Neoproterozoic Magmatic Events and Tectonic Attribution of the Erguna Massif:Constraints from Geochronological, Geochemical and Hf Isotopic Data of Intrusive Rocks
-
摘要: 对额尔古纳地块新元古代花岗岩进行了锆石LA-ICP-MS U-Pb年代学、岩石地球化学和锆石Hf同位素研究,以便对其新元古代岩浆作用历史与微陆块构造属性给予制约.所测花岗质岩石中锆石的CL图像特征和Th/U比值(0.17~1.46) 显示其为岩浆成因.测年结果并结合前人定年结果,可以判定额尔古纳地块上至少存在~929 Ma、~887 Ma、~850 Ma、~819 Ma、~792 Ma、~764 Ma和~738 Ma岩浆事件.岩石地球化学特征显示,~887 Ma花岗岩为一套后碰撞花岗岩类;而850~737 Ma花岗质岩石整体上属于A-型花岗岩,也有部分岩体(漠河、阿木尔、碧水和室韦岩体)显示I-型花岗岩特征.锆石Hf同位素特征反映这些花岗岩的源区既有中-新元古代(TDM2=884~1 563 Ma)新增生地壳物质的部分熔融,同时伴有少量古老地壳物质的混染,也有残留的古老中基性下地壳物质的部分熔融.综合研究区新元古代侵入岩的地球化学特征,同时对比新元古代全球构造热事件,认为额尔古纳地块上新元古代岩浆活动记录了Rodinia超大陆形成和演化过程中的地壳响应:927~880 Ma的岩浆作用应是Rodinia超大陆汇聚造山的产物;而850~737 Ma的岩浆作用应是对Rodinia超大陆快速裂解的记录.通过岩浆事件对比发现,额尔古纳地块与邻近的西伯利亚南缘微陆块(如中蒙古地块和图瓦地块)具有亲缘性,而与塔里木板块和华南板块至少在新元古代岩浆活动上具有一定的相似性,而明显区别于华北板块和西伯利亚板块.Abstract: This paper presents LA-ICP-MS zircon U-Pb dating, major and trace elements, and Hf isotope data of the Neoproterozoic granitoids in the Erguna Massif with the aim of constraining the Neoproterozoic tectonic evolution and tectonic attribution of the Erguna Massif. Zircons from these granitoids are of magmatic origin in accordance with CL images and high Th/U ratios (0.17-1.46). The zircon dating results, together with previously published age data, demonstrate that the Neoproterozoic magmatisms in the Erguna Massif can be subdivided into seven stages: about 929 Ma, about 887 Ma, about 850 Ma, about 819 Ma, about 792 Ma, about 764 Ma and about 738 Ma. Geochemically, about 887 Ma granites are similar to those of post-collisional granites, whereas 850-737 Ma granitoids are similar generally to A-type granites, except for some samples (collected from Mohe, Amuer, Bishui and Shiwei plutons) which are similar to I-type granites. Zircon Hf isotopic compositions indicate that their primary magmas could have originated not only by partial melting of a depleted lower crust that accreated during the Meso-Neoproterozoic (TDM2=884-1 563 Ma), with a contribution of ancient crustal material in their petrogenesis, but also by partial melting of the residual ancient mafic crustal material. These geochemical data, combined with the published data and the global magmatic-tectonic-thermal events, indicate that Neoproterozoic magmatic events within the Erguna Massif recorded crustal evolution as a result of the assembly and breakup of the Rodinia supercontinent: magmatisms between 927 Ma and 880 Ma were the result of collision-orogeny during the stage of assembly of the Rodinia supercontinent, whereas the 850-737 Ma magmatisms recorded the breakup of the Rodinia supercontinent. The Erguna Massif has an affinity to the adjacent massifs (e.g. Central Mongolia and Tuva massifs) near the southern margin of the Siberian block, and is similar to the Tarim and South China blocks at least in terms of these Neoproterozoic magmatic events, but obviously different from the North China and Siberian blocks.
-
Key words:
- Erguna massif /
- Neoproterozoic /
- magmatism /
- geochronology /
- geochemistry /
- tectonic attribution
-
图 1 研究区地质及构造简图
a.中国东北地区构造简图(据Wu et al., 2007修改)(① 喜桂图-塔源断裂,② 贺根山-黑河断裂,③ 索伦-西拉木伦-长春缝合带,④ 嘉荫-牡丹江断裂,⑤ 伊通-依兰断裂,⑥ 敦化-密山断裂);b.研究区地质简图(内蒙古自治区地质矿产局,1991;黑龙江省地质矿产局,1993)
Fig. 1. Detailed geological map of the study area and tectonic sketch map of NE China
图 10 新远古代岩浆事件统计频数
图a据本文、Wu et al.(2011)、佘宏全等(2012)、孙立新等(2012)、Gou et al.(2013)、Tang et al.(2013)、张丽等(2013)和赵硕等(2016);图b据Izokh et al.(1998)、Kuzmichev et al.(2001)、Ritsk et al.(2001)、Sklyarov et al.(2003)和Gladkochub et al.(2007);图c据Long et al.(2011)和Rojas-Agramonte et al.(2011);图d据Li et al.(2003)、Lin et al.(2007)和Charvet et al.(2013)
Fig. 10. Relative-age-probability diagram summarizing the Neoproterozoic magmatic events
图 5 研究区新元古代侵入岩的TAS图
碱性系列和亚碱性系列分界线据Irvine and Baragar (1971),灰色投影点据已报道额尔古纳地块新元古代侵入岩地化数(孙立新等,2012;Gou et al., 2013;Tang et al., 2013)
Fig. 5. Plot of total alkali versus SiO2 (TAS) for the Neoproterozoic intrusive rocks in the Erguna Massif
图 6 (a)研究区新元古代侵入岩的K2O-SiO2图;(b)研究区新元古代侵入岩的A/NK-A/CNK图
图例同图 5
Fig. 6. Plots of K2O versus SiO2 (a) and A/CNK versus A/NK (b) for the Neoproterozoic intrusive rocks in the Erguna Massif
图 7 研究区新元古代侵入岩的球粒陨石标准化稀土元素配分型式(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石和原始地幔元素值分别据Boynton(1984)和Sun and McDonough(1989);阴影部分据孙立新等(2012)、Tang et al.(2013)和Gou et al.(2013);图例同图 5
Fig. 7. Chondrite-normalized REE patterns (a) and primitive-mantle-normalized trace element spidergrams (b) for the Neoproterozoic intrusive rocks in the Erguna Massif
图 8 研究区新元古代侵入岩的Hf同位素组成和锆石年龄关系
图例同图 5
Fig. 8. Correlations between Hf isotopic compositions and ages of zircons from the Neoproterozoic intrusive rocks
图 9 研究区新元古代侵入岩的TFeO/MgO-(Zr+Nb+Ce+Y)和(Na2O+K2O)/CaO-(Zr+Nb+Ce+Y)图
据Whalen et al.(1987);A.A型花岗岩;FG.分异的花岗岩;OGT.未分异的M、I、S型花岗岩; 图例同图 5
Fig. 9. Plots of TFeO/MgO versus Zr+Nb+Ce+Y and (Na2O+K2O)/CaO versus Zr+Nb+Ce+Y for the Neoproterozoic intrusive rocks in the Erguna Massif
表 1 额尔古纳地块新元古代侵入岩的岩石学特征
Table 1. Petrography of the Neoproterozoic intrusive rocks in the Erguna Massif
样品号 采样点坐标 采样点位置 岩体名称 岩石类型 新鲜面颜色 结构 构造 矿物组成(%) Q Af Pl Bi 副矿物 12ER28-1 122°04′18.3″E 52°04′20.0″N 满归镇北约3 km处 满归岩体 黑云母二长花岗岩 肉红色 似斑状 片麻状 28 35 25 10 2 13ER13-1 122°05′33.0″E 52°03′26.4″N 满归镇北东约5 km处 满归岩体 碱长花岗岩 肉红色 似斑状 片麻状 25 50 10 13 2 14ER17-1 122°21′32.5″E 53°04′47.0″N 漠河县城北约15 km处 漠河岩体 黑云母二长花岗岩 灰白色 中细粒半自形 片麻状 20 40 30 7 3 14ER11-1 123°39′57.6″E 52°26′39.6″N 碧水镇北约30 km处 碧水岩体 碱长花岗岩 肉红色 中粗粒半自形 块状 25 65 5 3 2 14ER13-1 123°10′26.8″E 52°41′08.2″N 阿木尔镇南约15 km处 阿木尔岩体 花岗闪长岩 灰白色 中细粒半自形 片麻状 25 15 50 8 2 12ER14-1 120°15′37.5″E 51°18′41.3″N 室韦镇东约30 km处 室韦岩体 黑云母二长花岗岩 灰黑色 似斑状 片麻状 30 35 25 8 2 12ER7-1 119°15′12.5″E 50°29′30.7″N 五卡村北约10 km处 五卡岩体 碱长花岗岩 灰白色 细粒半自形 片麻状 35 45 10 8 2 表 2 额尔古纳地块新元古代侵入岩锆石LA-ICP-MS U-Pb定年数据
Table 2. LA-ICP-MS zircon U-Pb dating data for the Neoproterozoic intrusive rocks in the Erguna Massif
点号 232Th(10 -6) 238U(10 -6) Th/U Pb(10 -6) 同位素比值 年龄(Ma) 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 12ER28-1 1 2 564 20 920 0.12 3 093 0.069 50 0.001 50 1.112 62 0.023 74 0.114 85 0.001 00 914 30 759 11 701 6 2 2 803 13 867 0.20 2 560 0.069 55 0.001 42 1.111 50 0.023 19 0.114 68 0.001 19 915 26 759 11 700 7 3 2 597 8 011 0.32 1 984 0.067 60 0.001 45 1.334 86 0.033 82 0.141 46 0.002 20 856 28 861 15 853 12 4 949 4 854 0.20 947 0.067 94 0.001 73 1.327 85 0.035 23 0.140 32 0.001 81 867 34 858 15 846 10 5 919 5 425 0.17 1 009 0.067 55 0.001 65 1.333 49 0.032 55 0.141 38 0.001 34 855 35 860 14 852 8 6 3 404 12 192 0.28 2 638 0.069 88 0.001 55 1.066 48 0.023 54 0.109 44 0.001 11 925 29 737 12 670 6 7 3 255 16 600 0.20 2 431 0.075 36 0.001 83 1.009 37 0.024 79 0.096 05 0.001 38 1 078 27 709 13 591 8 8 4 256 15 513 0.27 2 768 0.071 38 0.001 62 1.116 57 0.024 76 0.111 62 0.000 96 968 31 761 12 682 6 9 1 813 9 545 0.19 1 804 0.066 91 0.001 66 1.320 90 0.039 84 0.140 56 0.002 75 835 32 855 17 848 16 10 4 098 14 752 0.28 2 554 0.070 49 0.002 34 1.139 66 0.037 20 0.114 82 0.001 24 943 49 772 18 701 7 11 2 280 16 642 0.14 2 599 0.067 40 0.001 81 1.114 36 0.030 14 0.118 17 0.001 20 850 39 760 14 720 7 12 385 1 846 0.21 367 0.066 21 0.002 49 1.295 72 0.050 43 0.140 79 0.002 18 813 55 844 22 849 12 13 2 174 9 481 0.23 1 861 0.067 66 0.001 91 1.323 46 0.040 15 0.140 78 0.002 11 858 38 856 18 849 12 14 1 539 24 871 0.06 2 981 0.06 893 0.001 58 1.092 64 0.026 00 0.113 75 0.001 06 897 34 750 13 694 6 15 2 527 6 419 0.39 1 734 0.070 26 0.001 70 1.568 08 0.038 15 0.160 20 0.001 48 936 35 958 15 958 8 13ER12-1 1 1 153 2 371 0.49 1 061 0.067 00 0.000 85 1.303 91 0.016 67 0.140 28 0.000 71 838 18 847 7 846 4 2 1 035 5 121 0.20 1 306 0.067 20 0.000 82 1.310 53 0.017 52 0.140 60 0.000 99 844 16 850 8 848 6 3 847 1 979 0.43 735 0.067 22 0.000 92 1.304 45 0.018 81 0.139 99 0.000 99 845 18 848 8 845 6 4 563 2 322 0.24 651 0.067 39 0.000 96 1.382 02 0.020 98 0.147 86 0.001 00 850 20 881 9 889 6 5 221 674 0.33 244 0.068 83 0.001 18 1.413 38 0.025 13 0.148 49 0.001 34 894 22 895 11 892 8 6 730 2 312 0.32 856 0.068 71 0.001 06 1.412 42 0.022 60 0.148 43 0.001 17 890 20 894 10 892 7 7 902 887 1.02 685 0.067 41 0.001 05 1.311 77 0.020 98 0.140 45 0.001 01 850 21 851 9 847 6 8 575 1 596 0.36 525 0.068 17 0.000 89 1.298 81 0.018 05 0.137 41 0.000 93 874 18 845 8 830 5 9 528 2 631 0.20 642 0.068 02 0.000 85 1.361 36 0.018 25 0.144 30 0.001 00 869 17 872 8 869 6 10 944 2 813 0.34 970 0.068 04 0.000 99 1.360 78 0.020 81 0.144 14 0.001 10 870 19 872 9 868 6 11 730 2 413 0.30 763 0.068 36 0.001 03 1.360 32 0.021 25 0.143 27 0.001 03 880 20 872 9 863 6 12 687 3 528 0.19 874 0.068 07 0.001 06 1.351 84 0.020 61 0.143 30 0.001 06 871 19 868 9 863 6 13 1 332 910 1.46 1 049 0.068 77 0.001 00 1.413 93 0.020 84 0.148 08 0.000 97 892 20 895 9 890 5 14 1 168 3 100 0.38 1 135 0.067 71 0.000 83 1.393 85 0.019 19 0.148 12 0.001 17 860 16 886 8 890 7 15 446 2 852 0.16 559 0.068 47 0.000 83 1.282 15 0.015 82 0.134 73 0.000 80 883 16 838 7 815 5 16 587 3 609 0.16 764 0.067 65 0.000 82 1.273 04 0.015 81 0.135 43 0.000 92 858 15 834 7 819 5 13ER13-1 1 964 5 040 0.19 1 311 0.068 56 0.001 10 1.388 52 0.019 81 0.146 88 0.001 06 886 34 884 8 883 6 2 699 3 133 0.22 794 0.068 27 0.000 81 1.331 65 0.016 69 0.140 43 0.000 93 877 15 860 7 847 5 3 531 1 567 0.34 570 0.069 42 0.000 92 1.469 37 0.019 59 0.152 85 0.001 23 911 15 918 8 917 7 4 1 135 4 965 0.23 1354 0.067 62 0.000 90 1.322 04 0.018 39 0.140 79 0.000 94 857 18 855 8 849 5 5 982 4 197 0.23 1 199 0.068 52 0.001 00 1.336 20 0.020 18 0.140 74 0.001 14 884 18 862 9 849 6 6 629 2 045 0.31 750 0.069 69 0.000 92 1.481 38 0.023 09 0.153 26 0.001 46 919 17 923 9 919 8 7 923 3 905 0.24 1 147 0.070 69 0.001 34 1.35817 0.023 98 0.139 34 0.000 97 948 40 871 10 841 5 8 484 2 890 0.17 741 0.068 23 0.001 52 1.320 74 0.027 17 0.140 40 0.001 21 875 47 855 12 847 7 9 882 3 001 0.29 1 014 0.068 72 0.001 45 1.393 89 0.027 22 0.147 10 0.001 17 890 45 886 12 885 7 10 1 080 3 010 0.36 1 048 0.074 47 0.001 13 1.445 63 0.022 87 0.140 29 0.001 19 1 054 19 908 9 846 7 11 633 2 310 0.27 710 0.068 55 0.000 92 1.394 93 0.020 21 0.146 82 0.001 15 885 17 887 9 883 6 12 840 3 138 0.27 876 0.069 86 0.000 88 1.413 75 0.020 21 0.146 01 0.001 26 924 16 895 9 879 7 13 885 2 606 0.34 932 0.070 39 0.000 86 1.433 18 0.017 65 0.146 85 0.000 82 940 16 903 7 883 5 14 1 856 3 381 0.55 1 678 0.070 28 0.000 85 1.429 72 0.019 82 0.146 69 0.001 27 936 15 901 8 882 7 15 732 3 008 0.24 892 0.071 09 0.000 87 1.510 62 0.020 98 0.153 01 0.001 19 960 16 935 8 918 7 14ER17-1 1 2 145 5 077 0.42 1 693 0.071 71 0.001 31 1.487 04 0.029 08 0.149 25 0.001 44 978 24 925 12 897 8 2 2 080 6 603 0.32 1 507 0.066 15 0.001 11 1.157 08 0.021 52 0.125 88 0.001 22 811 23 781 10 764 7 3 846 3 631 0.23 664 0.064 77 0.001 22 1.019 13 0.019 14 0.113 29 0.000 66 767 30 713 10 692 4 4 915 4 479 0.20 890 0.065 69 0.001 30 1.193 66 0.026 28 0.130 58 0.001 33 797 29 798 12 791 8 5 2 521 6 909 0.36 1 758 0.066 64 0.001 40 1.208 71 0.025 88 0.130 62 0.001 15 827 30 805 12 791 7 6 1 680 6 332 0.27 1 108 0.065 05 0.001 39 0.993 97 0.022 51 0.109 79 0.001 03 776 32 701 11 672 6 7 1 898 6 517 0.29 1 278 0.066 61 0.001 39 1.031 56 0.020 89 0.111 51 0.000 78 825 31 720 10 682 5 8 1 229 5 004 0.25 1 073 0.065 23 0.001 17 1.187 29 0.021 34 0.130 99 0.001 08 782 24 795 10 794 6 9 3 433 9 324 0.37 2 143 0.066 21 0.001 07 1.202 74 0.022 28 0.130 46 0.001 44 813 21 802 10 790 8 10 1 099 5 064 0.22 1 000 0.067 28 0.001 20 1.079 11 0.019 45 0.115 14 0.000 88 846 25 743 9 703 5 11 1 283 4 976 0.26 1 074 0.063 45 0.001 24 1.157 21 0.022 93 0.130 94 0.001 16 723 27 781 11 793 7 12 1 877 5 531 0.34 1 363 0.064 57 0.001 28 1.163 42 0.023 11 0.129 36 0.001 08 760 28 784 11 784 6 13 1 871 6 116 0.31 1 444 0.063 66 0.001 12 1.156 47 0.022 49 0.130 58 0.001 50 730 23 780 11 791 9 14 2 268 5 696 0.40 1 533 0.063 80 0.001 08 1.156 55 0.020 18 0.130 56 0.001 31 735 21 780 10 791 7 14ER11-1 1 1 217 3 221 0.38 1 014 0.065 05 0.001 13 1.189 32 0.021 58 0.131 31 0.001 32 776 22 796 10 795 8 2 720 1 966 0.37 607 0.064 49 0.001 16 1.181 74 0.021 23 0.131 53 0.001 03 758 25 792 10 797 6 3 396 781 0.51 313 0.065 48 0.001 50 1.202 49 0.027 78 0.131 96 0.001 21 790 33 802 13 799 7 4 490 1 058 0.46 393 0.063 38 0.001 33 1.155 74 0.023 63 0.131 03 0.001 13 721 29 780 11 794 6 5 1 029 1 952 0.53 921 0.068 13 0.001 52 1.395 15 0.028 45 0.147 47 0.001 32 872 27 887 12 887 7 6 2 444 8 149 0.30 2 170 0.065 39 0.001 25 1.192 60 0.025 91 0.130 77 0.001 80 787 24 797 12 792 10 7 714 1 170 0.61 530 0.065 00 0.001 58 1.180 11 0.027 75 0.130 49 0.001 18 774 34 791 13 791 7 8 2 159 5 595 0.39 1 753 0.065 01 0.001 17 1.190 48 0.022 07 0.131 36 0.001 24 775 23 796 10 796 7 9 617 1 312 0.47 503 0.066 40 0.001 41 1.207 95 0.025 71 0.130 54 0.001 06 819 31 804 12 791 6 10 780 1 463 0.53 614 0.064 23 0.001 42 1.180 55 0.026 85 0.131 97 0.001 16 749 33 792 13 799 7 11 1 653 4 453 0.37 1 402 0.065 20 0.001 17 1.193 66 0.022 80 0.131 40 0.001 12 781 26 798 11 796 6 12 371 1 509 0.25 370 0.063 97 0.001 73 1.159 34 0.031 14 0.130 59 0.001 31 741 40 782 15 791 7 13 374 1 075 0.35 347 0.065 74 0.001 52 1.190 38 0.029 07 0.130 49 0.001 34 798 34 796 13 791 8 14 1 931 3 685 0.52 1 415 0.062 46 0.00142 1.14574 0.02943 0.132 00 0.001 62 690 34 775 14 799 9 15 638 1 045 0.61 482 0.064 00 0.001 69 1.159 63 0.032 91 0.130 83 0.001 59 742 39 782 15 793 9 14ER13-1 1 220 621 0.35 99 0.065 75 0.001 35 1.188 73 0.028 09 0.131 20 0.001 80 799 27 795 13 795 10 2 398 735 0.54 121 0.065 31 0.001 24 1.168 80 0.026 64 0.129 60 0.001 50 784 29 786 12 786 9 3 300 805 0.37 129 0.067 65 0.001 27 1.224 20 0.024 64 0.131 20 0.001 30 858 26 812 11 795 7 4 155 691 0.22 104 0.065 99 0.001 21 1.190 49 0.025 67 0.130 58 0.001 45 806 27 796 12 791 8 5 119 366 0.33 58 0.065 68 0.001 31 1.183 82 0.024 16 0.130 57 0.001 04 796 29 793 11 791 6 6 169 557 0.30 83 0.065 69 0.001 36 1.191 27 0.030 64 0.131 18 0.002 09 797 29 797 14 795 12 7 215 625 0.34 97 0.064 78 0.001 33 1.173 68 0.028 18 0.131 33 0.001 96 767 27 788 13 795 11 8 207 523 0.40 85 0.064 38 0.001 25 1.158 63 0.023 09 0.130 48 0.001 08 754 28 781 11 791 6 9 100 175 0.57 29 0.063 17 0.001 68 1.140 05 0.033 54 0.130 85 0.001 60 714 42 773 16 793 9 10 195 630 0.31 92 0.060 94 0.001 27 1.104 06 0.028 17 0.131 07 0.002 02 637 30 755 14 794 12 11 157 442 0.36 70 0.062 39 0.001 26 1.130 81 0.024 84 0.131 27 0.001 33 688 30 768 12 795 8 12 51 287 0.18 43 0.062 81 0.001 26 1.137 98 0.024 19 0.131 26 0.001 45 702 27 772 11 795 8 13 122 520 0.24 80 0.063 38 0.001 2 1.149 68 0.024 2 0.131 05 0.001 3 721 28 777 11 794 7 表 3 额尔古纳地块新元古代侵入岩的主量元素(%)和微量元素(10-6)的分析结果
Table 3. Major (%) elements and trace elements (10-6) data for the Neoproterozoic intrusive rocks in the Erguna Massif
年龄 ~850 Ma ~790 Ma ~762 Ma ~737 Ma 样品 12ER28-2 12ER28-3 12ER28-4 12ER28-5 13ER13-1 13ER13-3 13ER13-4 13ER13-5 14ER17-1 14ER17-2 14ER17-3 14ER17-4 14ER11-1 14ER11-3 14ER13-4 14ER13-5 12ER14-2 12ER14-3 12ER14-4 12ER14-6 12ER7-1 12ER7-2 12ER7-4 12ER7-6 SiO2 71.60 70.97 71.35 71.03 70.87 69.13 75.15 72.34 73.94 73.96 73.60 73.78 74.84 73.69 68.70 67.93 70.40 71.68 66.88 71.54 77.18 77.59 77.95 77.93 TiO2 0.39 0.41 0.37 0.37 0.40 0.37 0.32 0.32 0.16 0.16 0.14 0.14 0.19 0.20 0.40 0.43 0.36 0.38 0.59 0.40 0.15 0.15 0.13 0.14 Al2O3 13.70 14.08 14.36 14.36 14.25 15.09 11.62 13.84 14.07 14.02 14.29 14.29 13.22 13.78 15.88 14.67 14.74 14.41 15.60 14.17 11.56 11.29 11.10 11.36 TFe2O3 2.95 3.01 2.92 2.79 3.08 2.92 2.62 2.60 1.42 1.32 1.34 1.05 1.35 1.41 2.45 4.12 2.22 2.59 3.37 2.36 1.84 1.81 1.79 1.71 MnO 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.01 0.04 0.07 0.03 0.03 0.07 0.03 0.02 0.02 0.02 0.00 MgO 0.68 0.68 0.61 0.61 0.71 0.66 0.57 0.57 0.34 0.34 0.30 0.30 0.27 0.27 0.85 1.51 0.70 0.75 1.53 0.70 0.02 0.02 0.02 0.02 CaO 1.72 2.00 2.05 1.82 1.96 1.64 1.46 1.48 1.20 1.09 1.16 1.18 1.05 0.81 1.86 3.54 2.43 2.43 3.15 3.04 0.31 0.29 0.32 0.24 Na2O 3.06 3.22 3.26 3.26 3.38 3.22 2.41 2.85 3.61 3.61 3.54 3.41 3.08 2.92 3.44 2.54 3.27 3.11 3.20 3.16 3.53 3.40 3.41 3.56 K2O 4.22 4.35 4.12 4.43 4.02 5.19 4.40 5.10 4.07 4.18 4.41 4.45 4.61 5.60 4.35 3.84 3.81 3.23 3.77 3.23 4.81 4.74 4.61 4.48 P2O5 0.11 0.12 0.11 0.10 0.12 0.12 0.10 0.10 0.04 0.04 0.03 0.04 0.03 0.03 0.09 0.09 0.10 0.10 0.16 0.11 0.01 0.01 0.01 0.01 LOI 1.40 0.84 0.82 1.06 1.42 1.34 0.92 0.96 0.58 0.62 0.62 0.70 0.84 0.72 1.40 1.02 1.30 1.10 1.32 1.18 0.48 0.50 0.42 0.20 Total 99.94 99.73 100.02 99.89 100.35 99.84 99.63 100.30 99.62 99.48 99.54 99.58 99.64 99.62 99.68 99.94 99.40 99.87 99.72 100.02 99.91 99.87 99.79 99.65 Mg# 31 31 29 30 31 31 30 30 32 34 31 36 28 28 41 42 38 36 47 37 1.8 1.8 1.8 1.9 Na2O/K2O 0.73 0.74 0.79 0.74 0.84 0.62 0.55 0.56 0.89 0.86 0.80 0.77 0.67 0.52 0.79 0.66 0.86 0.96 0.85 0.98 0.73 0.72 0.74 0.79 A/CNK 1.08 1.03 1.06 1.07 1.06 1.09 1.02 1.07 1.12 1.13 1.12 1.14 1.11 1.12 1.16 0.99 1.06 1.11 1.04 1.00 1.00 1.00 0.99 1.02 Li 20.8 35.9 32.0 24.5 16.1 14.6 19.7 20.5 17.7 16.7 21.4 21.6 17.1 8.85 35.1 34.9 7.91 9.02 17.7 8.21 1.23 1.25 1.37 1.76 Be 2.29 2.56 2.49 2.38 2.36 2.02 1.67 1.94 2.21 2.25 2.87 2.95 2.90 2.04 2.53 2.48 2.25 2.31 3.28 2.23 18.7 12.4 11.3 14.1 Sc 5.55 6.47 6.20 5.42 6.30 5.85 5.40 5.44 2.56 2.47 2.58 2.44 0.96 1.06 2.71 14.46 4.15 4.08 17.20 4.82 0.68 0.60 0.72 0.75 V 23.6 25.7 24.0 22.2 25.4 24.7 21.2 21.4 9.34 9.85 8.52 8.37 9.40 14.1 17.0 72.1 27.6 28.4 44.7 30.4 0.49 0.58 0.50 0.63 Cr 7.05 6.46 6.06 8.95 9.71 7.56 7.38 7.74 1.17 1.31 1.21 1.21 1.61 1.10 5.38 30.7 5.51 5.67 21.50 6.01 0.19 0.14 0.61 0.32 Co 4.64 4.80 4.56 4.24 5.09 4.73 4.25 4.18 1.19 1.27 0.97 1.26 1.49 1.44 2.88 7.69 3.14 3.32 6.61 3.42 0.10 0.09 0.09 0.09 Ni 3.28 3.47 3.09 4.84 4.64 3.94 3.69 3.78 0.97 0.92 0.91 1.08 1.33 1.21 2.10 5.55 1.20 1.39 9.80 1.39 0.18 0.10 1.29 0.18 Cu 2.76 1.54 1.59 3.35 3.19 7.62 5.93 18.7 2.38 4.37 1.75 0.92 4.08 1.51 0.73 2.30 2.07 1.97 3.12 9.38 1.72 1.43 4.14 4.19 Zn 45.6 50.6 48.0 43.3 46.7 44.4 41.7 41.6 34.3 30.4 28.9 31.9 19.1 16.3 64.8 53.6 39.2 41.8 66.1 45.8 165.0 102.0 141.0 52.9 Ga 17.1 19.0 19.2 17.8 19.5 19.2 15.5 17.6 17.3 16.9 17.5 17.3 15.9 15.9 20.6 17.8 17.7 17.6 20.3 18.1 33.5 32.3 32.2 34.4 Rb 188 195 188 189 168 200 173 200 139 143 166 177 143 165 134 149 90.7 87.1 119 89.7 321 302 307 236 Sr 122 132 129 123 185 161 133 155 374 344 309 292 204 203 382 227 579 558 748 568 6.64 5.84 5.77 8.26 Y 24.2 32.4 36.0 28.1 24.6 24.7 30.0 31.9 13.6 13.9 14.3 11.6 8.83 7.44 13.9 39.4 9.12 11.2 30.2 15.4 172 165 136 196 Zr 211 240 239 204 253 234 233 210 96.4 99.3 86.6 90.2 116 149 162 146 176 151 162 220 567 526 658 677 Nb 23.1 23.9 24.2 20.1 21.1 21.8 16.7 20.6 7.26 7.53 7.98 8.38 5.49 5.17 10.4 8.81 5.94 6.58 18.3 8.41 57.5 63.2 54.5 84.8 Sn 3.79 5.58 5.53 5.05 3.18 3.05 2.61 3.38 1.01 1.36 2.15 2.10 1.08 0.96 2.46 2.53 1.15 1.85 3.90 2.37 2.98 2.99 4.02 15.90 Cs 5.04 3.71 3.40 4.59 4.53 4.17 4.23 4.02 2.36 2.69 3.74 3.86 0.99 0.94 2.01 5.05 2.90 4.00 1.97 3.69 4.60 3.12 6.58 1.39 Ba 575 550 515 524 461 742 577 695 1058 1021 880 951 567 757 863 567 1752 1457 1574 1459 5.16 5.60 4.63 14.10 La 49.5 46.0 52.1 45.7 58.1 57.2 92.2 71.4 19.6 21.9 19.0 17.8 29.2 34.8 28.2 39.4 29.3 34.2 53.8 37.7 66.5 63.9 62.9 60.4 Ce 90.2 82.8 96.0 83.8 113 110 174 140 37.9 39.2 34.9 35.3 48.3 63.0 43.0 76.6 54.8 63.6 105 71.3 154 145 142 135 Pr 9.72 8.95 10.30 9.05 11.4 11.2 17.6 13.9 3.84 4.10 3.79 3.73 4.70 5.69 5.09 8.57 5.96 6.92 11.8 7.79 20.0 18.5 17.6 17.6 Nd 34.5 31.1 36.6 32.0 38.8 37.0 58.1 46.6 13.5 14.8 13.9 13.6 16.0 18.5 19.4 33.7 20.4 23.4 43.0 27.0 81.8 75.4 69.4 74.6 Sm 6.29 5.78 6.54 5.76 6.62 6.61 9.49 7.95 2.81 3.07 3.02 3.32 2.45 2.55 3.98 7.50 3.15 3.47 7.55 4.32 24.2 21.3 18.6 24.5 Eu 0.83 0.85 0.83 0.82 0.98 1.01 0.86 0.91 0.55 0.50 0.52 0.64 1.00 1.02 1.05 1.13 1.08 1.11 1.71 1.27 0.22 0.18 0.18 0.27 Gd 4.80 5.26 5.57 4.45 5.08 5.06 6.79 5.93 2.22 2.62 2.55 2.83 1.58 1.61 3.11 6.74 2.05 2.31 5.87 3.03 27.1 24.2 19.7 31.5 Tb 0.70 0.85 0.89 0.71 0.74 0.74 0.96 0.81 0.35 0.38 0.41 0.41 0.24 0.23 0.45 1.09 0.27 0.32 0.86 0.41 4.76 4.28 3.47 5.84 Dy 3.98 5.13 5.33 4.21 4.11 4.12 4.70 4.77 2.22 2.38 2.39 2.20 1.39 1.26 2.57 6.70 1.47 1.56 4.82 2.14 29.8 26.5 21.4 34.7 Ho 0.78 0.99 1.11 0.86 0.83 0.82 0.89 0.91 0.46 0.46 0.48 0.38 0.28 0.25 0.47 1.31 0.27 0.29 0.92 0.41 5.86 5.31 4.27 6.57 Er 2.05 3.06 3.17 2.44 2.29 2.17 2.53 2.57 1.41 1.43 1.32 1.02 0.83 0.75 1.20 3.59 0.82 0.84 2.76 1.22 16.2 14.8 12.2 17.5 Tm 0.29 0.45 0.47 0.39 0.34 0.36 0.38 0.40 0.23 0.23 0.21 0.16 0.15 0.13 0.19 0.54 0.12 0.14 0.39 0.19 2.27 2.02 1.78 2.45 Yb 1.85 3.06 2.90 2.57 2.26 2.23 2.36 2.71 1.57 1.52 1.45 1.00 1.00 0.94 1.15 3.26 0.83 0.93 2.68 1.22 13.9 12.7 11.9 15.1 Lu 0.26 0.44 0.40 0.34 0.35 0.34 0.35 0.41 0.25 0.23 0.22 0.15 0.15 0.15 0.19 0.47 0.14 0.14 0.40 0.18 1.76 1.60 1.61 1.79 Hf 5.48 6.42 6.59 5.49 7.01 6.28 6.41 5.87 2.78 2.96 2.48 2.79 3.22 3.89 4.59 4.19 4.72 4.14 4.52 6.00 18.5 17.6 20.7 30.4 Ta 1.68 2.12 2.42 1.90 1.46 1.46 1.23 1.66 0.54 0.41 0.56 0.71 0.59 0.41 0.87 0.67 0.38 0.47 1.55 0.65 4.09 4.50 4.20 8.89 Tl 1.09 1.11 1.07 1.04 1.01 1.18 1.00 1.19 1.14 1.17 1.32 1.49 0.80 0.93 0.81 0.82 0.94 0.87 1.27 0.92 2.34 2.23 2.33 1.46 Pb 25.9 30.1 28.9 26.8 25.2 31.3 23.3 28.7 37.5 37.2 39.6 50.8 20.6 20.6 35.9 20.2 22.6 20.7 33.0 20.7 23.4 14.0 23.8 33.7 Th 20.4 21.2 28.6 16.7 28.8 27.9 43.0 32.7 11.4 13.6 13.7 13.7 9.44 11.7 8.97 17.9 8.53 10.1 19.6 10.9 30.1 35.3 32.6 50.4 U 2.93 4.08 3.89 2.21 2.76 2.57 4.55 2.41 1.62 1.68 2.80 1.88 2.15 1.69 1.65 2.02 1.36 1.33 2.97 1.84 7.29 7.28 8.04 12.1 δEu 0.44 0.46 0.41 0.48 0.50 0.51 0.31 0.39 0.65 0.53 0.56 0.63 1.46 1.44 0.88 0.48 1.22 1.13 0.76 1.02 0.03 0.02 0.03 0.03 LREE 191 175 202 177 228 223 352 281 78.1 83.5 75.2 74.4 102 126 101 167 115 133 223 149 347 324 311 312 HREE 14.7 19.2 19.8 16.0 16.0 15.8 19.0 18.5 8.71 9.26 9.03 8.15 5.62 5.32 9.33 23.7 5.97 6.53 18.7 8.80 102 91.4 76.3 115 LREE/HREE 13.0 9.12 10.2 11.1 14.3 14.1 18.6 15.2 8.97 9.02 8.33 9.13 18.1 23.6 10.8 7.04 19.2 20.3 11.9 17.0 3.41 3.55 4.07 2.71 ΣREE 206 195 222 193 244 239 371 299 86.8 92.7 84.2 82.6 107 131 110 191 121 139 242 158 448 416 387 428 (La/Yb)N 18.0 10.1 12.1 12.0 17.3 17.3 26.3 17.7 8.40 9.71 8.85 12.0 19.7 25.0 16.5 8.16 23.8 24.8 13.5 20.8 3.23 3.39 3.56 2.70 注:LOI.烧失量;Mg#=100×Mg/(Mg+Fetotal2+);A/CNK=mole[Al2O3/(CaO+Na2O+K2O)];δEu=2×(Eu/0.0735)/[(Sm/0.195)+(Gd/0.259)];LREE=La+Ce+Pr+Nd+Sm+Eu;HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;ΣREE=LREE+HREE;(La/Yb)N=(La/0.310)/(Yb/0.209). 表 4 额尔古纳地块新元古代侵入岩的锆石Lu-Hf同位素的分析结果
Table 4. Lu-Hf isotopic data for the Neoproterozoic igneous rocks in the Erguna Massif
样品号 176Yb/177Hf 误差 176Lu/177Hf 误差 176Hf/177Hf 误差 εHf(0) εHf(t) 误差 TDM1(Hf) TDM2(Hf) fLu/Hf 12ER28-1 (850 Ma) 12ER28-1-01 0.063 650 0.001 214 0.002 539 0.000 044 0.282 149 0.000 010 -22.0 -4.7 0.4 1 619 1 880 -0.92 12ER28-1-02 0.046 993 0.000 484 0.001 915 0.000 019 0.282 125 0.000 009 -22.9 -5.2 0.3 1 627 1 909 -0.94 12ER28-1-03 0.062 718 0.000 420 0.002 507 0.000 014 0.282 142 0.000 009 -22.3 -4.9 0.3 1 628 1 893 -0.92 12ER28-1-04 0.060 510 0.000 399 0.002 364 0.000 012 0.282 126 0.000 009 -22.8 -5.4 0.3 1 645 1 920 -0.93 12ER28-1-05 0.055 588 0.000 677 0.002 230 0.000 021 0.282 136 0.000 009 -22.5 -5.0 0.3 1 625 1 897 -0.93 12ER28-1-06 0.047 412 0.000 720 0.001 924 0.000 030 0.282 125 0.000 008 -22.9 -5.2 0.3 1 628 1 909 -0.94 13ER12-1 (846 Ma) 13ER12-1-01 0.051 687 0.001 081 0.001 888 0.000 042 0.282 154 0.000 032 -21.9 -4.2 1.1 1 584 1 998 -0.94 13ER12-1-02 0.055 839 0.000 772 0.002 110 0.000 031 0.282 202 0.000 027 -20.2 -2.7 0.9 1 525 1 899 -0.94 13ER12-1-03 0.058 545 0.000 856 0.002 156 0.000 036 0.282 165 0.000 025 -21.5 -4.0 0.9 1 581 1 984 -0.94 13ER13-1 (846 Ma) 13ER13-1-01 0.050 153 0.000 335 0.001 846 0.000 010 0.282 115 0.000 022 -23.2 -5.6 0.8 1 638 2 083 -0.94 13ER13-1-02 0.054 364 0.000 590 0.001 881 0.000 016 0.282 166 0.000 019 -21.4 -3.8 0.7 1 566 1 970 -0.94 13ER13-1-03 0.069 760 0.000 977 0.002 347 0.000 027 0.282 124 0.000 021 -22.9 -5.5 0.8 1 647 2 080 -0.93 13ER13-1-04 0.056 827 0.000 361 0.002 037 0.000 009 0.282 111 0.000 020 -23.4 -5.8 0.7 1 652 2 098 -0.94 13ER13-1-05 0.043 573 0.000 431 0.001 519 0.000 011 0.282 129 0.000 023 -22.7 -4.9 0.8 1 604 2 041 -0.95 14ER17-1 (791 Ma) 14ER17-1-01 0.044 015 0.000 265 0.001 768 0.000 009 0.282 517 0.000 009 -9.0 7.5 0.3 1 061 1 160 -0.95 14ER17-1-02 0.058 751 0.001 183 0.002 112 0.000 034 0.282 533 0.000 012 -8.4 7.9 0.4 1 047 1 138 -0.94 14ER17-1-03 0.034 320 0.000 790 0.001 417 0.000 033 0.282 509 0.000 009 -9.3 7.4 0.3 1 063 1 166 -0.96 14ER17-1-04 0.033 895 0.001 537 0.001 396 0.000 064 0.282 539 0.000 010 -8.2 8.5 0.3 1 019 1 107 -0.96 14ER11-1 (795 Ma) 14ER11-1-01 0.019 903 0.000 039 0.000 827 0.000 002 0.282 443 0.000 008 -11.6 5.5 0.3 1 138 1 277 -0.98 14ER11-1-02 0.021 030 0.000 322 0.000 854 0.000 013 0.282 462 0.000 009 -10.9 6.2 0.3 1 112 1 239 -0.97 14ER11-1-03 0.019 422 0.000 540 0.000 798 0.000 020 0.282 437 0.000 009 -11.8 5.3 0.3 1 145 1 287 -0.98 14ER11-1-04 0.022 558 0.000 351 0.000 933 0.000 015 0.282 454 0.000 009 -11.2 5.8 0.3 1 126 1 258 -0.97 14ER11-1-05 0.024 507 0.000 182 0.001 016 0.000 007 0.282 422 0.000 009 -12.4 4.7 0.3 1 173 1 322 -0.97 14ER11-1-06 0.021 396 0.000 285 0.000 939 0.000 011 0.282 450 0.000 009 -11.4 5.7 0.3 1 132 1 266 -0.97 14ER11-1-07 0.028 497 0.000 626 0.001 158 0.000 025 0.282 458 0.000 010 -11.1 5.8 0.3 1 127 1 257 -0.97 14ER11-1-08 0.023 574 0.000 160 0.000 954 0.000 007 0.282 434 0.000 008 -11.9 5.1 0.3 1 154 1 297 -0.97 14ER11-1-09 0.088 909 0.002 982 0.003 514 0.000 105 0.282 490 0.000 011 -10.0 5.7 0.4 1 154 1 262 -0.89 14ER11-1-10 0.016 945 0.000 622 0.000 747 0.000 028 0.282 438 0.000 008 -11.8 5.4 0.3 1 142 1 283 -0.98 14ER13-1 (793 Ma) 14ER13-1-01 0.046 618 0.001 822 0.001 847 0.000 070 0.282 360 0.000 011 -14.6 2.0 0.4 1 289 1 470 -0.94 14ER13-1-02 0.044 892 0.001 261 0.001 788 0.000 049 0.282 362 0.000 010 -14.5 2.1 0.4 1 284 1 464 -0.95 14ER13-1-03 0.040 103 0.001 173 0.001 613 0.000 046 0.282 360 0.000 010 -14.6 2.1 0.4 1 281 1 464 -0.95 14ER13-1-04 0.027 661 0.000 567 0.001 137 0.000 022 0.282 340 0.000 010 -15.3 1.6 0.3 1 292 1 488 -0.97 13ER41-1 (794 Ma) 13ER41-1-01 0.037 100 0.000 564 0.001 342 0.000 019 0.282 370 0.000 027 -14.2 2.6 0.9 1 258 1 436 -0.96 13ER41-1-02 0.028 488 0.000 292 0.001 038 0.000 009 0.282 263 0.000 024 -18.0 -1.0 0.9 1 397 1 636 -0.97 13ER41-1-03 0.038 222 0.001 016 0.001 489 0.000 042 0.282 379 0.000 026 -13.9 2.9 0.9 1 249 1 422 -0.96 13ER41-1-04 0.031 888 0.000 424 0.001 161 0.000 018 0.282 329 0.000 021 -15.7 1.3 0.8 1 309 1 510 -0.97 13ER41-1-05 0.031 103 0.000 047 0.001 167 0.000 002 0.282 302 0.000 024 -16.6 0.3 0.9 1 347 1 563 -0.96 13ER41-1-06 0.036 852 0.000 287 0.001 413 0.000 010 0.282 307 0.000 025 -16.4 0.4 0.9 1 348 1 559 -0.96 13ER43-1 (794 Ma) 13ER43-1-01 0.036 470 0.000 197 0.001 326 0.000 006 0.282 332 0.000 022 -15.6 1.3 0.8 1 311 1 509 -0.96 13ER43-1-02 0.017 360 0.000 109 0.000 659 0.000 003 0.282 342 0.000 023 -15.2 2.0 0.8 1 274 1 470 -0.98 13ER43-1-03 0.012 876 0.000 191 0.000 527 0.000 008 0.282 299 0.000 022 -16.7 0.5 0.8 1 328 1 550 -0.98 13ER43-1-04 0.021 992 0.000 039 0.000 833 0.000 003 0.282 325 0.000 023 -15.8 1.3 0.8 1 303 1 508 -0.97 13ER43-1-05 0.027 936 0.000 071 0.001 053 0.000 003 0.282 286 0.000 024 -17.2 -0.2 0.8 1 365 1 590 -0.97 13ER43-1-06 0.023 833 0.000 224 0.000 906 0.000 009 0.282 285 0.000 024 -17.2 -0.2 0.9 1 361 1 588 -0.97 13ER44-1 (794 Ma) 13ER44-1-01 0.029 196 0.000 152 0.001 134 0.000 006 0.282 286 0.000 023 -17.2 -0.2 0.8 1 368 1 592 -0.97 13ER44-1-02 0.015 668 0.000 155 0.000 605 0.000 005 0.282 298 0.000 025 -16.8 0.4 0.9 1 333 1 555 -0.98 13ER44-1-03 0.016 969 0.000 180 0.000 647 0.000 006 0.282 314 0.000 025 -16.2 1.0 0.9 1 312 1 524 -0.98 13ER44-1-04 0.020 126 0.000 210 0.000 769 0.000 007 0.282 316 0.000 022 -16.1 1.0 0.8 1 313 1 523 -0.98 13ER44-1-05 0.018 255 0.000 036 0.000 684 0.000 001 0.282 309 0.000 026 -16.4 0.8 0.9 1 319 1 534 -0.98 13ER44-1-06 0.020 967 0.000 189 0.000 786 0.000 006 0.282 345 0.000 021 -15.1 2.0 0.7 1 273 1 467 -0.98 12ER7-1 (737 Ma) 12ER7-1-01 0.085 806 0.001 340 0.002 153 0.000 029 0.282 545 0.000 018 -8.0 7.2 0.9 1 032 1 136 -0.94 12ER7-1-02 0.105 054 0.000 468 0.002 653 0.000 008 0.282 601 0.000 017 -6.1 8.9 0.8 964 1 040 -0.92 12ER7-1-03 0.075 178 0.001 018 0.001 958 0.000 016 0.282 670 0.000 018 -3.6 11.7 0.9 845 884 -0.94 12ER7-1-04 0.103 477 0.000 913 0.002 842 0.000 022 0.282 641 0.000 019 -4.6 10.2 0.9 910 967 -0.91 -
Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that Do Not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x Biao, S.H., Zheng, W.Z., Zhou, X.F., 2012.Zircon U-Pb Age of the North Da Hinggan Mts.NE China and Its Constraint to Attribute of the Ergun Block.Acta Geologica Sinica, 86(8):1262-1272 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201208010.htm Blichert-Toft, J., Chauvel, C., Albarède, F., 1997.Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS.Contributions to Mineralogy and Petrology, 127(3):248-260.doi: 10.1007/s004100050278 Boynton, W.V., 1984.Geochemistry of the Rare Earth Elements:Meteorite Studies.In:Henderson, P., ed., Rare Earth Element Geochemistry.Elsevier, Amsterdam, 63-114.doi: 10.1016/b978-0-444-42148-7.50008-3 Bretshtein, Y.S., Klimova, A.V., 2007.Paleomagnetic Study of Late Proterozoic and Early Cambrian Rocks in Terranes of the Amur Plate.Izvestiya, Physics of the Solid Earth, 43(10):890-903.doi: 10.1134/s1069351307100114 Charvet, J., 2013.The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block:An Overview.Journal of Asian Earth Sciences, 74(18):198-209.doi: 10.1016/j.jseaes.2013.02.015 Chen, C.Y., Gao, Y.F., Wu, H.B., et al., 2016.Zircon U-Pb Chronology of Volcanic Rocks in the Hailaer Basin, NE China and Its Geological Implications.Earth Science, 41(8):1259-1274 (in Chinese with English abstract).doi: 10.3799/dqkx.2016.104 Chen, Y., Xu, B., Zhan, S., et al., 2004.First Mid-Neoproterozoic Paleomagnetic Results from the Tarim Basin (NW China) and Their Geodynamic Implications.Precambrian Research, 133(3-4):271-281.doi: 10.1016/j.precamres.2004.05.002 Chen, Z.H., Lu, S.N., Li, H.K., et al., 2006.Constraining the Role of the Qinling Orogen in the Assembly and Break-Up of Rodinia:Tectonic Implications for Neoproterozoic Granite Occurrences.Journal of Asian Earth Sciences, 28(1):99-115. doi: 10.1016/j.jseaes.2005.03.011 de Boisgrollier, T., Petit, C., Fournier, M., et al., 2009.Palaeozoic Orogeneses around the Siberian Craton:Structure and Evolution of the Patom Belt and Foredeep.Tectonics, 28(1):227-231. doi: 10.1029/2007tc002210 Ernst, R.E., Buchan, K.L., 1999.Mantle Plume Events during the Assembly and Breakup of Rodinia:The Record from Short-Duration Large Igneous Province.Abstracts with Programs-Geological Society of America, 31(7):316. Feng, Z.Q., 2015.The Palezoic Tectono-Magmatic Evolution of the Northern Great Xing an Range (Dissertation).Jilin University, Changchun (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1367912015000218 Ge, W.C., Wu, F.Y., Zhou, C.Y., et al., 2005.Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Ergun Block in the Northern Part of the Da Hinggan Range.Chinese Science Bulletin, 50(18):2097-2105.doi: 10.1360/982005-207 Ge, W.C., Chen, J.S., Yang, H., et al., 2015.Tectonic Implications of New Zircon U-Pb Ages for the Xinghuadukou Complex, Erguna Massif, Northern Great Xing an Range, NE China.Journal of Asian Earth Sciences, 106:169-185.doi: 10.1016/j.jseaes.2015.03.011 Ge, W.C., Sui, Z.M., Wu, F.Y., et al., 2007.Zircon U-Pb Ages, Hf Isotopic Characteristics and Their Implications of the Early Paleozoic Granites in the Northwestern Da Hinggan Mts, Northeastern China.Acta Petrologica Sinica, 23(2):423-440 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702022.htm Gladkochub, D., Pisarevsky, S., Donskaya, T., et al., 2006.The Siberian Craton and Its Evolution in Terms of the Rodinia Hypothesis.Episodes, 29(3):169-174. http://www.cqvip.com/qk/86983X/200603/23176487.html Gladkochub, D.P., Donskaya, T.V., Mazukabzov, A.M., et al., 2007.Signature of Precambrian Extension Events in the Southern Siberian Craton.Russian Geology and Geophysics, 48(1):17-31.doi: 10.1016/j.rgg.2006.12.001 Gou, J., Sun, D.Y., Ren, Y.S., et al., 2013.Petrogenesis and Geodynamic Setting of Neoproterozoic and Late Paleozoic Magmatism in the Manzhouli-Erguna Area of Inner Mongolia, China:Geochronological, Geochemical and Hf Isotopic Evidence.Journal of Asian Earth Sciences, 67-68:114-137.doi: 10.1016/j.jseaes.2013.02.016 Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147.doi: 10.1016/S0016-7037(99)00343-9 Guo, J.J., Zhang, G.W., Lu, S.N., et al., 1999.Neoproterozoic Continental Block Collage of China and Rodinia Supercontinent.Geological Journal of China Universities, 5(2):148-156 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX902.002.htm Guo, L.J., Chen, Z.Y., Meng, E.G., et al., 2005.The Nanhuaan System in the Northern Da Hinggan Mountains.Geological Bulletin of China, 24(9):826-830 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200509007.htm Guo, Z.J., Yin, A., Robinson, A., et al., 2005.Geochronology and Geochemistry of Deep-Drill-Core Samples from the Basement of the Central Tarim Basin.Journal of Asian Earth Sciences, 25(1):45-56.doi: 10.1016/j.jseaes.2004.01.016 Han, G.Q., Liu, Y.J., Neubauer, F., et al., 2011.Origin of Terranes in the Eastern Central Asian Orogenic Belt, NE China:U-Pb Ages of Detrital Zircons from Ordovician-Devonian Sandstones, North Da Xing an Mts..Tectonophysics, 511(3-4):109-124.doi: 10.1016/j.tecto.2011.09.002 Heilongjiang Bureau of Geology and Mineral Resources, 1993.Regional Geology of Heilongjiang Province.Geological Publishing House, Beijing (in Chinese). Hong, D.W., Wang, S.G., Xie, X.L., et al., 2003.Correlation between Continental Crustal Growth and the Supercontinental Cycle:Evidence from the Granites with Positive εNd in the Central Asian Orogenic Belt.Acta Geologica Sinica, 77(2):203-209 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe200302015&dbname=CJFD&dbcode=CJFQ Hu, Z.C., Liu, Y.S., Gao, S., et al., 2008.A Local Aerosol Extraction Strategy for the Determination of the Aerosol Composition in Laser Ablation Inductively Coupled Plasma Mass Spectrometry.Journal of Analytical Atomic Spectrometry, 23(9):1192-1203.doi: 10.1039/B803934H Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved In-Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399.doi: 10.1039/c2ja30078h Huang, J.Q., Ren, J.S., Jiang, C.F., et al., 1977.An Outline of the Tectonic Characteristics of China.Acta Geologica Sinica, (2):117-135 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE197702002.htm Inner Mongolian Bureau of Geology and Mineral Resources, 1991.Regional Geology of Inner Mongolian Automo.Geological Publishing House, Beijing (in Chinese). Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548.doi: 10.1139/e71-055 Ivanov, A.V., Demonterova, E.I., Gladkochub, D.P., et al., 2014.The Tuva-Mongolia Massif and the Siberian Craton-Are They the Same? A Comment on 'Age and Provenance of the Ergunahe Group and the Wubinaobao Formation, Northeastern Inner Mongolia, NE China:Implications for Tectonic Setting of the Erguna Massif' by Zhang et al..International Geology Review, 56(8):954-958.doi: 10.1080/00206814.2014.905999 Izokh, A.E., Gibsher, A.S., Zhuravlev, D.Z., et al., 1998.Sm-Nd Dating of the Ultramafic-Mafic Massifs of the Eastern Branch of the Baikal-Muya Ophiolite Belt.Doklady Earth Sciences, 360:525-529. http://cat.inist.fr/?aModele=afficheN&cpsidt=10493111 Koschek, G., 1993.Origin and Significance of the SEM Cathodoluminescence from Zircon.Journal of Microscopy, 171(3):223-232.doi: 10.1111/j.1365-2818.1993.tb03379.x Kravchinsky, V.A., Sklyarov, E.V., Gladkochub, D.P., et al., 2010.Paleomagnetism of the Precambrian Eastern Sayan Rocks:Implications for the Ediacaran-Early Cambrian Paleogeography of the Tuva-Mongolian Composite Terrane.Tectonophysics, 486(1-4):65-80.doi: 10.1016/j.tecto.2010.02.010 Kuzmichev, A.B., Bibikova, E.V., Zhuravlev, D.Z., 2001.Neoproterozoic (~800 Ma) Orogeny in the Tuva-Mongolia Massif (Siberia):Island Arc-Continent Collision at the Northeast Rodinia Margin.Precambrian Research, 110(1-4):109-126.doi: 10.1016/s0301-9268(01)00183-8 Li, X.H., Li, Z.X., Zhou, H.W., et al., 2002.U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China:Implications for the Initial Rifting of Rodinia.Precambrian Research, 113(1-2):135-154.doi: 10.1016/s0301-9268(01)00207-8 Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., 2008.Assembly, Configuration, and Break-Up History of Rodinia:A Synthesis.Precambrian Research, 160(1-2):179-210.doi: 10.1016/j.precamres.2007.04.021 Li, Z.X., Li, X.H., Kinny, P.D., et al., 1999.The Breakup of Rodinia:Did It Start with a Mantle Plume beneath South China? Earth and Planetary Science Letters, 173(3):171-181.doi: 10.1016/s0012-821x(99)00240-x Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003.Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents:Evidence for a Mantle Superplume that Broke up Rodinia.Precambrian Research, 122(1-4):85-109.doi: 10.1016/s0301-9268(02)00208-5 Li, Z.X., Zhang, L.H., Powell, C.M., 1995.South China in Rodinia:Part of the Missing Link between Australia-East Antarctica and Laurentia? Geology, 23(5):407-410.doi:10.1130/0091-7613(1995)023<0407:scirpo>2.3.co;2 Lin, G.C., Li, X.H., Li, W.X., 2007.SHRIMP U-Pb Zircon Age, Geochemistry and Nd-Hf Isotope of Neoproterozoic Mafic Dyke Swarms in Western Sichuan:Petrogenesis and Tectonic Significance.Science in China(Series D), 50(1):1-16.doi: 10.1007/s11430-007-2018-0 Liu, Y.Q., Gao, L.Z., Liu, Y.X., et al., 2006.Zircon U-Pb Dating for the Earliest Neoproterozoic Mafic Magmatism in the Southern Margin of the North China Block.Chinese Science Bulletin, 51(19):2375-2382.doi: 10.1007/s11434-006-2114-0 Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. doi: 10.1093/petrology/egp082 Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/j.chemgeo.2008.08.004 Long, X.P., Yuan, C., Sun, M., et al., 2011.Reworking of the Tarim Craton by Underplating of Mantle Plume-Derived Magmas:Evidence from Neoproterozoic Granitoids in the Kuluketage Area, NW China.Precambrian Research, 187(1-2):1-14.doi: 10.1016/j.precamres.2011.02.001 Lu, S.N., 1998.A Review of Advance in the Research on the Neoproterozoic Rodinia Supereontinent.Geological Review, 44(5):489-495 (in Chinese with English abstract). https://www.researchgate.net/publication/313772235_A_review_of_advance_in_the_research_on_the_Neoproterozoic_Rodinia_supercontinent Lu, S.N., Li, H.K., Zhang, C.L., et al., 2008.Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments.Precambrian Research, 160(1-2):94-107.doi: 10.1016/j.precamres.2007.04.025 Ludwig, K.R., 2003.ISOPLOT 3:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Centre Special Publication, (4):74. https://www.researchgate.net/publication/284758218_ISOPLOT_30_A_Geochronological_Toolkit_for_Microsoft_Excel_Berkeley_Geochronology_Center_Special_Publication Luo, Y., Wang, Z.B., Zhou, D.A., 1997.The Geologic Characteristics and Prospecting Prospect of Eerguna Super-Large Volcanic Hydrothermal Type Uranium Metallogenic Belt.Journal of East China Geological Institute, 20(1):1-10 (in Chinese with English abstract). doi: 10.1080/02533839.1997.9741800 Lü, Z.C., Duan, G.Z., Hao, L.B., 2002.Geochemistry and Tectonic Setting of Metamorphic Detrital Rock of Jiageda Group.Journal of Jilin University (Earth Science Edition), 32(2):111-115 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ccdz200202001&dbname=CJFD&dbcode=CJFQ Meert, J.G., Powell, C.M., 2001.Assembly and Break-Up of Rodinia:Introduction to the Special Volume.Precambrian Research, 110(1-4):1-8.doi: 10.1016/s0301-9268(01)00177-2 Miao, L.C., Liu, D.Y., Zhang, F.Q., et al., 2007.Zircon SHRIMP U-Pb Ages of the "Xinghuadukou Group" in Hanjiayuanzi and Xinlin Areas and the "Zhalantun Group" in Inner Mongolia, Da Hinggan Mountains.Chinese Science Bulletin, 52(5):591-601(in Chinese with English abstract). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200801001033.htm Pan, S., Zheng, J., Griffin, W.L., et al., 2014.Precambrian Tectonic Attribution and Evolution of the Songliao Terrane Revealed by Zircon Xenocrysts from Cenozoic Alkali Basalts, Xilinhot Region, NE China.Precambrian Research, 251(3):33-48.doi: 10.1016/j.precamres.2014.05.022 Peng, P., Bleeker, W., Ernst, R.E., et al., 2011.U-Pb Baddeleyite Ages, Distribution and Geochemistry of 925 Ma Mafic Dykes and 900 Ma Sills in the North China Craton:Evidence for a Neoproterozoic Mantle Plume.Lithos, 127(1-2):210-221.doi: 10.1016/j.lithos.2011.08.018 Pisarevsky, S.A., Natapov, L.M., 2003.Siberia and Rodinia.Tectonophysics, 375(1-4):221-245.doi: 10.1016/j.tecto.2003.06.001 Pisarevsky, S.A., Natapov, L.M., Donskaya, T.V., et al., 2008.Proterozoic Siberia:A Promontory of Rodinia.Precambrian Research, 160(1-2):66-76.doi: 10.1016/j.precamres.2007.04.016 Powell, C.M., Preiss, W.V., Gatehouse, C.G., et al., 1994.South Australian Record of a Rodinian Epicontinental Basin and Its Mid-Neoproterozoic Breakup (~700 Ma) to Form the Palaeo-Pacific Ocean.Tectonophysics, 237(3-4):113-140.doi: 10.1016/0040-1951(94)90250-x Preiss, ,W..V, 2000.The Adelaide Geosyncline of South Australia and Its Significance in Neoproterozoic Continental Reconstruction.Precambrian Research, 100(1-3):21-63.doi: 10.1016/s0301-9268(99)00068-6 Pupin, J.P., 1980.Zircon and Granite Petrology.Contributions to Mineralogy and Petrology, 73(3):207-220.doi: 10.1007/bf00381441 Qin, X.F., Guo, Y.S., Liu, X.G., et al., 2004.Geochemical Characteristics and Tectonic Significance of the Xingkaiian Granites from the North Da Hinggan Mountains.Acta Geologica Gansu, (2):31-39 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-gsdz200402005.htm Qin, X.F., Guo, Y.S., Liu, X.G., et al., 2005.Geochemical Characteristics of Jinningian Intermediate-Acid Gneisses in North Daxing anling Mountains and Their Significance.Journal of Lanzhou University (Natural Science Edition), 41(4):6-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LDZK200504002.htm Ren, J.S., Chen, T.Y., Liu, Z.G., 1984.Some Problems on the Division of Tectonic Units in Eastern China.Geological Review, 30(4):382-385 (in Chinese with English abstract). https://www.researchgate.net/publication/284701873_Some_problems_on_the_division_of_tectonic_units_in_eastern_China Ritsk, E.Y., Amelin, Y.V., Rizvanova, N.G., et al., 2001.Age of Rocks in the Baikal-Muya Foldbelt.Stratigraphy and Geological Correlation, 9(4):315-326. https://www.researchgate.net/publication/287786844_Age_of_rocks_in_the_Baikal-Muya_foldbelt Rojas-Agramonte, Y., Kr ner, A., Demoux, A., et al., 2011.Detrital and Xenocrystic Zircon Ages from Neoproterozoic to Palaeozoic Arc Terranes of Mongolia:Significance for the Origin of Crustal Fragments in the Central Asian Orogenic Belt.Gondwana Research, 19(3):751-763.doi: 10.1016/j.gr.2010.10.004 Rudnick, R.L., Fountain, D.M., 1995.Nature and Composition of the Continental Crust:A Lower Crustal Perspective.Reviews of Geophysics, 33(3):267-310.doi: 10.1029/95rg01302 Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.Treatise on Geochemistry, 3:1-64.doi: 10.1016/b0-08-043751-6/03016-4 Shao, J., Li, Y.F., Zhou, Y.H., et al., 2015.Neo-Archaean Magmatic Event in Erguna Massif of Northeast China:Evidence from the Zircon LA-ICP-MS Dating of the Gneissic Monzogranite from the Drill.Journal of Jilin University (Earth Science Edition), 45(2):364-373 (in Chinese with English abstract). https://www.researchgate.net/publication/282710150_Neo-archaean_magmatic_event_in_erguna_massif_of_northeast_china_evidence_from_the_zircon_LA-ICP-MS_dating_of_the_gneissic_monzogranite_from_the_drill She, H.Q., Li, J.W., Xiang, A.P., et al., 2012.U-Pb Ages of the Zircons from Primary Rocks in Middle-Northern Daxinganling and Its Implications to Geotectonic Evolution.Acta Petrologica Sinica, 28(2):571-594 (in Chinese with English abstract). http://www.oalib.com/paper/1475427 Sklyarov, E.V., Gladkochub, D.P., Mazukabzov, A.M., et al., 2003.Neoproterozoic Mafic Dike Swarms of the Sharyzhalgai Metamorphic Massif, Southern Siberian Craton.Precambrian Research, 122(1-4):359-376.doi: 10.1016/s0301-9268(02)00219-x Sui, Z.M., Ge, W.C., Wu, F.Y., et al., 2006.U-Pb Chronology in Zircon from Harabaqi Granitic Pluton in Northeastern Daxinganling Area and Its Origin.Global Geology, 25(3):229-236 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ200603002.htm Sui, Z.M., Ge, W.C., Wu, F.Y., et al., 2007.Ziron U-Pb Ages, Geochemistry and Its Petrogenesis of Jurassic Granites in Northeastern Part of the Da Hinggan Mts..Acta Petrologica Sinica, 23(2):461-480 (in Chinese with English abstract). https://www.researchgate.net/publication/279674342_Zircon_U-Pb_ages_geochemistry_and_its_petrogenesis_of_Jurassic_granites_in_northeastern_part_of_the_Da_Hinggan_Mts Sui, Z.M., Ge, W.C., Wu, F.Y., et al., 2009.Hf Isotopic Characteristics and Geological Significance of the Chahayan Pluton in Northern Daxing anling Mountains.Journal of Jilin University(Earth Science Edition), 39(5):849-856, 867(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200905013.htm Sun, L.X., Ren, B.F., Zhao, F.Q., et al., 2012.Zircon U-Pb Ages and Hf Isotope Characteristics of Taipingchuan Large Porphyritic Granite Pluton of Erguna Massif in the Great Xing'an Range.Earth Science Frontiers, 19(5):114-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201205013.htm Sun, L.X., Ren, B.F., Zhao, F.Q., et al., 2013.Late Paleoproterozoic Magmatic Records in the Eerguna Massif:Evidences from the Zircon U-Pb Dating of Granitic Gneisses.Geological Bulletin of China, 32(2):341-352 (in Chinese with English abstract). https://www.researchgate.net/publication/279767980_Late_Paleoproterozoic_magmatic_records_in_the_Eerguna_massif_evidences_from_the_zircon_U-Pb_dating_of_granitic_gneisses Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.In:Saunders, A.D., Norry, M.J., eds., Magmatism in Ocean Basins.Geological Society of Special Publication, London, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 Tang, J., Xu, W.L., Wang, F., et al., 2013.Geochronology and Geochemistry of Neoproterozoic Magmatism in the Erguna Massif, NE China:Petrogenesis and Implications for the Breakup of the Rodinia Supercontinent.Precambrian Research, 224:597-611.doi: 10.1016/j.precamres.2012.10.019 Tang, J., Xu, W.L., Wang, F., et al., 2014.Geochronology and Geochemistry of Early-Middle Triassic Magmatism in the Erguna Massif, NE China:Constraints on the Tectonic Evolution of the Mongol-Okhotsk Ocean.Lithos, 184-187(1):1-16.doi: 10.1016/j.lithos.2013.10.024 Tang, J., Xu, W.L., Wang, F., et al., 2015a.Geochronology, Geochemistry, and Deformation History of Late Jurassic-Early Cretaceous Intrusive Rocks in the Erguna Massif, NE China:Constraints on the Late Mesozoic Tectonic Evolution of the Mongol-Okhotsk Orogenic Belt.Tectonophysics, 658:91-110.doi: 10.1016/j.tecto.2015.07.012 Tang, J., Xu, W.L., Wang, F., et al., 2015b.Early Mesozoic Southward Subduction History of the Mongol-Okhotsk Oceanic Plate:Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China.Gondwana Research, 31:218-240.doi: 10.1016/j.gr.2014.12.010 Vernikovsky, V.A., 2003.Neoproterozoic Accretionary Orogens of the Western Margin of Siberian Craton.Geophysical Research abstracts, 5:3192. http://www.sciencedirect.com/science/article/pii/S0040195103003378 Vernikovsky, V.A., Vernikovskaya, A.E., Pease, V.L., et al., 2004.Neoproterozoic Orogeny along the Margins of Siberia.Geological Society, London, Memoirs, 30(1):233-248.doi: 10.1144/gsl.mem.2004.030.01.18 Wan, T.F., 2004.On the Complex and Mixed Collision Zones in China Continent.Earth Science Frontiers, 11(3):207-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200403026.htm Wang, F., Xu, W.L., Gao, F.H., et al., 2014.Precambrian Terrane within the Songnen-Zhangguangcai Range Massif, NE China:Evidence from U-Pb Ages of Detrital Zircons from the Dongfengshan and Tadong Groups.Gondwana Research, 26(1):402-413.doi: 10.1016/j.gr.2013.06.017 Wang, J., Li, Z.X., 2003.History of Neoproterozoic Rift Basins in South China:Implications for Rodinia Break-Up.Precambrian Research, 122(1-4):141-158.doi: 10.1016/s0301-9268(02)00209-7 Wang, J.H., 1998.New Advances in Reconstruction of the Proterozoic Rodinia Supercontinent.Earth Science Frontiers, 5(4):235-242 (in Chinese with English abstract). https://www.researchgate.net/publication/313772235_A_review_of_advance_in_the_research_on_the_Neoproterozoic_Rodinia_supercontinent Wang, Q.H., Yang, D.B., Xu, W.L., 2011.Neoproterozoic Basic Magmatism in the Southeast Margin of North China Craton:Evidence from Whole-Rock Geochemistry, U-Pb and Hf Isotopic Study of Zircons from Diabase Swarms in the Xuzhou-Huaibei Area.Science in China(Series D), 41(6):796-815 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201106007&dbname=CJFD&dbcode=CJFQ Wang, Z., An, C.J., Shao, J., et al., 2005.Geochemical Characteristics of Neoproterozoic Large-Porphyritic Alkali-Feldspar Granite in Mordaga Area.Geology and Resources, 14(3):187-191 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD200503005.htm Wang, Z.L., Jin, J., Li, Z.L., et al., 2010.Zircon U-Pb Ages and Hf Isotopic Characteristics of Mineralized Porphyries in the Mordaoga Area, Northern-Central Da Hinggan Mountains, and Their Metallogenic Significance.Acta Petrologica et Mineralogica, 29(6):796-810 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201006015.htm Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granite:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralalogy and Petrology, 95(4):407-419.doi: 10.1007/bf00402202 Wilde, S.A., Zhang, X.Z., Wu, F.Y., 2000.Extension of a Newly Identified 500 Ma Metamorphic Terrane in North East China:Further U-Pb SHRIMP Dating of the Mashan Complex, Heilongjiang Province, China.Tectonophysics, 328(1-2):115-130.doi: 10.1016/S0040-1951(00)00180-3 Wu, F.Y., Jahn, B.M., Wilde, S., et al., 2000.Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China.Tectonophysics, 328(1-2):89-113.doi: 10.1016/s0040-1951(00)00179-7 Wu F.Y., Sun, D.Y., Lin, Q., 1999.Petrogenesis of the Phanerozoic Granites and Crustal Growth in Northeast China.Acta Petrologica Sinica, 15(2):181-189 (in Chinese with English abstract). http://www.oalib.com/paper/1471776 Wu, F.Y., Sun, D.Y., Ge, W.C., et al., 2011.Geochronology of the Phanerozoic Granitoids in Northeastern China.Journal of Asian Earth Sciences, 41(1):1-30.doi: 10.1016/j.jseaes.2010.11.014 Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006.Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology.Chemical Geology, 234(1-2):105-126.doi: 10.1016/j.chemgeo.2006.05.003 Wu, F.Y., Zhao, G.C., Sun, D.Y., et al., 2007.The Hulan Group:Its Role in the Evolution of the Central Asian Orogenic Belt of NE China.Journal of Asian Earth Sciences, 30(3-4):542-556.doi: 10.1016/j.jseaes.2007.01.003 Wu, G., Chen, Y.C., Chen, Y.J., et al., 2012.Zircon U-Pb Ages of the Metamorphic Supracrustal Rocks of the Xinghuadukou Group and Granitic Complexes in the Argun Massif of the Northern Great Hinggan Range, NE China, and Their Tectonic Implications.Journal of Asian Earth Sciences, 49:214-233.doi: 10.1016/j.jseaes.2011.11.023 Wu, G., Sun, F.Y., Zhao, C.S., et al., 2005.Discovery of the Early Paleozoic Post-Collisional Granites in Northern Margin of the Erguna Massif and Its Geological Significance.Chinese Science Bulletin, 50(20):2733-2743 (in Chinese). Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2012.Mid-Late Neoproterozoic Rift-Related Volcanic Rocks in China:Geological Records of Rifting and Break-Up of Rodinia.Geoscience Frontiers, 3(4):375-399.doi: 10.1016/j.gsf.2011.10.004 Xu, B., 2001.Recent Study of the Rodinia Supercontinent Evolution and Its Main Goal.Geological Science & Technology Information, 20(1):15-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200101002.htm Xu, B., Zhao, P., Bao, Q.Z., et al., 2014.Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB).Acta Petrologica Sinica, 30(7):1841-1857 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201407001.htm Yang, D.B., Xu, W.L., Xu, Y.G., et al., 2012.U-Pb Ages and Hf Isotope Data from Detrital Zircons in the Neoproterozoic Sandstones of Northern Jiangsu and Southern Liaoning Provinces, China:Implications for the Late Precambrian Evolution of the Southeastern North China Craton.Precambrian Research, 216-219:162-176.doi: 10.1016/j.precamres.2012.07.002 Yang, W.L., Luo, M.S., Wang, C.G., et al., 2014.Neoproterozoic-Paleozoic Sedimentary Basins Evolution of Xing-Meng Orogenic Belt.Earth Science, 39(8):1155-1168 (in Chinese with English abstract).doi: 10.3799/dqkx.2014.101 Ye, M.F., Li, X.H., Li, W.X., et al., 2007.SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block.Gondwana Research, 12(1-2):144-156.doi: 10.1016/j.gr.2006.09.001 Zhang, C.L., Li, Z.X., Li, X.H., et al., 2006.Neoproterozoic Bimodal Intrusive Complex in the Southwestern Tarim Block, Northwest China:Age, Geochemistry, and Implications for the Rifting of Rodinia.International Geology Review, 48(2):112-128.doi: 10.2747/0020-6814.48.2.112 Zhang, L., Liu, Y.J., Li, W.M., 2013.Discussion on the Basement Properties and East Boundary of the Erguna Massif.Chinese Journal of Geology, 48(1):227-244 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKX201301015.htm Zhang, J.H., 2009.Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in the Great Xing an Range, Northeastern China (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). Zhang, M., Wang, Z., Meng, E.G., et al., 2006.Geochemical Characteristics and Tectonic Significance of the Neoproterozoic Granites in Northern Daxinganling, Inner Mongolia.Geology and Resources, 15(2):98-106 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD200602003.htm Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and Its Implications.Acta Petrologica Sinica, 22(9):2249-2269 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200609000.htm Zhang, W.Z., 1996.The Global Proterozoic Supercontinents and the Position of the Main Blocks in China.Foreign Precambrian Geology, (3):1-13 (in Chinese with English abstract). Zhang, Y.H., Xu, W.L., Tang, J., et al., 2014.Age and Provenance of the Ergunahe Group and the Wubinaobao Formation, Northeastern Inner Mongolia, NE China:Implications for Tectonic Setting of the Erguna Massif.International Geology Review, 56(6):653-671.doi: 10.1080/00206814.2013.877856 Zhao, S., Xu, W.L., Wang, W., et al., 2014.Geochronology and Geochemistry of Middle-Late Ordovician Granites and Gabbros in the Erguna Region, NE China:Implications for the Tectonic Evolution of the Erguna Massif.Journal of Earth Science, 25(5):841-853.doi: 10.1007/s12583-014-0476-9 Zhao, S., Xu, W.L., Wang, F., et al., 2016.Neoproterozoic Magmatisms in the Erguna Massif, NE China:Evidence from Zircon U-Pb Geochronology.Geotectonica et Metallogenia, 40(3):559-573 (in Chinese with English abstract). https://www.researchgate.net/publication/306208688_Neoproterozoic_magmatisms_in_the_Erguna_Massif_NE_China_Evidence_from_zircon_U-Pb_geochronology Zhao, S., Xu, W.L., Tang, J., et al., 2016.Timing of Formation and Tectonic Nature of the Purportedly Neoproterozoic Jiageda Formation of the Erguna Massif, NE China:Constraints from Field Geology and U-Pb Geochronology of Detrital and Magmatic Zircons.Precambrian Research, 281:585-601.doi: 10.1016/j.precamres.2016.06.014 Zhou, J.B., Wilde, S.A., Zhang, X.Z., et al., 2011a.Early Paleozoic Metamorphic Rocks of the Erguna Block in the Great Xing an Range, NE China:Evidence for the Timing of Magmatic and Metamorphic Events and Their Tectonic Implications.Tectonophysics, 499(1-4):105-117.doi: 10.1016/j.tecto.2010.12.009 Zhou, J.B., Wilde, S.A., Zhang, X.Z., et al., 2011b.A >1 300 km Late Pan-African Metamorphic Belt in NE China:New Evidence from the Xing an Block and Its Tectonic Implications.Tectonophysics, 509(3-4):280-292.doi: 10.1016/j.tecto.2011.06.018 Zhou, J.B., Wilde, S.A., Zhao, G.C., et al., 2010a.Was the Easternmost Segment of the Central Asian Orogenic Belt Derived from Gondwana or Siberia:An Intriguing Dilemma? Journal of Geodynamics, 50:300-317.doi: 10.1016/j.jog.2010.02.004 Zhou, J.B., Wilde, S.A., Zhao, G.C., et al., 2010b.Pan-African Metamorphic and Magmatic Rocks of the Khanka Massif, NE China:Further Evidence Regarding Their Affinity.Geological Magazine, 147(5):737-749.doi: 10.1017/S0016756810000063 Zhou, J.B., Wilde, S.A., 2013.The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Orogenic Belt.Gondwana Research, 23(4):1365-1377.doi: 10.1016/j.gr.2012.05.012 Zhou, J.B., Wilde, S.A., Zhang, X.Z., et al., 2012 Detrital Zircons from Phanerozoic Rocks of the Songliao Block, NE China:Evidence and Tectonic Implications.Journal of Asian Earth Sciences, 47:21-34.doi: 10.1016/j.jseaes.2011.05.004 Zhou, J.B., Zeng, W.S., Cao, J.L., et al., 2012.The Tectonic Framework and Evolution of the NE China:from ~500 Ma to ~180 Ma.Journal of Jilin University(Earth Science Edition), 42(5):1298-1316, 1329 (in Chinese with English abstract). https://www.researchgate.net/publication/279581611_The_tectonic_framework_and_evolution_of_the_NE_China_From_500_Ma_to_180_Ma 表尚虎, 郑卫政, 周兴福, 2012.大兴安岭北部锆石U-Pb年龄对额尔古纳地块构造归属的制约.地质学报, 86(8):1262-1272. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201208010.htm 陈崇阳, 高有峰, 吴海波, 等, 2016.海拉尔盆地火山岩的锆石U-Pb年龄及其地质意义.地球科学, 41(8):1259-1274. http://earth-science.net/WebPage/Article.aspx?id=3336 葛文春, 隋振民, 吴福元, 等, 2007.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义.岩石学报, 23(2):423-440. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702022.htm 冯志强, 2015. 大兴安岭北段古生代构造-岩浆演化(博士学位论文). 长春: 吉林大学. 郭进京, 张国伟, 陆松年, 等, 1999.中国新元古代大陆拼合与Rodinia超大陆.高校地质学报, 5(2):148-156. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX902.002.htm 郭灵俊, 陈志勇, 孟二根, 等, 2005.大兴安岭北部的南华系.地质通报, 24(9):826-830. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200509007.htm 黑龙江省地质矿产局, 1993.黑龙江省区域地质志.北京:地质出版社. 洪大卫, 王式洸, 谢锡林, 等, 2003.从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系.地质学报, 77(2):203-209. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe200302015&dbname=CJFD&dbcode=CJFQ 黄汲清, 任纪舜, 姜春发, 等, 1977.中国大地构造基本轮廓.地质学报, (2):117-135. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197702002.htm 陆松年, 1998.新元古时期Rodinia超大陆研究进展述评.地质论评, 44(5):489-495. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199805006.htm 罗毅, 王正邦, 周德安, 1997.额尔古纳超大型火山热液型铀成矿带地质特征及找矿前景.华东地质学院学报, 20(1):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ701.000.htm 吕志成, 段国正, 郝立波, 等, 2002.佳疙瘩组变碎屑岩地球化学特征及古构造环境.吉林大学学报(地球科学版), 32(2):111-115. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200202001.htm 苗来成, 刘敦一, 张福勤, 等, 2007.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄.科学通报, 52(5):591-601. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200705018.htm 内蒙古自治区地质矿产局, 1991.内蒙古自治区区域地质志.北京:地质出版社. 秦秀峰, 郭原生, 刘旭光, 等, 2004.大兴安岭北部兴凯期花岗岩地球化学特征及构造意义.甘肃地质, 13(2):31-39. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200402005.htm 秦秀峰, 郭原生, 刘旭光, 等, 2005.大兴安岭北部晋宁期片麻杂岩的地球化学特征及地质意义.兰州大学学报(自然科学版), 41(4):6-10. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200504002.htm 任纪舜, 陈廷愚, 刘志刚, 1984.中国东部构造单元划分的几个问题.地质评论, 30(4):382-385. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198404013.htm 邵军, 李永飞, 周永恒, 等, 2015.中国东北额尔古纳地块新太古代岩浆事件——钻孔片麻状二长花岗岩锆石LA-ICP-MS测年证据.吉林大学学报(地球科学版), 45(2):364-373. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201502003.htm 佘宏全, 李进文, 向安平, 等, 2012.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化的关系.岩石学报, 28(2):571-594. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202019.htm 隋振民, 葛文春, 吴福元, 等, 2006.大兴安岭东北部哈拉巴奇花岗岩体锆石U-Pb年龄及其成因.世界地质, 25(3):229-236. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200603002.htm 隋振民, 葛文春, 吴福元, 等, 2007.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因.岩石学报, 23(2):461-480. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702024.htm 隋振民, 葛文春, 吴福元, 等, 2009.大兴安岭北部察哈彦岩体的Hf同位素特征及其地质意义.吉林大学学报(地球科学版), 39(5):849-856, 867. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200905013.htm 孙立新, 任邦方, 赵凤清, 等, 2012.额尔古纳地块太平川巨斑状花岗岩的锆石U-Pb年龄和Hf同位素特征.地学前缘, 19(5):114-122. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205013.htm 孙立新, 任邦方, 赵凤清, 等, 2013.内蒙古额尔古纳地块古元古代末期的岩浆记录——来自花岗片麻岩的锆石U-Pb年龄证据.地质通报, 32(2):341-352. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1012.htm 万天丰, 2004.论中国大陆复杂和混杂的碰撞带构造.地学前缘, 11(3):207-220. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403026.htm 王江海, 1998.元古宙罗迪尼亚(Rodinia)泛大陆的重建研究.地学前缘, 5(4):235-242. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY804.006.htm 王清海, 杨德彬, 许文良, 2011.华北陆块东南缘新元古代基性岩浆活动:徐淮地区辉绿岩床群岩石地球化学、年代学和Hf同位素证据.中国科学(D辑), 41(6):796-815. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201106007.htm 王召林, 金浚, 李占龙, 等, 2010.大兴安岭中北段莫尔道嘎地区含矿斑岩的锆石U-Pb年龄、Hf同位素特征及成矿意义.岩石矿物学杂志, 29(6):796-810. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006015.htm 王忠, 安春杰, 邵军, 等, 2005.大兴安岭莫尔道嘎地区巨斑状碱长花岗岩地球化学特征.地质与资源, 14(3):187-191. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200503005.htm 吴福元, 孙德有, 林强, 1999.东北地区显生宙花岗岩的成因与地壳增生.岩石学报, 15(2):181-189. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.003.htm 武广, 孙丰月, 赵财胜, 等, 2005.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义.科学通报, 50(20):2278-2288. doi: 10.3321/j.issn:0023-074X.2005.20.017 徐备, 2001.Rodinia超大陆构造演化研究的新进展和主要目标.地质科技情报, 20(1):15-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200101002.htm 徐备, 赵盼, 鲍庆中, 等, 2014.兴蒙造山带前中生代构造单元划分初探.岩石学报, 30(7):1841-1857. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm 杨文麟, 骆满生, 王成刚, 等, 2014.兴蒙造山系新元古代-古生代沉积盆地演化.地球科学, 39(8):1155-1168. http://earth-science.net/WebPage/Article.aspx?id=2920 张吉衡, 2009. 大兴安岭中生代火山岩年代学及地球化学研究(博士学位论文). 武汉: 中国地质大学. 张丽, 刘永江, 李伟民, 等, 2013.关于额尔古纳地块基底性质和东界的讨论.地质科学, 48(1):227-244. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201301015.htm 张明, 王忠, 孟二根, 等, 2006.内蒙古大兴安岭北部新元古代花岗岩岩石地球化学特征及其构造意义.地质与资源, 15(2):98-106. http://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201201108.htm 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm 张文治, 1996.全球元古宙超大陆及中国主要陆块位置.国外前寒武纪地质, (3):1-13. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ199603000.htm 赵硕, 许文良, 王枫, 等, 2016.额尔古纳地块新元古代岩浆作用:锆石U-Pb年代学证据.大地构造与成矿学, 40(3):559-573. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201603012.htm 周建波, 曾维顺, 曹嘉麟, 等, 2012.中国东北地区的构造格局与演化:从500到180 Ma.吉林大学学报(地球科学版), 42(5):1298-1316, 1329. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205005.htm