SHRIMP U-Pb Age, Hf Isotope Composition and Geochemical Characteristics of Neoarchean Granitic Complex in Liaodong Lianshanguan Area, NE China
-
摘要: 辽东本溪连山关花岗杂岩岩体的精细年代学和地球化学的研究匮乏,区域上辽东地区新太古代岩浆活动较少,研究也相对较弱.辽东本溪连山关地区处于铀矿集中区,是内生铀矿床的有利成矿地区.区内铀矿主要赋存于连山关花岗杂岩体与辽河群浪子山组或鞍山群的接触带附近,表明了岩体与铀矿化关系密切.连山关地区浅肉红色正长花岗岩SHRIMP U-Pb年龄为2 512±14 Ma,灰白色条痕状二长花岗岩SHRIMP U-Pb年龄为2 510±15 Ma,花岗杂岩侵位时代为新太古代.正长花岗岩SiO2含量为69.28%~72.70%,K2O含量为6.24%~7.12%,Na2O含量为2.77%~3.09%,Al2O3含量为13.68%~15.92%;二长花岗岩SiO2含量为65.53%~71.01%,K2O含量为2.95%~3.90%,Na2O含量为3.57%~4.23%,Al2O3含量为14.13%~14.90%;连山关花岗杂岩含白云母,A/CNK为1.09~1.16(平均1.12),刚玉(C)为1.37~2.28,P2O5和SiO2无负相关关系,表现为高钾的S型花岗岩.稀土总量较高,轻重稀土元素之间强烈分馏,从正铕异常到负铕异常(δEu=3.55~0.36),亏损Nb、Ta、P、Ti等高场强元素,富集Rb、Th、K等大离子亲石元素.锆石εHf(t)值为-15.19~-0.47,对应的单阶段Hf模式年龄TDM为2 826~3 400 Ma,两阶段Hf模式年龄TDMC为2 931~3 650 Ma.辽东连山关花岗杂岩可能是在高温中压条件下由中太古代和古太古代地壳物质(以变质泥岩和杂砂岩为主)发生深熔作用形成的,可能发生在后碰撞环境,指示华北克拉通各微陆块拼贴完成.Abstract: The fine chronology and geochemistry of the Lianshanguan granite complex in Benxi are scarce, and the Neoarchean magmatism in the Liaodong area is less and the study is relatively weak. The Lianshanguan area at Benxi in East Liaoning is the favorable metallogenic area for endogenous uranium deposits within uranium concentration area. Uranium deposits near the contact zone with the region mainly occur in Lianshanguan granitic complex and Langzishan Formation of Liaohe Group or Anshan Group, indicating close relationship between the rock and uranium mineralization. In Lianshanguan area, light flesh red syenogranite yields an SHRIMP U-Pb age of 2 512±14 Ma, white streak-shape monzonitic granite yields an SHRIMP U-Pb age of 2 510±15 Ma, and emplacement age of granitic complex is Neoarchean. Syenogranites show SiO2 of 69.28%-72.70%, K2O of 6.24%-7.12%, Na2O of 2.77%-3.09%, Al2O3 of 13.68%-15.92%. Monzonitic granites show SiO2 of 65.53%-71.01%, K2O of 2.95%-3.90%, Na2O of 3.57%-4.23%, Al2O3 of 14.13%-14.90%. Lianshanguan granitic complex contains muscovite and shows 1.09-1.16 (average 1.12) of A/CNK, 1.37-2.28 of corundum (C), no negative correlation between P2O5 and SiO2, so it is characterized by high potassium S-type granite. rare earth elements show higher content, strong fractional distillation between light and heavy rare earth elements, from positive to negative Eu anomaly (δEu=3.55-0.36), loss of Nb, Ta, P, Ti high field strength elements, enrichment of Rb, Th, K and other large-ion lithophile elements. The εHf(t) is -15.19 to -0.47, single-stage Hf model ages TDM are 2 826-3 400 Ma, and two-stage Hf model ages TDMC are 2 931-3 650 Ma. The Lianshanguan granitic complex in Liaodong area may be formed by deep-melting of Middle-Archean and Paleozoic crustal materials (mainly metamorphic mudstones and miscellaneous sandstones) under high-temperature and medium-pressure conditions, and may occur in the post-collision environment. It indicates that North China Craton micro-land collage was completed.
-
Key words:
- Liaodong peninsula /
- granitic complex /
- Archaean /
- geochronology /
- S-type granite /
- petrology
-
图 5 辽东连山关地区花岗杂岩的SiO2-K2O相关图解和QAP图解
图b中:1a.硅英岩(石英岩);1b.富石英花岗岩类;2.碱长花岗岩;3a.花岗岩(正长花岗岩);3b.花岗岩(二长花岗岩);4.花岗闪长岩;5.英云闪长岩;6*.石英碱长正长岩;6.碱长正长岩;7*.石英正长岩;7.正长岩;8*.石英二长岩;8.二长岩;9*.石英二长闪长岩、石英二长辉长岩;9.二长闪长岩、二长辉长岩;10*.石英闪长岩、石英辉长岩、石英斜长岩;10.闪长岩、辉长岩、斜长岩.图a据Rickwood(1989),图b据Streckeisen(1976)和Le Maitre et al.(1989)
Fig. 5. SiO2-K2O (a) and QAP (b) of the granitic complex from Lianshanguan area in Liaodong Peninsula
图 6 辽东连山关地区花岗杂岩的稀土配分曲线(a)和微量蛛网图(b)
Fig. 6. Rare earth element distribution curves (a) and trace element spider diagram (b) for granitic complex sampled from Lianshanguan area in Liaodong Peninsula
图 7 辽东连山关地区花岗杂岩的ACF图解(a)和A/MF-C/MF图解(b)
Fig. 7. ACF (a) and A/MF-C/MF (b) of the granitic complex from Lianshanguan area in Liaodong Peninsula
图 8 辽东连山关地区花岗杂岩的锆石Lu-Hf同位素特征图解
图a和b据Yang et al.(2006)
Fig. 8. Zircon Lu-Hf isotope characteristics diagram of the granitic complex from Lianshanguan area in Liaodong Peninsula
附表 1 辽东连山关地区花岗杂岩锆石SHRIMP U-Pb年龄数据
附表 1. SHRIMP zircon U-Pb dating of the the granitic complex sampled from Lianshanguan area in Liaodong Peninsula
Spot 206Pbc
(%)10-6 232Th/
238U206Pb*
(10-6)207Pb*/
206Pb*1σ
(%)207Pb*/
235U1σ
(%)206Pb*/
238U1σ
(%)Err
corr206Pb/238U 207Pb/206Pb Disc.
(%)U Th (Ma) (Ma) TW6-1-1.1 0.01 1 363 731 0.55 332 0.135 61 0.47 5.31 1.5 0.283 8 1.4 0.948 1 610 ±20 2 171.9 ±8.1 26 TW6-1-2.1 0.71 982 467 0.49 345 0.158 05 0.59 8.85 1.5 0.405 9 1.4 0.924 2 196 ±27 2 434.9 ±10.0 10 TW6-1-3.1 0.11 643 576 0.93 252 0.164 61 0.53 10.34 1.6 0.455 5 1.5 0.945 2 420 ±31 2 503.6 ±8.9 3 TW6-1-4.1 0.02 1 491 70 0.05 443 0.148 80 0.51 7.09 1.7 0.345 5 1.6 0.955 1 913 ±27 2 332.2 ±8.7 18 TW6-1-5.1 0.18 834 831 1.03 289 0.157 61 0.60 8.75 1.8 0.402 8 1.7 0.942 2 182 ±31 2 430.0 ±10.0 10 TW6-1-6.1 0.91 990 88 0.09 220 0.132 00 0.85 4.67 1.8 0.256 7 1.6 0.881 1 473 ±21 2 124.0 ±15.0 31 TW6-1-7.1 0.03 1 070 213 0.21 400 0.162 67 0.45 9.75 1.5 0.434 6 1.4 0.955 2 326 ±28 2 483.7 ±7.5 6 TW6-1-8.1 0.06 361 296 0.85 144 0.164 12 0.56 10.53 1.6 0.465 2 1.4 0.932 2 462 ±30 2 498.5 ±9.5 1 TW6-1-9.1 0.40 1 447 72 0.05 398 0.144 71 0.58 6.36 1.5 0.318 7 1.4 0.920 1 783 ±21 2 284.4 ±10.0 22 TW6-1-10.1 - 1 540 87 0.06 426 0.143 08 0.42 6.35 1.4 0.321 9 1.3 0.954 1 799 ±21 2 264.8 ±7.3 21 TW6-1-11.1 0.70 773 485 0.65 294 0.201 00 0.60 12.17 1.5 0.439 2 1.4 0.915 2 347 ±27 2 834.3 ±9.8 17 TW6-1-12.1 2.98 272 98 0.37 89 0.153 00 1.80 7.75 2.3 0.367 3 1.4 0.617 2 017 ±25 2 380.0 ±31.0 15 TW6-1-13.1 0.71 1 485 179 0.12 300 0.127 63 0.63 4.11 1.5 0.233 3 1.3 0.903 1 352 ±16 2 066.0 ±11.0 35 TW6-1-14.1 0.71 944 72 0.08 176 0.130 69 0.70 3.88 1.5 0.215 4 1.3 0.884 1 257 ±15 2 107.0 ±12.0 40 TW6-1-15.1 0.15 400 127 0.33 149 0.161 70 0.67 9.64 1.5 0.432 4 1.4 0.898 2 316 ±27 2 474.0 ±11.0 6 TW6-1-16.1 0.06 2 081 207 0.10 366 0.097 96 0.62 2.76 1.5 0.204 4 1.3 0.907 1 199 ±15 1 586.0 ±12.0 24 TW6-1-17.1 0.30 1 628 140 0.09 357 0.129 80 0.50 4.55 1.4 0.254 2 1.3 0.936 1 460 ±17 2 095.2 ±8.8 30 TW6-1-18.1 0.33 1 600 871 0.56 316 0.120 47 0.53 3.81 1.4 0.229 1 1.3 0.929 1 330 ±16 1 963.2 ±9.5 32 TW6-2-1.1 0.23 149 247 1.71 59 0.165 60 0.97 10.52 1.8 0.461 0 1.6 0.852 2 444 ±32 2 513.0 ±16.0 3 TW6-2-2.1 0.87 544 82 0.16 115 0.140 40 0.86 4.73 1.6 0.244 3 1.4 0.851 1 409 ±18 2 232.0 ±15.0 37 TW6-2-3.1 1.70 389 66 0.17 102 0.149 30 1.30 6.18 2.0 0.300 3 1.5 0.762 1 693 ±22 2 338.0 ±22.0 28 TW6-2-4.1 0.45 426 146 0.35 109 0.151 10 0.78 6.20 1.7 0.297 8 1.5 0.888 1 680 ±22 2 358.0 ±13.0 29 TW6-2-5.1 0.05 311 103 0.34 110 0.160 50 0.65 9.10 1.7 0.411 4 1.6 0.921 2 221 ±29 2 461.0 ±11.0 10 TW6-2-6.1 0.19 483 305 0.65 151 0.156 47 0.61 7.84 1.6 0.363 5 1.4 0.920 1 999 ±25 2 418.0 ±10.0 17 TW6-2-7.1 0.24 468 94 0.21 136 0.155 20 0.66 7.24 1.6 0.338 3 1.4 0.909 1 878 ±24 2 404.0 ±11.0 22 TW6-2-8.1 0.25 344 291 0.88 139 0.165 60 0.62 10.71 1.6 0.469 2 1.5 0.921 2 480 ±30 2 514.0 ±10.0 1 TW6-2-9.1 0.33 560 358 0.66 194 0.159 88 0.58 8.87 1.5 0.402 5 1.4 0.925 2 180 ±26 2 454.4 ±9.9 11 TW6-2-10.1 0.73 241 60 0.26 84 0.159 10 1.10 8.87 1.9 0.404 4 1.5 0.797 2 189 ±27 2 446.0 ±19.0 11 TW6-2-8.2 0.02 523 88 0.17 147 0.153 16 0.54 6.93 1.5 0.328 3 1.4 0.932 1 830 ±22 2 381.5 ±9.2 23 TW6-2-10.2 0.06 400 73 0.19 126 0.157 53 0.59 7.95 1.5 0.366 1 1.4 0.922 2 011 ±24 2 429.0 ±10.0 17 TW6-2-11.1 0.49 645 98 0.16 155 0.145 96 0.65 5.58 1.5 0.277 4 1.4 0.902 1 578 ±19 2 299.0 ±11.0 31 TW6-2-12.1 0.06 491 180 0.38 141 0.153 34 0.56 7.05 1.5 0.333 4 1.4 0.926 1 855 ±22 2 383.5 ±9.6 22 TW6-2-13.1 0.05 251 123 0.51 99 0.164 60 1.10 10.39 1.8 0.457 8 1.4 0.799 2 430 ±29 2 503.0 ±18.0 3 TW6-2-14.1 0.01 465 103 0.23 166 0.159 58 0.53 9.11 1.5 0.414 1 1.4 0.933 2 234 ±26 2 451.2 ±8.9 9 TW6-2-15.1 0.14 226 164 0.75 87 0.164 90 0.66 10.17 1.6 0.447 2 1.4 0.907 2 383 ±28 2 506.0 ±11.0 5 TW6-2-16.1 - 825 77 0.10 254 0.151 02 0.46 7.47 1.4 0.359 0 1.3 0.944 1 977 ±22 2 357.5 ±7.9 16 TW6-2-15.2 - 776 71 0.09 238 0.153 21 0.47 7.55 1.4 0.357 6 1.3 0.941 1 971 ±22 2 382.1 ±8.0 17 附表 2 辽东连山关地区花岗杂岩的主量元素含量(%)
附表 2. Major elements (%) data for the granitic complex from Lianshanguan area in Liaodong Peninsula
样品号 Ls611 Ls612 Ls613 Ls614 Fj621 Fj622 Fj623 Fj624 SiO2 72.70 72.06 72.32 69.28 71.01 65.90 66.03 65.53 TiO2 0.23 0.22 0.24 0.24 0.33 0.67 0.68 0.62 Al2O3 13.68 14.08 14.33 15.92 14.13 14.49 14.63 14.90 Fe2O3 2.27 2.05 2.11 2.21 3.76 6.56 6.42 6.42 MnO 0.033 0.029 0.039 0.040 0.051 0.074 0.075 0.076 MgO 0.53 0.47 0.50 0.58 1.26 2.56 2.47 2.37 CaO 0.52 0.50 0.59 0.63 1.32 1.53 1.67 1.77 Na2O 2.96 2.94 2.77 3.09 3.57 3.95 4.23 3.62 K2O 6.25 6.68 6.24 7.12 3.90 3.38 2.95 3.71 P2O5 0.120 0.120 0.100 0.120 0.071 0.067 0.075 0.110 FeO 1.26 1.03 1.03 0.99 2.70 4.67 4.45 4.58 LOI 0.56 0.71 0.63 0.67 0.46 1.18 1.13 1.24 A/CNK 1.089 1.085 1.158 1.143 1.131 1.121 1.110 1.129 σ43 2.86 3.19 2.77 3.96 2.01 2.43 2.31 2.47 Q 29.18 27.31 29.93 21.65 28.51 19.27 19.38 19.47 An 1.79 1.72 2.24 2.33 5.98 6.88 7.52 7.83 Ab 24.88 24.86 23.38 26.08 29.58 32.21 34.59 29.61 Or 36.75 39.45 36.79 41.99 22.60 19.28 16.83 21.15 附表 3 辽东连山关地区花岗杂岩的微量元素含量(10-6)
附表 3. Major trace and rare-earth elements (10-6) data for the granitic complex from Lianshanguan area in Liaodong Peninsula
样品号 Ls611 Ls612 Ls613 Ls614 Fj621 Fj622 Fj623 Fj624 Cr 3 3 7 2 62 131 128 110 Ni 2.72 2.41 1.91 2.07 21.90 49.10 49.90 45.50 Rb 283 299 285 334 145 175 175 191 Sr 85.7 88.2 87.5 94.6 258.0 234.0 232.0 272.0 Zr 222 207 224 240 69 228 158 150 Nb 11.1 11.4 11.5 13.4 12.2 13.3 18.8 18.1 Ba 702 723 689 801 870 596 430 615 Hf 6.09 5.52 5.07 4.75 1.82 5.79 3.77 4.25 Ta 1.82 2.15 1.94 1.12 1.13 1.23 1.13 0.95 Th 20.0 19.4 21.5 17.8 4.7 18.9 13.8 9.7 U 7.94 7.82 8.49 7.47 0.50 1.15 1.77 0.76 Li 5.94 5.83 5.86 5.52 16.10 26.80 25.90 25.50 Be 1.69 1.78 1.70 2.14 1.81 2.38 2.26 2.21 Co 2.68 2.50 2.74 2.92 10.70 16.20 16.90 15.70 V 17.9 19.1 18.8 16.4 46.6 90.7 83.9 83.9 Ga 18.0 18.2 17.6 19.1 16.4 22.0 21.0 21.1 Y 22.5 20.2 19.7 19.5 4.7 6.5 5.2 7.1 La 61.7 54.8 74.7 65.1 13.3 160.0 94.1 58.0 Ce 126 114 147 141 18 207 122 77 Pr 11.9 10.4 14.5 12.5 1.9 19.5 11.6 7.2 Nd 39.3 33.7 47.9 40.3 6.4 57.8 34.9 21.6 Sm 7.01 6.02 8.37 6.82 1.07 6.17 3.69 2.80 Eu 0.82 0.81 0.91 0.90 1.20 1.35 0.96 1.04 Gd 5.91 5.00 6.99 5.78 0.97 6.44 4.01 2.76 Tb 0.81 0.68 0.91 0.78 0.14 0.52 0.34 0.29 Dy 4.36 3.68 4.68 3.92 0.80 1.53 1.12 1.28 Ho 0.79 0.67 0.83 0.70 0.16 0.23 0.18 0.24 Er 1.95 1.68 2.15 1.72 0.39 0.65 0.55 0.61 Tm 0.36 0.30 0.38 0.32 0.08 0.08 0.07 0.11 Yb 2.01 1.69 2.05 1.72 0.41 0.49 0.46 0.61 Lu 0.27 0.22 0.28 0.24 0.06 0.08 0.07 0.10 ∑REE 263.1 233.2 311.8 281.9 45.3 461.7 274.2 173.1 LREE 246.6 219.3 293.5 266.8 42.3 451.6 267.4 167.1 HREE 16.45 13.93 18.29 15.17 3.00 10.03 6.80 5.99 LREE/HREE 14.99 15.75 16.05 17.59 14.10 45.01 39.33 27.89 LaN/YbN 22.06 23.23 26.12 27.15 23.35 233.19 148.02 68.23 δEu 0.38 0.43 0.36 0.43 3.55 0.65 0.76 1.13 附表 4 辽东连山关地区花岗杂岩的锆石Hf同位素含量
附表 4. Hf isotope data of the granitic complex from Lianshanguan area in Liaodong Peninsula
No. Age
(Ma)176Yb/
177Hf176Lu/
177Hf176Hf/
177Hf2σ 176Hf/
177HfiεHf(0) εHf(t) TDM
(Ma)TDMC
(Ma)fLu/Hf TW6-1-1.1.xls 2 171.9 0.038 034 0.001 359 0.280 934 0.000 013 0.280 892 -65.81 -19.30 3 283 3 585 -0.96 TW6-1-2.1.xls 2 434.9 0.035 446 0.001 226 0.280 858 0.000 013 0.280 806 -68.50 -15.99 3 375 3 634 -0.96 TW6-1-3.1.xls 2 503.6 0.030 484 0.001 124 0.280 833 0.000 013 0.280 781 -69.38 -15.19 3 400 3 650 -0.97 TW6-1-4.1.xls 2 332.2 0.028 424 0.001 082 0.280 923 0.000 010 0.280 884 -66.20 -15.73 3 274 3 539 -0.97 TW6-1-5.1.xls 2 430.0 0.029 336 0.001 003 0.280 890 0.000 014 0.280 848 -67.36 -14.60 3 312 3 562 -0.97 TW6-1-6.1.xls 2 124.0 0.016 900 0.000 723 0.281 229 0.000 012 0.281 209 -55.38 -8.96 2 833 3 041 -0.98 TW6-1-7.1.xls 2 483.7 0.041 605 0.001 479 0.280 941 0.000 015 0.280 876 -65.56 -12.39 3 284 3 498 -0.96 TW6-1-8.1.xls 2 498.5 0.028 721 0.001 028 0.280 910 0.000 014 0.280 861 -66.66 -12.40 3 287 3 511 -0.97 TW6-1-9.1.xls 2 284.4 0.051 533 0.001 798 0.280 905 0.000 014 0.280 844 -66.83 -18.54 3 361 3 638 -0.95 TW6-1-10.1.xls 2 264.8 0.036 996 0.001 306 0.280 889 0.000 012 0.280 845 -67.40 -18.78 3 340 3 634 -0.96 TW6-1-11.1.xls 2 834.3 0.036 636 0.001 298 0.280 742 0.000 013 0.280 684 -72.60 -11.36 3 538 3 731 -0.96 TW6-1-12.1.xls 2 380.0 0.021 860 0.000 874 0.281 212 0.000 015 0.281 179 -55.98 -4.06 2 867 3 007 -0.97 TW6-1-13.1.xls 2 066.0 0.044 025 0.001 570 0.280 946 0.000 020 0.280 906 -65.38 -21.49 3 285 3 607 -0.95 TW6-1-14.1.xls 2 107.0 0.019 938 0.000 789 0.281 218 0.000 011 0.281 199 -55.77 -9.83 2 852 3 069 -0.98 TW6-1-15.1.xls 2 474.0 0.008 544 0.000 378 0.281 215 0.000 013 0.281 199 -55.87 -1.01 2 826 2 934 -0.99 TW6-1-16.1.xls 1 586.0 0.040 046 0.001 541 0.280 931 0.000 012 0.280 897 -65.91 -32.38 3 303 3 759 -0.95 TW6-1-17.1.xls 2 095.2 0.035 355 0.001 313 0.280 886 0.000 014 0.280 850 -67.51 -22.63 3 344 3 686 -0.96 TW6-1-18.1.xls 1 963.2 0.049 566 0.001 621 0.280 925 0.000 012 0.280 884 -66.13 -24.54 3 318 3 674 -0.95 TW6-2-1.1.xls 2 513.0 0.028 634 0.001 059 0.281 216 0.000 013 0.281 167 -55.84 -1.24 2 875 2 977 -0.97 TW6-2-2.1.xls 2 232.0 0.014 738 0.000 604 0.281 255 0.000 012 0.281 239 -54.46 -5.43 2 789 2 955 -0.98 TW6-2-3.1.xls 2 338.0 0.013 644 0.000 513 0.281 194 0.000 015 0.281 178 -56.61 -5.07 2 864 3 022 -0.98 TW6-2-4.1.xls 2 358.0 0.018 299 0.000 716 0.281 287 0.000 014 0.281 264 -53.33 -1.63 2 754 2 870 -0.98 TW6-2-5.1.xls 2 461.0 0.015 519 0.000 707 0.281 234 0.000 012 0.281 204 -55.20 -1.18 2 825 2 932 -0.98 TW6-2-6.1.xls 2 418.0 0.029 412 0.001 194 0.281 306 0.000 015 0.281 261 -52.65 -0.39 2 762 2 858 -0.96 TW6-2-7.1.xls 2 404.0 0.018 161 0.000 736 0.281 186 0.000 012 0.281 160 -56.90 -4.22 2 892 3 034 -0.98 TW6-2-8.1.xls 2 514.0 0.014 043 0.000 559 0.281 091 0.000 013 0.281 065 -60.26 -4.81 3 006 3 153 -0.98 TW6-2-8.2.xls 2 454.4 0.016 513 0.000 673 0.281 141 0.000 013 0.281 117 -58.49 -4.58 2 947 3 093 -0.98 TW6-2-9.1.xls 2 446.0 0.021 671 0.000 864 0.281 263 0.000 015 0.281 227 -54.17 -0.75 2 797 2 898 -0.97 TW6-2-10.1.xls 2 381.5 0.022 637 0.000 906 0.281 218 0.000 015 0.281 180 -55.77 -3.86 2 861 2 999 -0.97 TW6-2-10.2.xls 2 429.0 0.024 513 0.001 003 0.281 225 0.000 012 0.281 187 -55.52 -2.71 2 859 2 981 -0.97 TW6-2-11.1.xls 2 299.0 0.011 155 0.000 499 0.281 222 0.000 011 0.281 208 -55.62 -4.93 2 826 2 984 -0.98 TW6-2-12.1.xls 2 383.5 0.016 915 0.000 717 0.281 239 0.000 015 0.281 213 -55.02 -2.77 2 819 2 946 -0.98 TW6-2-13.1.xls 2 503.0 0.013 808 0.000 575 0.281 221 0.000 011 0.281 195 -55.66 -0.47 2 833 2 931 -0.98 TW6-2-14.1.xls 2 451.2 0.016 008 0.000 663 0.281 243 0.000 012 0.281 215 -54.88 -1.01 2 809 2 915 -0.98 TW6-2-15.1.xls 2 506.0 0.020 869 0.000 835 0.281 190 0.000 014 0.281 152 -56.76 -1.94 2 894 3 006 -0.97 TW6-2-15.2.xls 2 357.5 0.016 722 0.000 688 0.281 204 0.000 012 0.281 178 -56.26 -4.55 2 864 3 013 -0.98 TW6-2-16.1.xls 2 382.1 0.011 910 0.000 473 0.281 191 0.000 011 0.281 173 -56.72 -4.11 2 865 3 011 -0.99 -
Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos, 50(1-3):51-73.doi: 10.1016/s0024-4937(99)00052-3 Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622.doi: 10.1007/s00410-002-0364-7 Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258.doi:10.1016/s0012-821x (97)00040-x Gao, Y.B., Li, W.Y., Qian, B., et al., 2014.Geochronology, Geochemistry and Hf Isotopic Compositions of the Granitic Rocks Related with Iron Mineralization in Yemaquan Deposit, East Kunlun, NW China.Acta Petrologica Sinica, 30(6):1647-1665(in Chinese with English abstract). https://www.researchgate.net/publication/285649605_Geochronology_geochemistry_and_Hf_isotopic_compositions_of_the_granitic_rocks_related_with_iron_mineralization_in_Yemaquan_deposit_East_Kunlun_NW_China Geng, Y.S., Liu, D.Y., Song, B., 1997.Chronological Framework of the Early Precambrian Important Events of the Northwestern Hebei Granulite Terrain.Acta Geologica Sinica, 71(4):316-327(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE199704003.htm Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359.doi: 10.1016/0009-2541(94)00145-x Han, J., Xia, Y.L., 2009.Discussion on Zircon LA-ICP-MS Ages of Lianshanguan-Gaojiagou Granites and Its Significance.Uranium Geology, 25(4):214-221(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ200904005.htm Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm Le Maitre, R.W., Bateman, P., Dudek, A., et al., 1989.A Classification of Igneous Rocks and Glossary of Terms.Blackwell, Oxford.10:4-8. Li, B.L., Sun, Y.G., Chen, G.J., et al., 2016.Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Mountains.Earth Science, 41(1):1-16(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201601001.htm Li, C.N., 1992.Trace Elements of Igneous Petrology.Geological Publishing House, Beijing (in Chinese). Li, J.C., Luo, C.W., Tong, C.H., et al., 1986.Geochemistry of REE in Lianshanguan Uranium Deposit, Northern China.Journal of Chengdu College of Geology, 13(4):1-10(in Chinese with English abstract). http://www.researchgate.net/publication/312610396_Geochemistry_of_REE_in_Lianshanguan_Uranium_Deposit_Northern_China Li, J.H., 1998.Supercontinent Cycle in the Precambrian and Its Implication for the Plate Tectonics.Earth Science Frontiers, 5(Suppl.1):141-151(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY8S1.018.htm Liu, Y.J., Cao, L.M., Li, Z.L., et al., 1984.Element Geochemistry.Science Press, Beijing (in Chinese). Pidgeon, R.T., 1992.Recrystallisation of Oscillatory Zoned Zircon:Some Geochronological and Petrological Implications.Contributions to Mineralogy and Petrology, 110(4):463-472.doi: 10.1007/bf00344081 Pidgeon, R.T., Nemchin, A.A., Hitchen, G.J., 1998.Internal Structures of Zircons from Archaean Granites from the Darling Range Batholith:Implications for Zircon Stability and the Interpretation of Zircon U-Pb Ages.Contributions to Mineralogy and Petrology, 132(3):288-299.doi: 10.1007/s004100050422 Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263.doi: 10.1016/0024-4937(89)90028-5 Rollison, H.R., 1993.Using Geochemical Data:Evaluation, Pre-Sentation, Interpretation.Longman Group UK, London. Scherer, E., Munker, C.Mezger, K., 2001.Calibration of the Lutetium-Hafnium Clock.Science, 293:683-687. doi: 10.1126/science.1061372 Shi, B., Zhu, Y.H., Zhong, Z.Q., et al., 2016.Petrological, Geochemical Characteristics and Geological Significance of the Caledonian Peraluminous Granites in Heihai Region, Eastern Kunlun.Earth Science, 41(1):35-54(in Chinese with English abstract). Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30(in Chinese with English abstract). Streckeisen, A., 1976.To Each Plutonic Rock Its Proper Name.Earth-Science Reviews, 12(1):1-33.doi: 10.1016/0012-8252(76)90052-0 Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44.doi: 10.1016/s0024-4937(98)00024-3 Tong, G.Y., Liu, X.C., Shen, B.W., 2012.Uranium Mineralization Geological Conditions and Prospecting Direction of Liaoning Lianshanguan Area.Science and Technology Innovation Herald, 1:11-13(in Chinese). Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2015.Some Progress in the Study of Archean Basement of the North China Craton.Acta Geoscientica Sinica, 36(6):685-700(in Chinese with English abstract). https://www.researchgate.net/publication/287520905_Some_progress_in_the_study_of_archean_basement_of_the_North_China_Craton Wang, Q., 2012.Breakup of China-Korea Platform and Establishment of North China and Huatai Cratons.Acta Geologica Sinica, 86(10):1553-1568(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201210002.htm Wang, S., Zhang, D., Zhao, H.S., et al., 2016.Geochemistry, Zircon U-Pb Dating and Hf Isotope Composition of Granite in Fanshan Area, Pinghe County, Fujian Province, and Its Geological Significance.Earth Science, 41(1):67-83(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201601006.htm Wang, X., Huang, X.L., Ma, J.L., et al., 2015.Hf-Nd Isotopes of the Early Precambrian Metamorphic Complexes in the Southern Segment of the Trans-North China Orogen:Implications for Crustal Evolution.Geotectonica et Metallogenia, 39(6):1108-1118(in Chinese with English abstract). https://www.researchgate.net/publication/295861739_Hf-Nd_Isotopes_of_the_Early_Precambrian_Metamorphic_Complexes_in_the_Southern_Segment_of_the_Trans-North_China_Orogen_Implications_for_Crustal_Evolution Wu, D., Zhuang, T.X., Liu, X.D., et al., 2013.Petrological and Geochemical Characteristics of Remelting Chorismite in Lianshanguan Area of East Liaoning.World Nuclear Geoscience, 30(4):210-216(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB199200003.htm Wu, J.S., Geng, Y.S., Shen, Q.H., et al., 1998.Archean Geological Characteristics and Tectonic Evolution of the Ancient Continent of China and the DPRK.Geological Publishing House, Beijing (in Chinese). Yang, J., Wu, F., Shao, J., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352.doi: 10.1016/j.epsl.2006.04.029 Zhai, M.G., Bian, A.G., 2000.Late Neoproterozoic Supercontinent Assemblage and the Paleoproterozoic-Mesoproterozoic Cleavage of the North China Craton.Science in China (Series D), 30(Suppl.):129-137(in Chinese). Zhai, M.G., Guo, J.H., Zhao, T.P., 2001.Study Advances of Neoarchaean-Paleoproterozoic Tectonic Evolution in the North China Craton.Progress in Precambrian Research, 24(3):17-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ200101003.htm Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and Its Implications.Acta Petrologica Sinica, 22(9):2249-2269(in Chinese with English abstract). https://www.researchgate.net/publication/279655758_Granite_classification_on_the_basis_of_Sr_and_Yb_contents_and_its_implications Zhang, Q., Zhai, M.G., 2012.What is the Archean TTG?Acta Petrologica Sinica, 28(11):3446-3456(in Chinese with English abstract). https://www.researchgate.net/publication/279707627_What_is_the_Archean_TTG 高永宝, 李文渊, 钱兵, 等, 2014.东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征.岩石学报, 30(6):1647-1665. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406009.htm 耿元生, 刘敦一, 宋彪, 1997.冀西北麻粒岩区早前寒武纪主要地质事件的年代格架.地质学报, 71(4):316-327. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199704003.htm 韩军, 夏毓亮, 2009.连山关-高家沟花岗岩体LA-ICP-MS锆石U-Pb年龄及其地质意义.铀矿地质, 25(4):214-221. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200904005.htm 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 李碧乐, 孙永刚, 陈广俊, 等, 2016.小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义.地球科学, 41(1):1-16. doi: 10.11764/j.issn.1672-1926.2016.01.0001 李昌年, 1992.火成岩微量元素岩石学.北京:地质出版社, 97-123. 李巨初, 罗朝文, 童纯菡, 等, 1986.连山关铀矿床稀土元素地球化学特征.成都地质学院学报, 13(4):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198604000.htm 李江海, 1998.前寒武纪的超大陆旋回及其板块构造演化意义.地学前缘, 5(S1):141-151. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY8S1.018.htm 刘英俊, 曹励明, 李兆麟, 等, 1984.元素地球化学.北京:科学出版社, 6-40. 施彬, 朱云海, 钟增球, 等, 2016.东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义.地球科学, 41(1):35-54. http://www.earth-science.net/WebPage/Article.aspx?id=3217 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(增刊):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm 佟国元, 刘宪春, 沈步威, 2012.辽宁连山关地区铀成矿地质条件及找矿方向.科技创新导报, 1:11-13. doi: 10.3969/j.issn.1674-098X.2012.01.011 万渝生, 董春艳, 颉颃强, 等, 2015.华北克拉通太古宙研究若干进展.地球学报, 36(6):685-700. doi: 10.3975/cagsb.2015.06.01 王荃, 2012.中朝古陆的解体与华北、华泰二克拉通的确立.地质学报, 86(10):1553-1568. doi: 10.3969/j.issn.0001-5717.2012.10.001 王森, 张达, 赵红松, 等, 2016.福建平和矾山地区花岗岩地球化学、年代学、Hf同位素特征及地质意义.地球科学, 41(1):67-83. http://www.earth-science.net/WebPage/Article.aspx?id=3219 王雪, 黄小龙, 马金龙, 等, 2015.华北克拉通中部造山带南段早前寒武纪变质杂岩的Hf-Nd同位素特征及其地壳演化意义.大地构造与成矿学, 39(6):1108-1118. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201506013.htm 吴迪, 庄廷新, 刘晓东, 等, 2013.辽东连山关地区重熔混合岩岩石地球化学特征.世界核地质科学, 30(4):210-216. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201304006.htm 伍家善, 耿元生, 沈其韩, 等, 1998.中朝古大陆太古宙地质特征及构造演化.北京:地质出版社. 翟明国, 卞爱国, 2000.华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解.中国科学(D辑), 30(增刊):129-137. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2000S1016.htm 翟明国, 郭敬辉, 赵太平, 2001.新太古-古元古代华北陆块构造演化的研究进展.前寒武纪研究进展, 24(3):17-27. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200101003.htm 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm 张旗, 翟明国, 2012.太古宙TTG岩石是什么含义?岩石学报.28(11):3446-3456. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211004.htm