HCO3-, Fe concentrations of groundwater in Jianghan plain

      图  6  菱铁矿饱和指数(SI)与Fe浓度、Fe/As浓度比值关系

      Fig.  6.  The saturation index (SI=lg IAP/K) for siderite (FeCO3) versus the Fe concentration and the Fe/As (mM/μM) here M is mol/L, in the groundwater of the Jianghan plain

      图  7  不同As浓度的地下水中天然有机物组分的Fmax与As之间的关系

      Fig.  7.  Relationship between As concentration and Fmax of groundwater in Jianghan plain

      表  1  江汉平原主要河流沿程水化学指标

      Table  1.   Statistics for water chemistry of surface water in Jianghan plain

      所属地表水系pHDO
      (mg/L)
      Ca2+
      (mg/L)
      K+
      (mg/L)
      Mg2+
      (mg/L)
      Na+
      (mg/L)
      Cl-
      (mg/L)

      SO42-
      (mg/L)
      DOC
      (mg/L)
      NH4-N
      (mg/L)
      TDS
      (mg/L)
      硬度CaCO3
      (mg/L)
      水质
      类别

      沙洋段7.797.9350.82.449.099.389.5236.42.400.13185147
      潜江段6.878.7550.02.439.027.507.8134.82.660.15180146


      泽口段6.792.1198.211.318.033.345.545.533.93.20439294
      毛咀段6.691.7479.76.8714.327.632.932.931.67.05345232
      三伏潭段6.651.8680.17.4013.617.734.534.527.34.28326232
      袁家市段6.562.9983.67.3515.024.434.634.66.833.75343244
      彭场镇段6.664.7372.58.0812.615.537.437.423.93.23282210
      沙湖镇段6.713.0067.27.4911.714.533.533.58.093.18258195


      潜江段6.728.6649.22.408.867.798.3334.85.500.11181144
      监利段8.068.2449.62.999.459.4213.636.92.940.36185144
      黄家口段7.595.1448.23.879.7410.218.936.53.790.48192141
      峰口镇段7.715.0846.43.538.949.0616.236.03.530.59183132

      江陵段7.546.3752.42.639.039.8310.438.62.180.86193150
      监利段7.686.3754.02.689.429.3110.138.52.380.54197155
      下载: 导出CSV

      表  2  研究区地下水水化学指标统计

      Table  2.   Statistics for water chemistry of groundwater in Jianghan plain

      水化指标单位浅层潜水浅层承压水
      最大值最小值平均值最大值最小值平均值
      pH7.506.416.877.596.266.80
      ECμS/cm2 0893339941 315399869
      EhmV170207758-207-108
      氨氮mg/L1.550.020.2417.70.023.64
      Femg/L0.830.020.3220.80.017.23
      Mnmg/L3.41<0.0010.778.20<0.0010.91
      Ca2+mg/L21758.712317059.8116
      Mg2+mg/L41.16.4023.634.112.224.4
      Na+mg/L1286.9335.636.36.5418.5
      K+mg/L47.60.6210.120.00.512.29
      Cl-mg/L1400.7429.433.70.374.68
      NO3-mg/L910.3235.19.970.040.73
      SO42-mg/L2560.6565.327.90.727.73
      HCO3-mg/L730189442904267619
      DOCmg/L15.60.703.0814.410.984.01
      Asμg/L36.20.338.672 5500.54136
      TDSmg/L1 193227521692218477
      硬度mg/L713174407556204393
      下载: 导出CSV

      表  3  水体中3个荧光组分特征及其与确定组分的对比

      Table  3.   Descriptions of the three-component PARAFAC model of Ex/Em wavelengths data and their comparison with previous identified components

      组分Ex./Em.Max(nm)荧光类型文献报道
      C1245(340)/460~480类腐殖质;分子量大;易与金属离子络合237~260(300~370)/400~500(Coble, 1996; Hudson et al., 2007)
      240/456(Holbrook et al., 2006)
      225(330)/460(Carstea et al., 2014)
      <240~275(339~420)/434~520(Ishii and Boyer, 2012)
      C2250(325)/420陆源类腐殖质;生物降解过程中产生的最小分子237~260(300~370)/400~500 (Coble, 1996; Hudson et al., 2007)
      250(325)/416 (Stedmon et al., 2003)
      325/428 (Stedmon and Markager, 2005a)
      315/418 (Murphy and Stedmon, 2008)
      C3240~250/340类蛋白物质(类色氨酸);对微环境的变化敏感225~237/340~381 (Coble, 1996; Hudson et al., 2007)
      275/340 (Coble, 1996; Hudson et al., 2007)
      280/328 (Stedmon and Markager, 2005b)
      240/338 (Murphy et al., 2008)
      注:Ex./Em.Max(nm)表示荧光强度最大处的激发/发射波长,基于平行因子分析;括号中数值为第2个波峰所对应的波长.
      下载: 导出CSV
    • Ahmed, K.M., Bhattacharya, P., Hasan, M.A., et al., 2004.Arsenic Enrichment in Groundwater of the Alluvial Aquifers in Bangladesh:An Overview.Applied Geochemistry, 19(2):181-200. doi: 10.1016/j.apgeochem.2003.09.006
      Alberts, J.J., Takács, M., 2004.Total Luminescence Spectra of IHSS Standard and Reference Fulvic Acids, Humic Acids and Natural Organic Matter:Comparison of Aquatic and Terrestrial Source Terms.Organic Geochemistry, 35(3):243-256.doi: 10.1016/j.orggeochem.2003.11.007
      Andersen, C.M., Bro, R., 2003.Practical Aspects of PARAFAC Modeling of Fluorescence Excitation-Emission Data.Journal of Chemometrics, 17(4):200-215.doi: 10.1002/cem.790
      Appelo, C.A.J., van der Weiden, M.J.J., Tournassat, C., et al., 2002.Surface Complexation of Ferrous Iron and Carbonate on Ferrihydrite and the Mobilization of Arsenic.Environmental Science & Technology, 36(14):3096-3103.doi: 10.1021/es010130n
      Bhattacharya, P., Welch, A.H., Stollenwerk, K.G., et al., 2007.Arsenic in the Environment:Biology and Chemistry.Science of the Total Environment, 379(2-3):109-120. doi: 10.1016/j.scitotenv.2007.02.037
      Bro, R., Kiers, H.A.L., 2003.A New Efficient Method for Determining the Number of Components in PARAFAC Models.Journal of Chemometrics, 17(5):274-286.doi: 10.1002/cem.801
      Buschmann, J., Kappeler, A., Lindauer, U., et al., 2006.Arsenite and Arsenate Binding to Dissolved Humic Acids: Influence of pH, Type of Humic Acid, and Aluminum.Environmental Science & Technology, 40(19):6015-6020.doi: 10.1021/es061057
      Cammack, W.K.L., Kalff, J., Prairie, Y.T., et al., 2004.Fluorescent Dissolved Organic Matter in Lakes:Relationships with Heterotrophic Metabolism.Limnology and Oceanography, 49(6):2034-2045.doi: 10.4319/lo.2004.49.6.2034
      Carstea, E.M., Baker, A., Bieroza, M., et al., 2014.Characterisation of Dissolved Organic Matter Fluorescence Properties by PARAFAC Analysis and Thermal Quenching.Water Research, 61:152-161.doi: 10.1016/j.watres.2014.05.013
      Cheng, D., Liao, P., Yuan, S.H., 2016.Effect of FeS Colloids on Desorption of As(V) Adsorbed on Ferric Iron.Earth Science, 41(2):325-330(in Chinese with English abstract).
      Coble, P.G., 1996.Characterization of Marine and Terrestrial DOM in Seawater Using Excitation-Emission Matrix Spectroscopy.Marine Chemistry, 51(4):325-346.doi: 10.1016/0304-4203(95)00062-3
      Cory, R.M., McKnight, D.M., 2005.Fluorescence Spectroscopy Reveals Ubiquitous Presence of Oxidized and Reduced Quinones in Dissolved Organic Matter.Environmental Science & Technology, 39(21):8142-8149.doi: 10.1021/es0506962
      Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201511010.htm
      Elliott, S., Lead, J.R., Baker, A., 2006.Thermal Quenching of Fluorescence of Freshwater, Planktonic Bacteria.Analytica Chimica Acta, 564(2):219-225.doi: 10.1016/j.aca.2006.01.087
      Gan, Y.Q., Wang, Y.X., Duan, Y.H., et al., 2014.Dynamic Changes of Groundwater Arsenic Concentration in the Monitoring Field Site, Jianghan Plain.Earth Science Frontiers, 21(4):37-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201404006.htm
      Gao, C.R., Li, C.X., Zhou, X.H., et al., 2008.Occurrence and Hydrochemical Characteristics of As-Rich Groundwater in the Linhe District of the Hetao Plain.Hydrogeology & Engineering Geology, 35(6):22-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200806010.htm
      Guo, H.M., Wang, Y.X., Li, Y.M., 2003.Analysis of Factors Resulting in Anomalous Arsenic Concentration in Groundwaters of Shanyin, Shanxi Province.Environmental Science, 24(4):60-67 (in Chinese with English abstract). https://www.ncbi.nlm.nih.gov/pubmed/14551958
      Holbrook, R.D., Yen, J.H., Grizzard, T.J., 2006.Characterizing Natural Organic Material from the Occoquan Watershed (Northern Virginia, US) Using Fluorescence Spectroscopy and PARAFAC.Science of the Total Environment, 361(1-3):249-266.doi: 10.1016/j.scitotenv.2005.11.020
      Huang, S.B., Emilie, E., Wang, Y.X., et al., 2012a.Mineralogical Characteristics of Sediments and Arsenic Mobilization in the Aquifer, Jianghan Plain.Journal of Mineralogy and Petrology, 32(4):7-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS201204002.htm
      Huang, S.B., Wang, Y.X., Chao, L., et al., 2012b.Characterization of DOM from Soil in Unsaturated Zone and Its Implications on Arsenic Mobilization into Groundwater.Earth Science, 37(3):605-611(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201203026.htm
      Huang, S.B., Wang, Y.X., Ma, T., et al., 2015.Linking Groundwater Dissolved Organic Matter to Sedimentary Organic Matter from a Fluvio-Lacustrine Aquifer at Jianghan Plain, China by EEM-PARAFAC and Hydrochemical Analyses.Science of the Total Environment, 529:131-139.doi: 10.13039/501100001809
      Hudson, N., Baker, A., Reynolds, D., 2007.Fluorescence Analysis of Dissolved Organic Matter in Natural, Waste and Polluted Waters—A Review.River Research and Applications, 23(6):631-649.doi: 10.1002/rra.1005
      Ishii, S.K.L., Boyer, T.H., 2012.Behavior of Reoccurring PARAFAC Components in Fluorescent Dissolved Organic Matter in Natural and Engineered Systems:A Critical Review.Environmental Science & Technology, 46(4):2006-2017.doi: 10.1021/es2043504
      Islam, F.S., Gault, A.G., Boothman, C., et al., 2004.Role of Metal-Reducing Bacteria in Arsenic Release from Bengal Delta Sediments.Nature, 430(6995):68-71.doi: 10.1038/nature02638
      Jessen, S., Postma, D., Larsen, F., et al., 2012.Surface Complexation Modeling of Groundwater Arsenic Mobility:Results of a Forced Gradient Experiment in a Red River Flood Plain Aquifer, Vietnam.Geochimica et Cosmochimica Acta, 98:186-201.doi: 10.1016/j.gca.2012.07.014
      Li, H.M., Deng, Y.M., Luo, L.W., et al., 2015.Geochemistry of High Arsenic Shallow Aquifers Sediment of the Jianghan Plain.Geological Science and Technology Information, (3):178-184(in Chinese with English abstract).
      Matsunaga, T., Karametaxas, G., von Gunten, H.R., et al., 1993.Redox Chemistry of Iron and Manganese Minerals in River-Recharged Aquifers:A Model Interpretation of a Column Experiment.Geochimica et Cosmochimica Acta, 57(8):1691-1704.doi: 10.1016/0016-7037(93)90107-8
      McArthur, J.M., Ravenscroft, P., Safiulla, S., et al., 2001.Arsenic in Groundwater:Testing Pollution Mechanisms for Sedimentary Aquifers in Bangladesh.Water Resources Research, 37(1):109-117.doi: 10.1029/2000wr900270
      McKnight, D.M., Boyer, E.W., Westerhoff, P.K., et al., 2001.Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity.Limnology and Oceanography, 46(1):38-48.doi: 10.4319/lo.2001.46.1.0038
      Murphy, K.R., Stedmon, C.A., Waite, T.D., et al., 2008.Distinguishing between Terrestrial and Autochthonous Organic Matter Sources in Marine Environments Using Fluorescence Spectroscopy.Marine Chemistry, 108(1-2):40-58.doi: 10.1016/j.marchem.2007.10.003
      Ohno, T., He, Z.Q., Sleighter, R.L., et al., 2010.Ultrahigh Resolution Mass Spectrometry and Indicator Species Analysis to Identify Marker Components of Soil-and Plant Biomass-Derived Organic Matter Fractions.Environmental Science & Technology, 44(22):8594-8600.doi: 10.1021/es101089t
      Pi, K.F., Wang, Y.X., Xie, X.J., et al., 2015.Geochemical Effects of Dissolved Organic Matter Biodegradation on Arsenic Transport in Groundwater Systems.Journal of Geochemical Exploration, 149:8-21.doi: 10.13039/501100001809
      Postma, D., 1982.Pyrite and Siderite Formation in Brackish and Freshwater Swamp Sediments.American Journal of Science, 282(8):1151-1183.doi: 10.2475/ajs.282.8.1151
      Postma, D., Larsen, F., Hue, N.T.M., et al., 2007.Arsenic in Groundwater of the Red River Floodplain, Vietnam:Controlling Geochemical Processes and Reactive Transport Modeling.Geochimica et Cosmochimica Acta, 71(21):5054-5071.doi: 10.1016/j.gca.2007.08.020
      Redman, A.D., Macalady, D.L., Ahmann, D., 2002.Natural Organic Matter Affects Arsenic Speciation and Sorption onto Hematite.Environmental Science & Technology, 36(13):2889-2896.doi: 10.1021/es0112801
      Riu, J., Bro, R., 2003.Jack-Knife Technique for Outlier Detection and Estimation of Standard Errors in PARAFAC Models.Chemometrics and Intelligent Laboratory Systems, 65(1):35-49.doi: 10.1016/s0169-7439(02)00090-4
      Rodriguez-Lado, L., Sun, G., Berg, M., et al., 2013.Groundwater Arsenic Contamination throughout China.Science, 341(6148):866-868.doi: 10.1126/science.1237484
      Rowland, H.A.L., Polya, D.A., Lloyd, J.R., et al., 2006.Characterisation of Organic Matter in a Shallow, Reducing, Arsenic-Rich Aquifer, West Bengal.Organic Geochemistry, 37(9):1101-1114.doi: 10.1016/j.orggeochem.2006.04.011
      Saada, A., Breeze, D., Crouzet, C., et al., 2003.Adsorption of Arsenic (V) on Kaolinite and on Kaolinite-Humic Acid Complexes.Chemosphere, 51(8):757-763.doi: 10.1016/s0045-6535(03)00219-4
      Sharma, P., Rolle, M., Kocar, B., et al., 2011.Influence of Natural Organic Matter on as Transport and Retention.Environmental Science & Technology, 45(2):546-553.doi: 10.1021/es1026008
      Smedley, P.L., Kinniburgh, D.G., 2002.A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters.Applied Geochemistry, 17(5):517-568.doi: 10.1016/s0883-2927(02)00018-5
      Stedmon, C.A., Markager, S., 2005a.Resolving the Variability in Dissolved Organic Matter Fluorescence in a Temperate Estuary and Its Catchment Using PARAFAC Analysis.Limnology and Oceanography, 50(2):686-697.doi: 10.4319/lo.2005.50.2.0686
      Stedmon, C.A., Markager, S., 2005b.Tracing the Production and Degradation of Autochthonous Fractions of Dissolved Organic Matter by Fluorescence Analysis.Limnology and Oceanography, 50(5):1415-1426.doi: 10.4319/lo.2005.50.5.1415
      Stedmon, C.A., Markager, S., Bro, R., 2003.Tracing Dissolved Organic Matter in Aquatic Environments Using a New Approach to Fluorescence Spectroscopy.Marine Chemistry, 82(3-4):239-254.doi: 10.1016/s0304-4203(03)00072-0
      Thorn, K.A., Arterburn, J.B., Mikita, M.A., 1992.Nitrogen-15 and Carbon-13 NMR Investigation of Hydroxylamine-Derivatized Humic Substances.Environmental Science & Technology, 26(1):107-116.doi: 10.1021/es00025a011
      Wang, S.L., Mulligan, C.N., 2006.Effect of Natural Organic Matter on Arsenic Release from Soils and Sediments into Groundwater.Environmental Geochemistry and Health, 28(3):197-214.doi: 10.1007/s10653-005-9032-y
      Xie, X.J., Wang, Y.X., Su, C.L., 2011.Hydrochemical and Sediment Biomarker Evidence of the Impact of Organic Matter Biodegradation on Arsenic Mobilization in Shallow Aquifers of Datong Basin, China.Water, Air, and Soil Pollution, 223(2):483-498.doi: 10.1007/s11270-011-0875-9
      Xie, Z.M., Luo, Y., Wang, Y.X., et al., 2013.Influence of Indigenous Bacteria on Arsenic Migration in Shallow Aquifer Sediments of Jianghan Plain.Asian Journal of Ecotoxicology, 8(2):201-206 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STDL201302011.htm
      Zhao, L.S., Wu, S., Zhou, J.H., et al., 2007.Eco-Geochemical Investigation on the Endemic As and F Poisoning in Datong Basin.Earth Science Frontiers, 14(2):225-235 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200702018.htm
      Zhao, Y., 2013.Spectroscopic Study of Dissolved Natural Organic Matter(Dissertation).Hebei Normal University, Shijiazhuang (in Chinese with English abstract).
      成东, 廖鹏, 袁松虎, 2016.FeS胶体对三价铁吸附态As(V)的解吸作用.地球科学, 41(2):325-330. http://www.earth-science.net/WebPage/Article.aspx?id=3249
      邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194
      甘义群, 王焰新, 段艳华, 等, 2014.江汉平原高砷地下水监测场砷的动态变化特征分析.地学前缘, 21(4):37-49. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404006.htm
      高存荣, 李朝星, 周晓虹, 等, 2008.河套平原临河区高砷地下水分布及水化学特征.水文地质工程地质, 35(6):22-28. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200806010.htm
      郭华明, 王焰新, 李永敏, 2003.山阴水砷中毒区地下水砷的富集因素分析.环境科学, 24(4):60-67. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200304010.htm
      黄爽兵, Emilie, E., 王焰新, 2012a.高砷含水层沉积物矿物学特征及砷的活化.矿物岩石, 32(4):7-11. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201204002.htm
      黄爽兵, 王焰新, 曹菱, 等, 2012b.包气带土壤DOM三维荧光表征及对砷污染的指示意义.地球科学, 37(3):605-611. http://www.earth-science.net/WebPage/Article.aspx?id=2266
      李红梅, 邓娅敏, 罗莉威, 等, 2015.江汉平原高砷含水层沉积物地球化学特征.地质科技情报, (3):178-184. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503025.htm
      谢作明, 罗艳, 王焰新, 等, 2013.土著细菌对江汉平原浅层含水层沉积物中砷迁移的影响.生态毒理学报, 8(2):201-206. doi: 10.7524/AJE.1673-5897.20130311002
      赵伦山, 武胜, 周继华, 等, 2007.大同盆地砷、氟中毒地方病生态地球化学研究.地学前缘, 14(2):225-235. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200702018.htm
      赵芸, 2013. 溶解性天然有机质的光谱研究(硕士学位论文). 石家庄: 河北师范大学.
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  5794
    • HTML全文浏览量:  2302
    • PDF下载量:  76
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-11-30
    • 刊出日期:  2017-05-15

    目录

      /

      返回文章
      返回