U-Pb Dating and Trance Elements Composition of Tadong Group from Jilin Province and Their Geological Implications
-
摘要: 吉林省塔东群以含大型磁铁矿床而著称,塔东铁矿是吉黑成矿省内最大的火山喷流沉积-变质改造型铁矿.由于塔东群地质特征复杂,多种地质作用复合叠加,使其形成时代归属一直存在争议.通过LA-ICP-MS锆石定年,确定了吉林省塔东群黑云斜长片麻岩和磁铁透辉斜长变粒岩中锆石年代.黑云斜长片麻岩中锆石呈长柱状,Th/U值为0.17~0.65,206Pb/238U加权平均年龄为517.6±2.7 Ma,代表了其原岩火山岩形成的年龄.磁铁透辉斜长变粒岩中共有两组锆石年龄,其中一组短柱状,Th/U值介于0.78~1.00,加权平均年龄为249.8±4.0 Ma,代表后期热事件年龄;另一组锆石半自形短柱状晶形,异常高的U、Th, Th最高含量可达17 422 μg/g,206Pb/238U加权平均年龄为518.3±3.8 Ma,表示热液活动年龄,显示该区518.3 Ma左右经历了一次热液作用,可能与该区的岩浆作用以及塔东铁矿的成矿有关.据此,塔东群内塔东铁矿可能存在一期早寒武世 (±520 Ma) 的成矿作用.Abstract: Tadong Group of Jilin Province is known for large-scale magnetite ore deposit, and Tadong iron deposit is the largest submarine volcano plume-metamorphic-reformation iron deposit in the Jilin-Heilongjiang metallogenic province. Complicated of geological characteristics and geological processes made the ownership of Tadong Group long been controversial. In this paper, the U-Pb zircon ages of the biotite plagioclase gneiss and magnetite diopside plagioclase leptynite are obtained by LA-ICP-MS. Zircons that obtained from biotite plagioclase gneiss are prismatic, and Th/U range between 0.17 and 0.65. U-Pb dating of these zircons record 206Pb/238U weighted mean age of 517.6±2.7 Ma, indicating the formation age of the vocanic. In the magnetite diopside plagioclase leptynite, there are two kinds of zircons with two age groups, respectively. The first kind of zircons are short columns, and Th/U range between 0.78 and 1.00. U-Pb dating of these zircons record 206Pb/238U weighted mean age of 249.8±4.0 Ma, indicating the age of thermal disturbance. Another kind of zircons are subhedral short prismatic, and have extremely high U, Th contents, the highest Th contents is 17 422 μg/g, respectively. U-Pb dating of these zircons record 206Pb/238U weighted mean age of 518.3±3.8 Ma, attributing to the age of hydrothermal event. It is indicated that there is a hydrothermal process at 518.3 Ma or so, which might be related to magmatism. Iron mineralization of Tadong iron deposit of Jilin Province is most likely related with this hydrothermal event. Therefore, one of mineralizations happened in the Early Cambrian Period (±520 Ma) in Tadong iron deposit.
-
Key words:
- Tadong Group /
- magmatic zircons /
- hydrothermal zircons /
- U-Pb dating /
- Tadong iron deposit /
- geochemistry
-
表 1 塔东群沿革
Table 1. The evolution of Tadong group
地调单位 时间 地点 地层 沈阳局大黑山队 1957 敦化 Ar 五台系 吉林区调队三分队 1960 敦化 太古界 延边地质综合队 1974 塔东 志留系-泥盆系 黑龙江局一队 1977 镜泊湖 二合营群 (S) 红光组 吉林区调队一分队 1978 塔东 S-D 青龙村群 吉林局六所一分队 1988 塔东 二合营群 (S) 红光组 吉林省区调六所 1988 塔东 O-∈ 黄莺屯组 西保安组 李东津等 1997 塔东 塔东 (岩) 群 朱敦店组 拉拉沟组 表 2 吉林塔东群LA-ICP-MS锆石U-Pb同位素测试结果
Table 2. Zircon U-Pb isotopic date obtained by LA-ICP-MS for Tadong Group, Jilin Province
样号 232Th (10-6) 238U (10-6) Th/U Pb (10-6) 同位素比值 年龄 (Ma) 207Pb/206Pb ±σ% 207Pb/235U ±σ% 206Pb/238U ±σ% 207Pb/206Pb 1σ 206Pb/238U 1σ TD11 TD1101 386 2 211 0.17 286 0.057 5 0.19 0.654 4 2.05 0.082 5 0.09 512 75 513 6 TD1103 1 851 4 581 0.40 941 0.057 1 0.13 0.660 6 1.57 0.083 0 0.06 496 39 514 4 TD1105 327 1 806 0.18 229 0.056 1 0.19 0.659 5 2.17 0.084 5 0.10 456 53 523 6 TD1106 691 3 630 0.26 401 0.056 3 0.18 0.654 5 2.04 0.083 2 0.08 463 51 515 5 TD1108 1 063 2 146 0.50 515 0.052 8 0.15 0.619 6 1.76 0.084 2 0.10 320 43 521 6 TD1109 1 004 3 499 0.29 598 0.055 8 0.15 0.653 7 1.75 0.083 9 0.10 445 39 519 6 TD1110 378 1 828 0.21 270 0.057 6 0.19 0.676 3 2.30 0.084 0 0.13 516 48 520 8 TD1111 2 686 4 793 0.56 1 211 0.055 2 0.16 0.641 5 1.78 0.083 3 0.09 419 43 516 5 TD1112 464 1 851 0.25 282 0.056 0 0.19 0.646 6 2.21 0.083 0 0.10 450 55 514 6 TD1113 614 2 860 0.21 397 0.056 6 0.16 0.664 8 1.79 0.084 4 0.09 477 40 522 5 TD1114 743 2 782 0.27 449 0.056 6 0.16 0.655 2 1.89 0.083 3 0.10 475 42 516 6 TD1115 2 096 4 752 0.44 1 075 0.060 9 0.18 0.704 5 2.06 0.083 2 0.09 637 43 515 6 TD1116 4 482 7 407 0.61 1 985 0.058 1 0.16 0.679 8 1.86 0.084 3 0.10 534 39 522 6 TD1117 1 036 2 274 0.46 473 0.057 3 0.18 0.663 0 2.02 0.083 5 0.09 502 49 517 5 TD1118 5 701 8 827 0.65 2 558 0.057 1 0.13 0.666 1 1.56 0.083 9 0.08 495 34 519 5 TDFE TDFE01 557 711 0.78 103 0.053 1 0.29 0.283 7 1.51 0.039 0 0.06 333 93 246 4 TDFE02 889 921 0.96 162 0.051 4 0.25 0.285 3 1.34 0.040 5 0.05 260 84 256 3 TDFE03 461 554 0.83 92 0.058 1 0.46 0.310 7 2.42 0.039 2 0.14 533 110 248 8 TDFE04 446 544 0.82 85 0.053 8 0.31 0.299 2 1.70 0.040 3 0.07 364 99 255 4 TDFE05 739 888 0.83 138 0.051 1 0.27 0.277 8 1.38 0.039 8 0.06 246 85 252 4 TDFE06 6 290 3 038 2.07 2 073 0.057 4 0.16 0.663 9 1.77 0.083 4 0.08 507 41 516 5 TDFE10 3 597 2 455 1.46 1 293 0.057 6 0.16 0.671 5 1.94 0.084 0 0.09 513 45 520 5 TDFE11 10 971 3 418 3.21 2 537 0.059 6 0.17 0.688 0 1.96 0.083 2 0.08 590 45 515 5 TDFE12 4 999 2 550 1.96 1 749 0.059 2 0.16 0.691 2 1.82 0.084 2 0.08 575 41 521 5 TDFE13 9 863 3 662 2.69 2 164 0.059 0 0.13 0.687 5 1.72 0.083 9 0.10 565 34 519 6 TDFE15 17 422 4 169 4.18 3 254 0.057 9 0.15 0.672 8 1.81 0.083 6 0.09 527 40 517 5 TDFE16 929 933 1.00 173 0.052 6 0.26 0.288 5 1.46 0.039 6 0.06 310 88 251 4 TDFE17 909 1 040 0.87 164 0.049 2 0.27 0.261 1 1.42 0.038 9 0.06 157 95 246 4 TDFE18 16 206 3 989 4.06 2 389 0.057 8 0.14 0.673 2 1.58 0.084 0 0.08 523 34 520 5 表 3 锆石微量元素分析结果 (μg/g)
Table 3. Trace elements analyses of zircon (μg/g)
样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu TD11 TD1101 1.720 44.9 0.810 7.14 11.20 2.21 68.3 31.9 503 212 1 063 254 2 692 460 TD1103 1.310 103.0 0.910 7.50 14.50 4.60 117.0 49.0 659 259 1 256 276 2 833 457 TD1105 0.190 35.1 0.052 2.11 5.67 2.29 56.5 28.4 422 182 916 216 2 364 385 TD1106 0.030 53.7 0.078 1.03 6.73 3.23 70.3 29.4 442 180 884 202 2 147 355 TD1107 3.820 97.1 2.290 20.50 38.80 5.20 217.0 77.8 998 385 1 748 386 4 123 651 TD1108 1.360 54.7 0.810 8.07 11.50 4.67 85.0 34.1 463 176 830 187 1 974 305 TD1109 0.078 67.6 0.089 2.03 12.20 3.32 90.4 38.4 566 224 1132 259 2 860 441 TD11010 0.011 41.2 0.037 1.92 5.84 2.31 56.4 27.2 398 163 838 2 029 2 216 348 TD11011 1.460 127.0 0.750 8.04 19.90 7.03 161.0 60.9 832 319 1 478 328 3 376 525 TD11012 0.026 39.1 0.097 2.74 8.18 3.25 92.0 39.4 583 244 1 247 286 3 082 501 TD11013 0.023 67.4 0.098 3.25 9.28 3.88 107.0 49.1 736 299 1 477 340 3 618 564 TD11014 0.023 74.1 0.054 2.47 9.63 3.88 101.0 44.1 662 275 1 395 327 3 507 552 TD11015 10.200 113.0 5.580 39.40 32.70 7.47 140.0 48.5 630 231 1 087 241 2 538 399 TD11016 1.230 166.0 1.030 11.90 29.10 8.63 194.0 71.7 943 344 1 597 346 3 507 529 TD11017 0.086 69.3 0.190 3.89 15.40 4.79 116.0 45.3 624 236 1 121 253 2 638 410 TD11018 6.030 226.0 3.810 26.10 43.00 13.20 245.0 85.9 1120 405 1 817 396 3 998 593 TDFE TDFE01 3.140 112.0 0.94 6.39 7.31 3.65 45.0 15.1 165 64.8 313 71.4 770 140 TDFE02 3.330 138.0 1.06 17.60 28.70 9.73 118.0 33.8 362 128.0 579 122.0 1 244 233 TDFE03 0.067 47.3 0.25 3.01 7.03 2.88 40.3 12.1 138 51.8 254 58.1 663 127 TDFE04 0.050 65.4 0.40 6.87 11.50 4.22 52.8 16.8 189 71.2 347 80.7 854 167 TDFE05 2.720 107.0 0.97 6.14 8.44 3.77 39.0 13.3 155 60.5 298 69.9 749 152 TDFE06 4.370 93.8 2.82 17.20 11.20 2.87 46.6 14.6 200 88.7 507 136.0 1 673 343 TDFE10 6.810 73.6 3.49 20.50 12.80 3.18 45.4 14.3 199 91.1 531 144.0 1 756 376 TDFE11 59.400 321.0 38.30 215.00 71.10 8.83 69.6 14.7 162 65.5 365 97.7 1 163 245 TDFE12 57.400 254.0 30.30 154.00 58.20 7.39 72.9 14.9 158 67.5 376 98.4 1 197 261 TDFE13 22.600 190.0 15.40 88.30 33.10 5.60 76.3 23.5 303 138.0 784 210.0 2 578 541 TDFE15 56.100 347.0 35.60 200.00 74.60 10.40 98.6 24.7 281 115.00 631 168.0 2 004 412 TDFE16 4.130 149.0 1.64 13.10 15.40 6.11 83.0 24.6 278 106.0 481 107.0 1 092 202 TDFE17 0.370 115.0 0.34 5.93 10.50 4.69 59.1 17.9 217 79.0 367 83.6 911 177 TDFE18 38.850 251.0 25.30 139.00 53.90 7.78 89.2 20.9 263 116.0 648 173.0 2 110 447 TDFE19 8.560 136.0 3.28 21.70 21.30 8.40 92.8 26.0 281 99.3 449 100.0 1 024 189 -
Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143:602-622.doi: 10.1007/s00410-002-0364-7 Corfu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003.Altas of Zircon Textures.Reviews in Mineralogy and Geochemistry, 53:469-500.doi: 10.2113/0530469 Geisler, T., Rashwan, A.A., Rahn, M.K.W., et al., 2003.Low-Temperature Hydrothermal Alteration of Natural Metamict Zircons from the Eastern Desert, Egypt.Mineralogical Magazine, 67(3):485-508.doi: 10.1180/0026461036730112 Hoskin, P.W.O., 2005.Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia.Geochimica et Cosmochimica Acta, 69(3):637-648.doi: 10.1016/j.gca.2004.07.006 Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62.doi: 10.2113/0530027 Hoskin, P.W.O., Ireland, T.R., 2000.Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator.Geology, 28(7):627-630.doi:10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO; 2 Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008.Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas.Journal of Analytical Atomic Spectrometry, 23(8):1093-1101.doi: 10.1039/b804760j Koschek G., 1993.Origin and Significance of the SEM Cathodoluminescence from Zircon.Microscopy, 171:223-232.doi: 10.1111/j.1365-2818.1993.tb03379.x Kou, L.L., Zhang, S., Lü, J.C., et al., 2013.Geochemical Characteristics and Tectonic Implication of the Iron Ore Formation in Tadong Area, Jilin Province.Geology and Resources, 22(4): 289-295 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD201304006.htm Li, Q.W., Zhang, B., Zhang, H.H., et al., 2010.A New Understanding of Metallogenic Regularity of the Tadong Iron Deposit.Jilin Geology, 29(4):59-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JLDZ201004014.htm Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/j.chemgeo.2008.08.004 Liu, Y., Gao, S., Hu, Z., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082 Ludwig, K.R., 2003.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley. https://www.researchgate.net/publication/306157481_Isoplot_v_30_a_geochronological_toolkit_for_Microsoft_Excel Li, D.J., Wan, Q.H., Xu, L.J., et al., 1997.Petrology and Stratum of Jilin Province.China University of Geoscience Press, Wuhan, 10-11 (in Chinese). Peng, Y.J., Wang, Z.F., 1995.Determination of A-type Granite Zone in the Central Part of Jilin Province and Its Significance in Tectonics.Jilin Geology, 14(3):31-43 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JLDZ503.002.htm Peng, Y.J., Zhao, C.B., 2001.The Evolution of the Paleo Jihei Orogenic Belt and Accretion of Continental Crust.Jilin Geology, 20(2):1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JLDZ200102000.htm Rubatto, D., Gebauer, D., 2000.Use of Cathodoluminescence for U-Pb Zircon Dating by ION Microprobe:Some Examples from the Western Alps.Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg, New York, 373-400. https://www.researchgate.net/publication/230814801_Use_of_Cathodoluminescence_for_U-Pb_Zircon_Dating_by_Ion_Microprobe_Some_Examples_from_the_Western_Alps Rubatto, D., Hermann, J., 2003.Zircon Formation During Fluid Circulation in Eclcgites (Monviso, Western Alps):Implications for Zr and Hf Budget in Subduction Zones.Geochimica et Cosmochimica Acta, 67(12):2173-2187.doi: 10.1016/S0016-7037(02)01321-2 Rubatto, D., 2002.Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism.Chemical Geology, 84(1-2):123-138.doi: 10.1016/S0009-2541(01)00355-2 Shao, J.B., Zhang, X.Y., Wang, H.T., et al., 2014.Geochemistry and Pyrite Re-Os Dating of the Tadong Iron Deposit in Jilin Province.Acta Geologoca Sinica, 88(1):83-98 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201401008.htm Sinha, A.K., Wayne, D.M., Hewitt, D.A., 1992.The Hydrothermal Stability of Zircon:Preliminary Experimental and Isotopic Studies.Geochimica et Cosmochimica Acta, 56(9):3551-3560.doi: 10.1016/0016-7037(92)90398-3 Wang, F., Xu, W.L., Gao, F.H., et al., 2014.Precambrian Terrane within the Songnen-Zhangguangcai Range Massif, NE China:Evidence from U-Pb Ages of Detrital Zircons from the Dongfengshan and Tadong Groups.Gondwana Research, 26(1):402-413.doi: 10.1016/j.gr.2013.06017 Watson, E.B., Cherniak, D.J., Hanchar, J.M., et al., 1997.The Incorporation of Pb into Zircon.Chemical Geology, 141:19-31.doi: 10.1016/S0009-2541(97)00054-5 Wiedenbeck, M., Alle, P., Corfu, F., et al., 1995.Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses.Geostandards and Geoanalytical Research, 19(1):1-23.doi: 10.1111/j.1751-908X.1995.tb00147.x Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircons and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554-1569 (in Chinese). doi: 10.1007/BF03184122 Yu, J.J., Hou, X.G., Ge, W.C., et al., 2013.Magma Mixing Genesis of the Early Permian Liulian Pluton at the Northeastern Margin of the Jiamusi Massif in NE China:Evidences from Petrography, Geochronology and Geochemistry.Acta Petrologica Sinica, 29(9):2971-2986 (in Chinese with English abstract). https://www.researchgate.net/publication/282383157_Magma_mixing_genesis_of_the_Early_Permian_Liulian_pluton_at_the_northeastern_margin_of_the_Jiamusi_massif_in_NE_China_Evidences_from_petrography_geochronology_and_geochemistry Zhang, Y.J., Sun, F.Y., Xu, C.H., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopes of the Tanjianshan Granite Porphyry Intrusion in Dachaidan Area of the North Margin of Qaidam Basin, NW China.Earth Science, 41(11):1830-1844 (in Chinese with English abstract). https://www.researchgate.net/profile/Huaikun_Li/citations?sorting=recent&page=1 Zhang, Y.Q., 2012.Study on the Laser-Raman Spectroscopy Analysis and CL Images:Implications for Metamictized Zircons and U-Pb Ages.Geological Survey and Research, 35(3):224-228 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ201203013.htm 寇林林, 张森, 吕俊超, 等, 2013.吉林塔东铁矿赋矿建造地球化学特征及其地质构造意义.地质与资源, 22(4): 289-295. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201304006.htm 李东津, 万清海, 许良久等, 1997.吉林省岩石地层.武汉:中国地质大学出版社, 10-11. 李庆武, 张斌, 张红红, 等, 2010.塔东铁矿床成矿规律新认识.吉林地质, 29(4): 59-61. http://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201004014.htm 彭玉鲸, 王占福, 1995.吉林省中部A型花岗岩带的确定及其构造意义.吉林地质, 14(3): 31-43. http://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ503.002.htm 彭玉鲸, 赵成弼, 2001.古吉黑造山带的演化与陆壳的增生.吉林地质, 20(2): 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200102000.htm 邵建波, 张希友, 王洪涛, 等, 2014.吉林省塔东大型铁矿地球化学特征及黄铁矿Re-Os同位素定年.地质学报, 88(1): 83-98. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201401008.htm 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 张延军, 孙丰月, 许成瀚, 等, 2016.柴北缘大柴旦滩间山花岗斑岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学, 41(11): 1830-1844. http://www.earth-science.net/WebPage/Article.aspx?id=3382 张永清, 2012.激光拉曼、阴极荧光研究对蜕晶化锆石及其U-Pb年龄解释的指示意义.地质调查与研究, 35(3): 224-228. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201203013.htm