Provenance of the Niubao Formation and Its Geological Implications in the North Depression of the Nima Basin in the Tibet
-
摘要: 班公湖-怒江缝合带内的尼玛盆地在青藏高原形成时记录的地质信息,有助于恢复其构造古地理从而为高原隆升过程提供沉积学证据,且目前对盆地北部坳陷古近系牛堡组的研究尚属薄弱.利用碎屑岩岩石学、锆石年代学、重矿物分析等方法对牛堡组进行了物源分析并对盆地构造演化进行了深入讨论.研究显示,早白垩世-古近纪,随着地壳缩短、逆冲断层及造山带发育,盆地北部演化为受构造活动控制的独立坳陷;北部坳陷牛堡组为南北双向物源,北部物源的母岩成分主要为以早白垩世虾别错花岗岩为代表的酸性岩浆岩,南部物源的母岩成分以沉积岩(硅质岩等) 和基性岩浆岩为主;碎屑锆石存在105~134 Ma、500~550 Ma、700~900 Ma、1 700~2 100 Ma及ca.2 500 Ma年龄峰值,其中105~134 Ma年龄是对班公湖-怒江洋壳俯冲在周边地体引发的岩浆事件的响应,进一步证实牛堡组碎屑岩的物源来自北部坳陷的南北两侧地体.挤压及逆冲变形决定了盆地北部坳陷的古地理特征,沉积过程及物源与区域隆升、侵蚀和岩浆活动联系密切.Abstract: The Nima basin in the Bangong suture zone documented the geological information of the evolution of Tibetan Plateau, which helps to restore the tecto-paleogeography and provide the sedimentological evidences of uplift of the Plateau. However, the study of the NiuBao Formation of Paleogene strata in the north depression of the basin is still relatively weak. The provenance and tectonic evolution of Niubao Formation were analyzed by the methods of petrology, zircon U-Pb chronology and heavy minerals in this study. It is found that the north of Nima basin evolved into a depression controlled by collision and extrusion accompanied by the shortening of the crust and the activation of tectonic movements from Early Cretaceous to Paleogene, the north of Nima basin evolved into an depocenter controlled by tectonism. The Niubao Formation in the north depression is a bidirectional source. The source of north sediments primarily originated from the granites and acid magmatic rocks dominated by Early Cretaceous granitic rocks, while the source of south sediments were primarily sedimentary rocks, and basic or ultra-basic rocks. The detrital zircons of U-Pb ages have 5 peaks, namely 105-134 Ma, 500-550 Ma, 700-900 Ma, 1 700-2 100 Ma and near 2 500 Ma, and 105-134 Ma is believed to be responses to the subduction of the Bangong-Nujiang oceanic crust and volcanic activity in surrounding terrances. It is further confirmed that the Niubao Formation is derived from the north and south terranes of the northern depression. Palaeogeographic characteristics are determined by the extrusion and thrusting deformation. Sedimentary processes and sources are closely related to the uplift, erosion and magmatic activities in the Nima basin.
-
Key words:
- Tibet /
- Nima basin /
- Niubao Formation /
- zircon U-Pb dating /
- provenance analysis /
- geochemistry
-
图 1 尼玛盆地地质简图
1.确哈拉群;2.木嘎岗日群;3.俄蒙勒组;4.沙木罗组;5.吐卡日组;6.花岗岩体;7.去申拉组;8.白垩系;9.牛堡组;10.第四系;11.剖面位置;12.逆断层;AA′为构造剖面;据黄辉等(2012)修改
Fig. 1. Geological map of the Nima basin
图 3 尼玛盆地北部古近纪砂岩颗粒组分模式
底图据Dickinson and Suczek (1979)和Dickinson et al.(1983)
Fig. 3. Modal framework grain compositions of sandstones from Paleogene strata of the northern Nima basin
图 5 不同地区碎屑锆石年龄对比
a.南羌塘地体,数据来自Pullen et al.(2008), Dong et al.(2011)和Zhu et al.(2011);b.拉萨地体,数据来自Leier et al.(2007a, 2007b) 和Zhu et al.(2011);c.尼玛盆地,部分数据来自DeCelles et al.(2007a, 2007b);d.特提斯喜马拉雅,数据来自Mc Quarrie et al.(2008),Myrow et al.(2009, 2010) 和Zhu et al.(2011);e.高喜马拉雅,数据来自Gehrels et al.(2006a, 2006b);绿色、红色、灰色和黄色柱形阴影分别代表 4组锆石年龄峰值区间
Fig. 5. Relative U-Pb age probability for detrital zircons from different area
图 6 尼玛盆地北部坳陷牛堡组重矿物平均含量分布
锆石1为自形的岩浆成因锆石,锆石2为磨圆较好的碎屑锆石.重矿物筛选在廊坊市宇能岩石矿物分选公司进行,先经无污染粉碎至20目(最大岩块粒径约为1 mm),利用标准干筛筛选40~100目(粒径约0.15~0.45 mm,近似大于砂岩分析样品的最小平均粒度),以保证分离出的重矿物为碎屑成因颗粒;然后通过重液、精淘分离和电磁分离出电磁、无磁和强磁3部分重矿物;接着通过双目镜和偏光镜鉴定重矿物;使用高精度天平计量,采用颗粒统计法,换算成体积百分比.样品质量大于1 kg
Fig. 6. The distribution of average content of heavy minerals in Niubao Formation of the north depression, Nima basin
图 7 尼玛盆地地质构造模型
J.侏罗系泥岩、页岩、粉砂岩、灰岩、浊积砂岩、变质火山岩;J-K.侏罗系-白垩系页岩,粉砂岩,浊流砂岩,构造混杂岩;Kl.下白垩统朗山组灰岩;Kvc.下白垩统火山碎屑岩;Kv.下白垩统火山熔岩、凝灰岩及火山角砾岩;Kr.白垩系红层;Kcv.上白垩统含火山碎屑砾岩;Kcl.上白垩统碳酸盐质砾岩;Kml.上白垩统-古新统;Tmu.北尼玛盆地古近系;Tr.南尼玛盆地古近系;P05和P06箭头所指为两剖面在AA′剖面上的投影位置;据Kapp et al.(2007)修改
Fig. 7. Geological tectonic model of Nima basin
表 1 尼玛盆地北部坳陷古近系碎屑砂岩组分相对含量(%)
Table 1. Detrital compositions of sandstones (%) from Paleogene strata in northern Nima basin
样品编号 Qm F Lt Qt F L Qm P K Lm Lv Ls P05-1b 65 23 13 72 22 6 74 24 2 48 0 52 P05-3b 76 21 3 77 21 2 78 15 7 67 33 0 P05-4b 57 29 13 66 29 5 66 19 15 25 55 20 P05-5b 46 43 11 49 43 8 51 49 0 88 0 13 P06-2b 42 11 47 74 10 16 80 11 9 65 6 29 P06-3b 35 11 54 72 11 17 76 24 0 83 9 8 P06-4b 61 16 23 74 16 10 79 20 0 57 16 28 P06-5b 52 6 41 77 6 17 89 11 0 73 9 17 P06-6b 58 5 37 80 5 16 92 8 0 75 9 16 注:Qm.单晶石英,Qt.石英颗粒总量,Lv.岩浆岩岩屑,Lm.变质岩岩屑(燧石和石英岩等除外),Ls.沉积岩岩屑,Lt.岩屑总量,L.所有非硅质岩屑(岩浆岩岩屑、泥岩、碳酸盐岩屑、片岩、千枚岩岩屑),F.单晶长石颗粒(斜长石+钾长石);砂岩组分分析在成都理工大学油气藏地质及开发工程国家重点实验室进行. 表 2 尼玛盆地北部坳陷砂岩样品碎屑组成(%)
Table 2. Detrital compositions of sandstones (%) in the north depression of Nima basin
编号 石英 硅质岩 斜长石 正长石 变质岩 白云岩 灰岩 云母碎片 金属矿物 砂岩 花岗岩 脉石英 玄武岩 P06-6b 47 3 8 - 3 2 18 - 0.5 - - - 1 P06-5b 45 5 9 - 4 - 18 - 0.5 - - - 1 P06-4b 50 6 10 - 5 - 12 - 0.5 - - - 1 P06-3b 45 4 12 - 5 - 15 - 0.5 - - - 1 P06-2b 50 10 9 - 3 2 8 - 0.5 - - - 1 P06-1b 61 8 5 - 3 - 4 - 0.5 1.5 - - - P05-5b 40 1 36 - 5 - - 2 0.5 - - - - P05-4b 33 - 15 25 - - 3 1 0.5 - 5 - - P05-3b 35 - 24 20 1 - - 1 0.5 - 3 5 - P05-1b 42 - 40 5 2 - - - 0.5 - - - - 注:表中百分含量均是碎屑所占的面积百分比;碎屑组成分析在成都理工大学油气藏地质及开发工程国家重点实验室进行.“-”表示该矿物含量几乎为0. 表 3 尼玛盆地北部坳陷剖面砾石
Table 3. Gravel compositions in the north depression of Nima basin
剖面名称 层位 砾石成分 磨圆度 砾径(mm) 12层 石英、泥板岩、灰岩、硅质岩 次棱-次圆 20~50,最大100 尼玛康玛儿勒古近系牛堡组剖面(P06) 10层 细砂岩为主 次圆 5~30 3层 细砂岩、硅质岩 次棱-次圆 3~30 5层 花岗质为主 次棱-次圆 2~20 4层 石英、花岗质为主 次棱-次圆 2~5 尼玛次布扎勒古近系牛堡组剖面(P05) 3层 花岗质为主 次棱-次圆 2~7 2层 花岗质为主 次棱-次圆 20~30,最大250 1层 灰岩、变砂岩为主 次棱-次圆 10~40 表 4 尼玛盆地牛堡组剖面砂岩中碎屑锆石LA-ICP-MS U-Pb测试结果
Table 4. LA-ICP-MS U-Pb results of detrital zircons from the sandstones of the Niubao Formation, Nima basin
测点号 Th (10-6) U (10-6) Th/U 同位素值 年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ P06-01W-1 1 499 882 1.699 0.053 1 0.001 9 0.188 76 0.006 97 0.025 56 0.000 26 334 65 176 6 163 2 P06-01W-2 664 1 220 0.544 0.073 2 0.001 1 1.828 17 0.034 73 0.178 71 0.001 59 1 022 24 1 056 12 1 060 9 P06-01W-3 462 255 1.809 0.082 8 0.002 1 2.299 73 0.060 03 0.200 04 0.001 61 1 266 38 1 212 18 1 176 9 P06-01W-4 95.1 39.0 2.437 0.048 1 0.002 9 0.108 73 0.006 61 0.016 39 0.000 20 105 139 105 6 105 1 P06-01W-5 714 559 1.277 0.049 6 0.003 6 0.114 48 0.008 13 0.016 73 0.000 27 178 166 110 7 107 2 P06-01W-6 304 226 1.344 0.146 8 0.005 2 8.379 70 0.262 78 0.413 93 0.007 01 2 309 63 2 273 28 2 233 32 P06-01W-7 18.1 11.2 1.607 0.070 5 0.008 3 0.170 49 0.019 72 0.017 52 0.000 44 945 254 160 17 112 3 P06-01W-8 259 499 0.517 0.059 4 0.002 2 0.699 34 0.026 03 0.085 29 0.000 76 584 85 538 16 528 5 P06-01W-9 288 403 0.714 0.075 4 0.002 0 1.651 20 0.042 46 0.158 13 0.001 44 1 080 37 990 16 946 8 P06-01W-10 356 630 0.564 0.11 30 0.002 5 5.102 49 0.107 31 0.327 24 0.002 39 1 850 41 1 837 18 1 825 12 P06-01W-11 674 425 1.585 0.055 0 0.003 7 0.204 29 0.012 71 0.027 09 0.000 45 440 109 189 11 172 3 P06-01W-12 998 279 3.578 0.065 5 0.001 9 1.273 74 0.037 74 0.140 35 0.001 33 792 46 834 17 847 8 P06-01W-13 1 143 470 2.430 0.062 7 0.001 8 0.636 21 0.017 32 0.073 83 0.000 74 699 41 500 11 459 4 P06-01W-14 935 952 0.982 0.154 9 0.003 2 8.939 39 0.169 17 0.418 47 0.003 68 2401 36 2 332 17 2254 17 P06-01W-15 2 227 2 405 0.926 0.047 0 0.001 5 0.130 74 0.004 26 0.020 03 0.000 18 70 57 125 4 128 1 P06-01W-16 2 418 1 780 1.358 0.050 0 0.001 6 0.139 45 0.004 48 0.020 19 0.000 21 196 55 133 4 129 1 P06-01W-17 670 429 1.560 0.164 0 0.002 8 9.415 79 0.169 84 0.412 65 0.003 56 2 502 19 2 379 17 2 227 16 P06-01W-18 1 116 951 1.172 0.050 6 0.001 3 0.268 12 0.006 86 0.038 19 0.000 31 225 44 241 5 242 2 P06-01W-19 910 718 1.267 0.060 5 0.003 2 0.144 87 0.007 55 0.017 36 0.000 22 622 119 137 7 111 1 P06-01W-20 209 183 1.143 0.049 3 0.001 8 0.136 19 0.004 90 0.020 01 0.000 21 164 65 130 4 128 1 P06-01W-21 737 589 1.251 0.047 5 0.002 2 0.132 37 0.006 56 0.020 09 0.000 32 76 80 126 6 128 2 P06-01W-22 1 121 1 869 0.599 0.052 0 0.001 6 0.148 70 0.004 69 0.020 60 0.000 19 286 55 141 4 131 1 P06-01W-23 524 442 1.186 0.054 8 0.003 8 0.128 93 0.007 98 0.017 67 0.000 31 407 108 123 7 113 2 P06-01W-24 569 372 1.527 0.046 0 0.004 4 0.125 36 0.011 78 0.019 74 0.000 37 - 200 120 11 126 2 P06-01W-25 250 272 0.919 0.048 9 0.002 1 0.139 78 0.006 42 0.020 59 0.000 26 144 82 133 6 131 2 P06-01W-26 1 689 1 517 1.113 0.045 7 0.001 9 0.121 53 0.005 30 0.019 16 0.000 20 -15 72 116 5 122 1 P06-01W-27 328 160 2.050 0.068 6 0.002 4 1.269 43 0.044 42 0.134 39 0.001 54 889 53 832 20 813 9 P06-01W-28 555 179 3.098 0.061 1 0.002 7 0.812 19 0.039 01 0.095 94 0.001 31 645 80 604 22 591 8 P06-01W-29 1 542 1 196 1.289 0.128 8 0.002 1 6.179 80 0.121 58 0.344 99 0.003 45 2 082 21 2 002 17 1 911 17 P06-01W-30 538 262 2.054 0.114 6 0.002 4 5.426 89 0.117 25 0.342 79 0.003 35 1 874 25 1 889 19 1 900 16 P06-01W-31 1 138 397 2.866 0.154 6 0.002 9 9.489 62 0.195 91 0.443 23 0.004 80 2 398 21 2 387 19 2 365 21 P06-01W-32 1 621 416 3.901 0.054 0 0.003 3 0.148 19 0.00979 0.020 15 0.000 42 373 112 140 9 129 3 P06-01W-33 1 805 1 316 1.371 0.046 0 0.001 7 0.129 72 0.004 86 0.020 56 0.000 24 -2 56 124 4 131 1 P06-01W-34 169 76.6 2.208 0.066 0 0.010 6 0.286 10 0.045 30 0.031 43 0.001 02 807 361 255 36 199 6 P06-01W-35 1 907 1 188 1.605 0.046 0 0.002 1 0.113 49 0.005 23 0.017 91 0.000 23 3 73 109 5 114 1 P06-01W-36 362 326 1.110 0.054 6 0.002 2 0.552 12 0.023 91 0.072 64 0.000 84 399 76 446 16 452 5 P06-01W-37 1 205 469 2.567 0.063 0 0.001 9 1.262 08 0.038 75 0.144 69 0.001 56 710 47 829 17 871 9 P06-01W-38 2 862 497 5.759 0.056 2 0.006 0 0.132 75 0.014 09 0.017 12 0.000 24 462 244 127 13 109 2 P06-01W-39 1 020 755 1.350 0.156 5 0.002 6 10.341 00 0.178 04 0.474 70 0.003 44 2 419 19 2 466 16 2 504 15 P06-01W-40 669 314 2.129 0.090 9 0.002 2 3.300 16 0.084 97 0.262 14 0.003 95 1 445 27 1 481 20 1 501 20 P06-01W-41 965 1 700 0.567 0.049 5 0.001 7 0.205 20 0.007 16 0.029 77 0.000 3 172 63 190 6 189 2 P06-01W-42 207 271 0.763 0.050 3 0.002 0 0.138 91 0.006 49 0.020 02 0.000 22 211 112 132 6 128 1 P06-01W-43 236 821 0.287 0.073 5 0.001 5 1.767 14 0.036 24 0.172 85 0.00127 1 030 29 1 033 13 1 028 7 P06-01W-44 583 351 1.660 0.049 6 0.002 6 0.266 60 0.013 95 0.038 91 0.000 61 179 92 240 11 246 4 P06-01W-45 997 971 1.027 0.109 9 0.002 2 4.782 88 0.094 68 0.313 38 0.002 62 1 799 24 1 782 17 1 757 13 P06-01W-46 789 338 2.335 0.063 2 0.001 8 1.198 99 0.036 41 0.136 62 0.001 5 718 46 800 17 826 9 P06-01W-47 405 782 0.517 0.1158 0.002 0 4.850 29 0.095 11 0.301 81 0.003 35 1 893 20 1 794 17 1 700 17 P06-01W-48 336 93.0 3.613 0.0693 0.004 0 1.198 30 0.063 48 0.128 06 0.002 09 909 82 800 29 777 12 P06-01W-49 681 725 0.939 0.1682 0.002 8 10.901 80 0.197 03 0.467 41 0.004 08 2 541 19 2 515 17 2 472 18 P06-01W-50 3 158 1 473 2.144 0.057 2 0.006 2 0.136 14 0.016 51 0.016 99 0.000 2 502 251 130 15 109 1 P06-01W-51 210 1 44 1.459 0.125 1 0.006 1 6.651 94 0.330 04 0.384 41 0.006 48 2 031 64 2 066 44 2 097 30 P06-01W-52 822 488 1.683 0.061 2 0.006 0 0.170 52 0.016 93 0.020 67 0.000 63 646 162 160 15 132 4 P06-01W-53 1 804 1 327 1.359 0.049 0 0.005 6 0.125 33 0.014 45 0.018 62 0.000 68 149 190 120 13 119 4 P06-01W-54 67 29 2.270 0.067 8 0.009 9 0.163 71 0.024 00 0.017 94 0.000 86 864 228 154 21 115 5 P06-01W-55 37 31 1.171 0.057 9 0.009 7 0.165 36 0.027 97 0.020 75 0.001 15 528 276 155 24 132 7 P06-01W-56 365 459 0.795 0.053 0 0.002 9 0.128 80 0.006 78 0.017 98 0.000 26 332 94 123 6 115 2 P06-01W-57 410 1050 0.390 0.047 7 0.001 5 0.135 62 0.004 26 0.020 69 0.000 21 86 54 129 4 132 1 P06-01W-58 214 445 0.479 0.051 5 0.001 5 0.371 91 0.010 98 0.052 32 0.000 51 265 50 321 8 329 3 P06-01W-59 96 241 0.396 0.061 1 0.001 5 0.978 58 0.033 10 0.114 79 0.002 49 646 38 693 17 701 14 P06-01W-60 304 314 0.967 0.049 1 0.003 1 0.114 60 0.007 19 0.017 02 0.000 25 156 115 110 7 109 2 P06-01W-61 128 144 0.886 0.074 0 0.001 8 2.188 59 0.054 44 0.214 54 0.002 16 1 042 34 1 177 17 1 253 11 P06-01W-62 71 292 0.243 0.109 7 0.001 7 5.157 84 0.089 86 0.338 13 0.002 64 1 795 20 1 846 15 1 878 13 P06-01W-64 362 1 408 0.257 0.053 9 0.001 9 0.156 99 0.005 67 0.020 95 0.000 23 370 62 148 5 134 1 P06-01W-65 289 331 0.875 0.056 9 0.003 6 0.144 17 0.009 30 0.018 55 0.000 33 488 111 137 8 118 2 P06-01W-66 81 270 0.297 0.053 7 0.004 0 0.149 73 0.011 80 0.020 20 0.000 33 361 185 142 10 129 2 P06-01W-67 301 706 0.426 0.047 8 0.002 8 0.136 07 0.007 97 0.020 60 0.000 29 94 135 130 7 131 2 P06-01W-68 43 110 0.389 0.093 8 0.002 0 3.186 22 0.095 33 0.245 82 0.003 06 1 505 38 1 454 23 1 417 16 P06-01W-69 16 281 0.056 0.060 6 0.002 0 0.980 57 0.034 32 0.116 97 0.001 47 626 54 694 18 713 8 P06-01W-70 203 438 0.463 0.049 8 0.002 2 0.253 52 0.011 60 0.036 86 0.000 51 189 81 229 9 233 3 P05-01W-1 493 926 0.530 0.051 9 0.001 9 0.138 56 0.005 06 0.019 26 0.000 21 280 63 132 5 123 1 P05-01W-2 470 1 631 0.288 0.048 4 0.002 2 0.127 40 0.005 51 0.019 09 0.000 24 119 102 122 5 122 2 P05-01W-3 1 088 3 494 0.311 0.072 12 0.002 29 0.108 18 0.003 23 0.010 98 0.000 17 989 36 104 3 70 1 P05-01W-4 300 1 008 0.297 0.047 80 0.001 91 0.132 28 0.005 30 0.019 96 0.000 24 90 68 126 5 127 2 P05-01W-5 138 371 0.371 0.050 87 0.002 66 0.141 52 0.007 36 0.020 27 0.000 28 235 95 134 7 129 2 P05-01W-6 255 828 0.308 0.051 66 0.001 98 0.139 14 0.005 34 0.019 47 0.000 21 270 69 132 5 124 1 P05-01W-7 1 147 1 142 1.005 0.050 45 0.001 89 0.136 69 0.005 26 0.019 49 0.000 21 216 69 130 5 124 1 P05-01W-8 289 801 0.360 0.051 17 0.002 11 0.134 75 0.005 45 0.019 18 0.000 23 248 71 128 5 122 1 P05-01W-9 394 765 0.515 0.049 71 0.002 21 0.125 07 0.005 34 0.018 33 0.000 22 181 77 120 5 117 1 P05-01W-10 257 624 0.412 0.050 86 0.003 62 0.129 78 0.009 03 0.018 51 0.000 28 234 163 124 8 118 2 P05-01W-11 478 1 326 0.360 0.052 21 0.001 93 0.142 04 0.005 33 0.019 54 0.000 21 295 66 135 5 125 1 P05-01W-12 348 1 057 0.329 0.050 74 0.001 84 0.143 83 0.005 11 0.020 54 0.000 20 229 64 136 5 131 1 P05-01W-13 238 560 0.42 0.052 84 0.002 74 0.134 35 0.007 08 0.018 36 0.000 24 322 96 128 6 117 2 P05-01W-14 294 572 0.514 0.048 82 0.002 58 0.126 62 0.006 37 0.019 14 0.000 27 139 89 121 6 122 2 P05-01W-15 454 714 0.636 0.051 18 0.002 35 0.138 48 0.006 42 0.019 59 0.000 28 249 81 132 6 125 2 P05-01W-16 364 1 161 0.313 0.052 56 0.002 31 0.152 17 0.006 84 0.020 76 0.000 21 310 84 144 6 132 1 P05-01W-17 420 660 0.636 0.049 95 0.002 53 0.124 96 0.006 29 0.018 22 0.000 23 192 93 120 6 116 1 P05-01W-18 293 711 0.411 0.051 76 0.002 75 0.144 69 0.007 53 0.020 28 0.000 23 275 125 137 7 129 1 P05-01W-19 84 220 0.380 0.051 77 0.003 29 0.133 11 0.008 15 0.019 07 0.000 37 275 104 127 7 122 2 P05-01W-20 719 1 343 0.535 0.058 79 0.002 38 0.142 62 0.005 54 0.017 70 0.000 22 559 63 135 5 113 1 P05-01W-21 555 3 070 0.181 0.046 87 0.002 69 0.079 39 0.004 15 0.012 28 0.000 29 43 126 78 4 79 2 P05-01W-22 310 829 0.374 0.052 27 0.002 27 0.141 38 0.006 18 0.019 63 0.000 21 297 80 134 5 125 1 P05-01W-23 143 294 0.487 0.050 72 0.004 57 0.127 18 0.011 27 0.018 18 0.000 31 228 206 122 10 116 2 P05-01W-24 484 1 065 0.454 0.051 70 0.001 75 0.142 30 0.004 80 0.019 91 0.000 21 272 58 135 4 127 1 P05-01W-25 259 670 0.386 0.051 78 0.003 27 0.149 45 0.009 83 0.020 83 0.000 24 276 130 141 9 133 2 P05-01W-26 337 513 0.658 0.051 57 0.002 81 0.129 71 0.006 93 0.018 47 0.000 26 266 97 124 6 118 2 P05-01W-27 334 873 0.382 0.051 20 0.011 81 0.142 98 0.032 87 0.020 26 0.000 39 250 419 136 29 129 2 P05-01W-28 521 1 587 0.328 0.049 97 0.001 46 0.140 95 0.004 02 0.020 43 0.000 19 194 49 134 4 130 1 P05-01W-29 332 715 0.465 0.047 24 0.001 92 0.119 71 0.004 77 0.018 45 0.000 22 61 66 115 4 118 1 P05-01W-30 230 634 0.363 0.047 11 0.002 53 0.122 04 0.006 32 0.018 97 0.000 28 55 85 117 6 121 2 P05-01W-31 463 927 0.499 0.046 96 0.001 98 0.126 48 0.005 44 0.019 42 0.000 23 47 71 121 5 124 1 P05-01W-32 385 845 0.456 0.055 12 0.007 85 0.150 15 0.021 30 0.019 76 0.000 26 417 322 142 19 126 2 P05-01W-33 400 1 500 0.266 0.050 40 0.001 73 0.137 30 0.004 59 0.019 71 0.000 20 214 59 131 4 126 1 P05-01W-34 354 1 328 0.266 0.051 54 0.001 97 0.138 17 0.005 21 0.019 44 0.000 23 265 65 131 5 124 1 P05-01W-35 226 534 0.422 0.049 25 0.003 09 0.129 43 0.007 94 0.019 06 0.000 26 160 143 124 7 122 2 P05-01W-37 366 607 0.603 0.049 45 0.002 37 0.119 04 0.005 60 0.017 49 0.000 20 169 88 114 5 112 1 P05-01W-38 1 088 2 017 0.539 0.046 05 0.001 98 0.091 25 0.003 63 0.014 37 0.000 23 - 91 89 3 92 1 P05-01W-39 531 696 0.762 0.052 82 0.002 09 0.124 20 0.004 70 0.017 11 0.000 19 321 66 119 4 109 1 P05-01W-40 261 747 0.349 0.047 74 0.001 79 0.125 39 0.005 12 0.018 86 0.000 19 86 73 120 5 120 1 P05-01W-41 108 264 0.409 0.077 13 0.008 98 0.213 16 0.024 17 0.020 04 0.000 53 1 125 243 196 20 128 3 P05-01W-42 90 249 0.359 0.054 19 0.009 79 0.141 41 0.025 14 0.018 92 0.000 60 379 369 134 22 121 4 P05-01W-43 52 166 0.315 0.046 78 0.008 99 0.146 15 0.027 73 0.022 66 0.000 69 38 333 139 25 144 4 P05-01W-44 585 1 027 0.569 0.051 03 0.002 19 0.132 68 0.005 40 0.018 81 0.000 22 242 72 127 5 120 1 P05-01W-45 285 890 0.320 0.051 9 0.002 16 0.134 13 0.005 58 0.018 55 0.000 23 281 73 128 5 119 1 P05-01W-47 235 905 0.259 0.046 94 0.001 88 0.120 23 0.004 75 0.018 42 0.000 21 46 65 115 4 118 1 P05-01W-48 231 536 0.430 0.049 96 0.002 76 0.130 77 0.007 39 0.018 86 0.000 28 193 102 125 7 120 2 P05-01W-49 219 631 0.347 0.047 12 0.002 42 0.118 82 0.005 98 0.018 18 0.000 22 55 87 114 5 116 1 P05-01W-50 771 2 446 0.315 0.047 58 0.003 37 0.112 66 0.007 81 0.017 17 0.000 25 78 158 108 7 110 2 P05-01W-51 174 327 0.531 0.054 84 0.003 58 0.133 31 0.008 58 0.017 75 0.000 26 406 118 127 8 113 2 P05-01W-52 392 780 0.503 0.057 78 0.002 32 0.145 57 0.005 58 0.018 32 0.000 22 522 63 138 5 117 1 P05-01W-53 397 798 0.498 0.050 48 0.001 87 0.133 76 0.004 97 0.019 18 0.000 23 217 64 127 4 122 1 P05-01W-54 528 1592 0.331 0.057 44 0.002 17 0.132 66 0.004 90 0.016 82 0.000 24 508 56 126 4 108 2 P05-01W-55 239 467 0.512 0.059 00 0.003 07 0.158 04 0.008 47 0.019 67 0.000 30 567 90 149 7 126 2 P05-01W-56 255 783 0.326 0.052 12 0.002 70 0.126 25 0.006 19 0.017 81 0.000 28 291 83 121 6 114 2 P05-01W-57 403 1 453 0.277 0.050 16 0.001 57 0.137 52 0.004 41 0.019 77 0.000 22 203 53 131 4 126 1 P05-01W-58 546 1 195 0.457 0.056 25 0.003 10 0.149 83 0.008 09 0.019 32 0.000 20 462 125 142 7 123 1 P05-01W-59 276 750 0.367 0.051 44 0.002 46 0.135 13 0.006 27 0.019 08 0.000 23 261 84 129 6 122 1 P05-01W-60 464 1 428 0.325 0.054 13 0.002 16 0.138 73 0.005 40 0.018 58 0.000 26 377 63 132 5 119 2 P05-01W-61 329 762 0.432 0.049 54 0.002 99 0.130 95 0.007 74 0.019 17 0.000 24 174 138 125 7 122 2 P05-01W-63 206 473 0.435 0.048 57 0.002 89 0.121 27 0.007 18 0.018 19 0.000 26 127 107 116 7 116 2 P05-01W-64 282 786 0.358 0.046 05 0.001 87 0.118 99 0.004 67 0.018 74 0.000 20 - 86 114 4 120 1 P05-01W-65 270 857 0.315 0.047 05 0.001 91 0.127 21 0.004 98 0.019 56 0.000 23 52 64 122 4 125 1 P05-01W-66 481 1 388 0.347 0.052 13 0.002 62 0.128 97 0.006 28 0.017 94 0.000 23 291 118 123 6 115 1 P05-01W-67 142 381 0.373 0.053 76 0.003 16 0.136 70 0.008 12 0.018 49 0.000 26 361 109 130 7 118 2 P05-01W-68 270 455 0.593 0.058 78 0.003 02 0.152 94 0.008 24 0.018 68 0.000 26 559 94 145 7 119 2 P05-01W-69 426 943 0.45 0.047 70 0.001 67 0.126 40 0.004 34 0.019 20 0.000 21 84 58 121 4 123 1 P05-01W-70 564 1 791 0.315 0.051 18 0.002 19 0.138 16 0.005 74 0.019 58 0.000 20 249 101 131 5 125 1 P05-01W-71 411 590 0.695 0.060 62 0.009 38 0.173 07 0.026 60 0.020 71 0.000 36 626 347 162 23 132 2 P05-01W-72 434 1 697 0.256 0.046 06 0.002 21 0.082 35 0.003 83 0.012 97 0.000 16 1 103 80 4 83 1 注:P06-01W-24、P05-01W-38、P05-01W-64和P05-01W-72均为无效测年数据的测点. -
Ai, H.G., Lan, L.Y., Zhu, H.Q., et al., 1998.The Forming Mechanism and Petroleum Geology of Tertiary Lunpola Basin, Tibet.Acta Petrolei Sinica, 19(2):21-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB802.003.htm Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x Chen, Y., Zhu, D.C., Zhao, Z.D., et al., 2014.Slab Breakoff Triggered ca.113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet.Gondwana Research, 26(2):449-463.doi: 10.1016/j.gr.2013.06.005 Corfu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003.Altas of Zircon Textures.Reviews in Mineralogy Geochemistry, 53:469-495.doi: 10.2113/0530469 Coulon, C., Maluski, H., Bollinger, C., et al., 1986.Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet:39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance.Earth and Planetary Science Letters, 79(3-4):281-302.doi: 10.1016/0012-821x(86)90186-x DeCelles, P.G., Quade, J., Kapp, P., et al., 2007a.High and Dry in Central Tibet during the late Oligocene.Earth and Planetary Science Letters, 253(3-4):389-401.doi: 10.1016/j.epsl.2006.11.001 DeCelles, P.G., Kapp, P., Ding, L., et al., 2007b.Late Cretaceous to Middle Tertiary Basin Evolution in the Central Tibetan Plateau:Changing Environments in Response to Tectonic Partitioning, Aridification and Regional Elevation Gain.Geological Society of America Bulletin, 119(5-6):654-680.doi: 10.1130/b26074.1 Dickinson, W.R., Beard, S.L., Brakenridge, G.R., et al., 1983.Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting.Geological Society of America Bulletin, 94(2):222-235.doi:10.1130/0016-7606(1983)94 < 222:ponaps>2.0.co; 2. Dickinson, W.R., Suczek, C., 1979.Plate Tectonics and Sandstone Compositions.American Association of Petroleum Geologists Bulletin, 63:2164-2182. http://archives.datapages.com/data/bulletns/1977-79/data/pg/0063/0012/2150/2164.htm?q=%2BtextStrip%3Ashelf+textStrip%3Acarbonate+textStrip%3Asedimentation+textStrip%3Acontrolled+textStrip%3Asalinity+textStrip%3Aparadox+textStrip%3Abasin+textStrip%3Asoutheast+textStrip%3Autah Ding, H.X., Zhang, Z.M., Xiang, H., et al., 2015.The Petrogenesis and Tectonic Significance of the Early Cretaceous Volcanics from the Northern Lhasa Terrane, Tibet.Acta Petrologica Sinica, 31(5):1247-1267(in Chinese with English abstract). https://www.researchgate.net/publication/282060320_The_petrogenesis_and_tectonic_significance_of_the_Early_Cretaceous_volcanics_from_the_northern_Lhasa_terrane_Tibet Dong, C.Y., Li, C., Wan, Y.S., et al., 2011.Detrital Zircon Age Model of Ordovician Wenquan Quartzite South of Lungmuco-Shuanghu Suture in the Qiangtang Area, Tibet:Constraint on Tectonic Affinity and Source Regions.Science China Earth Sciences, 54(7):1034-1042.doi: 10.1007/s11430-010-4166-x Gehrels, G.E., DeCelles, P.G., Ojha, T.P., et al., 2006a.Geologic and U-Th-Pb Geochronologic Evidence for Early Paleozoic Tectonism in the Kathmandu Thrust Sheet, Central Nepal Himalaya.Geological Society of America Bulletin, 118(1-2):185-198.doi: 10.1130/b25753.1 Gehrels, G.E., DeCelles, P.G., Ojha, T.P., et al., 2006b.Geologic and U-Pb Geochronologic Evidence for Early Paleozoic Tectonism in the Dadeldhura Thrust Sheet, Far-West Nepal Himalaya.Journal of Asian Earth Sciences, 28(4-6):385-408.doi: 10.1016/j.jseaes.2005.09.012 He, S.P., Li, R.S, Wang, C., et al., 2013.Discovery of the Paleoproterozoic Terrane in Lhasa Block, Qinghai-Tibet Plateau.Earth Science, 38(3):519-528(in Chinese with English abstract). https://www.researchgate.net/publication/287574202_Discovery_of_the_paleoproterozoic_terrane_in_Lhasa_block_Qinghai-Tibet_Plateau Huang, H., Zhu, L.D., Yang, W.G., et al., 2012.Cenozoic Basin Sedimentary Record and Basin-Controlling Mechanism of Northern Nyima, Tibet.Geological Bulletin of China, 31(6):936-942 (in Chinese with English abstract). https://www.researchgate.net/publication/289605958_Cenozoic_basin_sedimentary_record_and_basin-controlling_mechanism_of_northern_Nyima_Tibet Ingersoll, R.V., Bullard, T.F., Ford, R.L., et al., 1984.The Effect of Grain Size on Detrital Modes:A Test of the Gazzi-Dickinson Point-Counting Method.SEPM Society for Sedimentary Geology, 54(1):103-116.doi: 10.1306/212f83b9-2b24-11d7-8648000102c1865d Jia, Y.Y., Xing, X.J., Sun, G.Q., 2015.The Paleogene-Neogene Paleoclimate Evolution in Western Sector of Northern Margin of Qaidam Basin.Earth Science, 40(12):1955-1967 (in Chinese with English abstract). https://www.researchgate.net/publication/290482082_The_paleogene-neogene_paleoclimate_evolution_in_western_sector_of_northern_margin_of_Qaidam_Basin Kapp, P., DeCelles, P.G., Gehrels, G.E., et al., 2007.Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet.Geological Society of America Bulletin, 119(7-8):917-932.doi: 10.1130/b26033.1 Kapp, P., Yin, A., Harrison, T.M., et al., 2005.Cretaceous-Tertiary Shortening, Basin Development, and Volcanism in Central Tibet.Geological Society of America Bulletin, 117(7):865-878.doi: 10.1130/b25595.1 Leier, A.L., DeCelles, P.G., Kapp, P., et al., 2007a.The Takena Formation of the Lhasa Terrane, Southern Tibet:The Record of a Late Cretaceous Retroarc Foreland Basin.Geological Society of America Bulletin, 119(1-2):31-48.doi: 10.1130/b25974.1 Leier, A.L., DeCelles, P.G., Kapp, P., et al., 2007b.Lower Cretaceous Strata in the Lhasa Terrane, Tibet, with Implications for Understanding the Early Tectonic History of the Tibetan Plateau.Journal of Sedimentary Research, 77(10):809-825.doi: 10.2110/jsr.2007.078 Li, X.S., Han, Z.Y., Yang, D.Y., et al., 2006.Aeolian-Dust Deposit to the Southwest of the Poyang Lake during the Last Glacial Age.Marine Geology and Quaternary Geology, 26(1):101-108(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200601021.htm Li, Y.L., Wang, C.S., Dai, J.G., et al., 2015.Propagation of the Deformation and Growth of the Tibetan-Himalayan Orogen:A Review.Earth-Science Reviews, 143:36-61.doi: 10.1016/j.earscirev.2015.01.001 Lin, Y.H., Zhang, Z.M., Dong, X., et al., 2013.Precambrian Evolution of the Lhasa Terrane, Tibet:Constraint from the Zircon U-Pb Geochronology of the Gneisses.Precambrian Research, 237:64-77.doi: 10.1016/j.precamres.2013.09.006 Liu, Y., Gao, S., Hu, Z., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082 Ludwig, K.R., 2003.User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication, Berkeley. Luo, B.J., Dai, G.Y., Pan, Z.X., 1996.Oil and Gas Potential in Paleogene Terrestrial Bangonghu-Dingqing Suture Zone.Earth Science, 21(2):163-167 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199602011.htm Luo, L., An, X.Y., Wu, N.W., et al., 2014.Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Bangonghu-Shuanghu-Nujiang-Changning-Menglian Suture Zone.Earth Science, 39(8):1170-1179 (in Chinese with English abstract). https://www.researchgate.net/publication/286675740_Evolution_of_neoproterozoic-mesozoic_sedimentary_basins_in_Bangonghu-Shuanghu-Nujiang-Changning-Menglian_suture_zone Ma, L., Wang, Q., Li, Z.X., et al., 2013.Early Late Cretaceous (ca.93 Ma) Norites and Hornblendites in the Milin Area, Eastern Gangdese:Lithosphere-Asthenosphere Interaction during Slab Roll-Back and an Insight into Early Late Cretaceous (ca.100-80 Ma) Magmatic "Flare-Up" in Southern Lhasa (Tibet).Lithos, 172-173:17-30.doi: 10.1016/j.lithos.2013.03.007 Ma, L.X., Zhang, E.H., Ju, J.C., et al., 1996.Basic Characteristics of Paleogene Deposition Systems Tract in LunpolaBasin, Tibet.Earth Science, 21(2):174-178 (in Chinese with English abstract). McQuarrie, N., Robinson, D., Long, S., et al., 2008.Preliminary Stratigraphic and Structural Architecture of Bhutan:Implications for the along Strike Architecture of the Himalayan System.Earth and Planetary Science Letters, 272(1-2):105-117.doi: 10.1016/j.epsl.2008.04.030 Meng, F.Y., Zhao, Z.D., Zhu, D.C., et al., 2014.Late Cretaceous Magmatism in Mamba Area, Central Lhasa Subterrane:Products of Back-Arc Extension of Neo-Tethyan Ocean? Gondwana Research, 26(2):505-520.doi: 10.1016/j.gr.2013.07.017 Meng, J., 2013.Paleomagnetic Constraints and Implications for Late Mesozoic and Cenozoic Tectonic Events of Tibetan Plateau (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). Morton, A.C., Hallsworth, C.R., 1999.Processes Controlling the Composition of Heavy Mineral Assemblages in Sandstones.Sedimentary Geology, 124(1-4):3-29.doi: 10.1016/s0037-0738(98)00118-3 Murphy, M.A., Yin, A., 2003.Structural Evolution and Sequence of Thrusting in the Tethyan Fold-Thrust Belt and Indus-Yalu Suture Zone, Southwest Tibet.Geological Society of America Bulletin, 115(1):21-34.doi:10.1130/0016-7606(2003)115 < 0021:seasot>2.0.co; 2 Myrow, P.M., Hughes, N.C., Goodge, J.W., et al., 2010.Extraordinary Transport and Mixing of Sediment across Himalayan Central Gondwana during the Cambrian-Ordovician.Geological Society of America Bulletin, 122(9-10):1660-1670.doi: 10.1130/b30123.1 Myrow, P.M., Hughes, N.C., Searle, M.P., et al., 2009.Stratigraphic Correlation of Cambrian-Ordovician Deposits along the Himalaya:Implications for the Age and Nature of Rocks in the Mount Everest Region.Geological Society of America Bulletin, 121(3-4):323-332.doi: 10.1130/b26384.1 Pan, G.T., 2004.Geological Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas, Scale 1: 1 000 000.Chengdu Cartographic Publishing House, Chengdu (in Chinese). Pullen, A., Kapp, P., Gehrels, G.E., et al., 2008.Triassic Continental Subduction in Central Tibet and Mediterranean-Style Closure of the Paleo-Tethys Ocean.Geology, 36(5):351-354.doi: 10.1130/g24435a.1 Song, B.W., Xu, Y.D., Liang, Y.P., et al., 2014.Evolution of Cenozoic Sedimentary Basins in Western China.Earth Science, 39(8):1036-1044 (in Chinese with English abstract). https://www.researchgate.net/publication/303952355_Evolution_of_Cenozoic_sedimentary_basins_in_Western_China Tan, F.W., Wang, J., Fu., X.G., et al., 2009.U-Pb Zircon SHRIMP Age of Metamorphic Rocks from the Basement of the Qiangtang Basin, Northern Tibet, and Its Geological Significance.Acta Petrologica Sinica, 25(1):139-146 (in Chinese with English abstract). https://www.researchgate.net/publication/281306598_U-Pb_zircon_SHRIMP_age_of_metamorphic_rocks_from_the_basement_of_the_Qiangtang_basin_northern_Tibet_and_its_geological_significance Wang, C.S., Li, X.H., Hu, X.M., 2003.Age of initial Collision of India with Asia:Review and Constrains from Sediments in Southern Tibet.Acta Geologica Sinica, 77(1):16-24 (in Chinese with English abstract). https://www.researchgate.net/publication/285026162_Age_of_initial_collision_of_India_with_Asia_Review_and_constraints_from_sediments_in_Southern_Tibet_in_Chinese_with_English_abstract Wang, L.C., Wang, C.S., Li, Y.L., et al., 2011.Organic Geochemistry of Potential Source Rocks in the Tertiary Dingqinghu Formation, Nima Basin, Central Tibet.Journal of Petroleum Geology, 34(1):67-85.doi: 10.1111/j.1747-5457.2011.00494.x Wang, L.L., Wu, F.D., 2012.Main Geoheritages of the Qinghai Lake National Geopark in Qinghai Province and Their Geological Significance.Acta Geoscientica Sinica, 33(5):835-842(in Chinese with English abstract). http://www.oalib.com/paper/1560457 Wu, H., Li, C., Xu, M.J., et al., 2015.Early Cretaceous Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet:Implications for Slab Roll-Back and Subsequent Slab Break-Off of the Lithosphere of the Bangong-Nujiang Ocean.Journal of Asian Earth Sciences, 97:51-66.doi: 10.1016/j.jseaes.2014.10.014 Wu, J., Xu, Y.D., An, X.Y., et al., 2014.Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in GangdeseArea, Tibetan Plateau.Earth Science, 39(8):1052-1061(in Chinese with English abstract). https://www.researchgate.net/publication/287525464_Evolution_of_neoproterozoic-mesozoic_sedimentary_basins_in_Gangdese_area_Tibetan_Plateau Wu, Z.H., Ye, P.S., Yin, C.Y., 2013.The Early Cenozoic Gerza Thrust System in Northern Tibet.Acta Geoscientica Sinica, 34(1):31-38 (in Chinese with English abstract). Xu, Z.Q., Wang, Q., Li, Z.H., 2016.Indo-Asian Collision:Tectonic Transition from Compression to Strike Slip.Acta Geologica Sinica, 90(1):1-23 (in Chinese with English abstract). doi: 10.1111/1755-6724.12639 Yang, L., 2011.Study of Paleogene Sedimentary Record in the Northern Depression of Nima Basin, Tibet (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract). Zhang, K.J., Xia, B.D., Wang, G.M., et al., 2004.Early Cretaceous Stratigraphy, Depositional Environments, Sandstone Provenance, and Tectonic Setting of Central Tibet, Western China.Geological Society of America Bulletin, 116(9):1202-1222.doi: 10.1130/b25388.1 Zhang, K.X., Pan, G.T., He, W.H., et al., 2015.New Division of Tectonic-Strata Super Region in China.Earth Science, 40(2):206-233 (in Chinese with English abstract). https://www.researchgate.net/publication/281911273_New_division_of_tectonic-strata_superregion_in_China Zhang, K.X., Wang, G.C., Luo, M.S., et al., 2010.Evolution of Tectonic Lithofacies Paleogeography of Cenozoic of Qinghai-Tibet Plateau and Its Response to Uplift of the Plateau.Earth Science, 35(5):697-712(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201005000.htm Zhang, K.Y., Mu, Z.H., Zhu, H.Q., et al., 2000.Analysis of the Dynamic System for Forming Reservoirs in LunpolaBasin (Tibet).Xinjiang Petroleum Geology, 21(2):93-96(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200002000.htm Zhang, Z., Chen, Y.C., Tang, J.X., et al., 2015.Zircon U-Pb Age and Geochemical Characteristics of Volcanic Rocks in Gaerqiong-Galale Cu-Au Ore District, Tibet.Earth Science, 40(1):77-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201501006.htm Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17.doi: 10.1016/j.lithos.2015.06.023 Zhu, D.C., Mo, X.X., Niu, Y.L., et al., 2009.Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse Throughout the Central Lhasa Terrane, Tibet.Chemical Geology, 268(3-4):298-312.doi: 10.1016/j.chemgeo.2009.09.008 Zhu, D.C., Mo, X.X., Zhao, Z.D., et al.2009.Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and TethyanEvolution:New Perspective.Earth Science Frontiers, 16(2):1-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200902002.htm Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al.2011.Lhasa Terrane in Southern Tibet Came from Australia.Geology, 39(8):727-730.doi: 10.1130/g31895.1 Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454.doi: 10.1016/j.gr.2012.02.002 艾华国, 兰林英, 朱宏权, 等, 1998.伦坡拉第三纪盆地的形成机理和石油地质特征.石油学报, 19(2): 21-27. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB802.003.htm 丁慧霞, 张泽明, 向华, 等, 2015.青藏高原拉萨地体北部早白垩世火山岩的成因及意义.岩石学报, 31(5): 1247-1267. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505005.htm 何世平, 李荣社, 王超, 等, 2013.青藏高原拉萨地块发现古元古代地体.地球科学, 38(3): 519-528. http://www.earth-science.net/WebPage/Article.aspx?id=2720 黄辉, 朱利东, 杨文光, 等, 2012.西藏尼玛北部新生代盆地沉积记录及控盆机理.地质通报, 31(6): 936-942. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201206012.htm 李徐生, 韩志勇, 杨达源, 等, 2006.末次冰期鄱阳湖西南缘地区的风尘堆积.海洋地质与第四纪地质, 26(1): 101-108. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200601021.htm 罗本家, 戴光亚, 潘泽雄, 1996.班公湖-丁青缝合带老第三纪陆相盆地含油前景.地球科学, 21(2): 163-167. http://www.earth-science.net/WebPage/Article.aspx?id=357 罗亮, 安显银, 吴年文, 等, 2014.班公湖-双湖-怒江-昌宁-孟连新元古代-中生代沉积盆地演化.地球科学, 39(8): 1170-1179. http://www.earth-science.net/WebPage/Article.aspx?id=2911 马立祥, 张二华, 鞠俊成, 等, 1996.西藏伦坡拉盆地下第三系沉积体系域基本特征.地球科学, 21(2): 174-178. http://www.earth-science.net/WebPage/Article.aspx?id=359 孟俊, 2013.西藏高原晚中生代以来重要构造事件的古地磁学约束(博士学位论文).北京:中国地质大学. 潘桂棠, 2004.青藏高原及邻区地质图.成都:成都地图出版社. 宋博文, 徐亚东, 梁银平, 等, 2014.中国西部新生代沉积盆地演化.地球科学, 39(8): 1036-1044. http://www.earth-science.net/WebPage/Article.aspx?id=2914 谭富文, 王剑, 付修根, 等, 2009.藏北羌塘盆地基底变质岩的锆石SHRIMP年龄及其地质意义.岩石学报, 25(1): 139-146. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200901012.htm 王成善, 李祥辉, 胡修棉, 2003.再论印度-亚洲大陆碰撞的启动时间.地质学报, 77(1): 16-24. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200301005.htm 王璐琳, 武法东, 2012.青海省青海湖国家地质公园主要地质遗迹类型及其地学意义.地球学报, 33(5): 835-842. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201205023.htm 吴旌, 徐亚东, 安显银, 等, 2014.冈底斯新元古代-中生代沉积盆地演化.地球科学, 39(8): 1052-1061. http://www.earth-science.net/WebPage/Article.aspx?id=2917 吴珍汉, 叶培盛, 殷才云, 2013.藏北改则新生代早期逆冲推覆构造系统.地球学报, 34(1): 31-38. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201301006.htm 许志琴, 王勤, 李忠海, 等, 2016.印度-亚洲碰撞:从挤压到走滑的构造转换.地质学报, 90(1): 1-23. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601001.htm 杨林, 2011.西藏尼玛盆地北部坳陷古近纪沉积记录研究(硕士学位论文).成都:成都理工大学. 张克信, 王国灿, 骆满生, 等, 2010.青藏高原新生代构造岩相古地理演化及其对构造隆升的响应.地球科学, 35(5): 697-712. http://www.earth-science.net/WebPage/Article.aspx?id=2016 张克信, 潘桂棠, 何卫红, 等, 2015.中国构造-地层大区划分新方案.地球科学, 40(2): 206-233. http://www.earth-science.net/WebPage/Article.aspx?id=3179 张克银, 牟泽辉, 朱宏权, 等, 2000.西藏伦坡拉盆地成藏动力学系统分析.新疆石油地质, 21(2): 93-96. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200002000.htm 张志, 陈毓川, 唐菊兴, 等, 2015.西藏尕尔穷-嘎拉勒铜金矿集区火山岩年代学及地球化学.地球科学, 40(1): 77-97. http://www.earth-science.net/WebPage/Article.aspx?id=3024 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2): 1-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200902002.htm