Estimation of High-Frequency Wave Radiation Areas of Wenchuan Earthquake by the Envelope Inversion of Acceleration Seismograms and Synthesis of Near-Field Accelerograms
-
摘要: 合理地估计汶川破坏区域的地震动有助于地震灾害的研究.通过利用芦山地震记录建立的加速度包络衰减关系和汶川地震近场30个台站的加速度包络,基于线源模型,采用差分进化方法反演了汶川地震断层面上高频 (>1 Hz) 辐射区域分布.结果表明:断层面上高频辐射分布很不均匀,辐射较强的区域主要位于:(1) 产生较大地表破裂的映秀、北川和南坝区域;(2) 映秀和北川等凹凸体的周边区域,包括震中东北侧60~90 km区域、北川和南坝东北侧30 km处;(3) 断层破裂停止的东北端约30 km长的区域.其中,破裂贯穿到地表的映秀、北川和南坝是低频和高频辐射都很强的区域.对于无观测记录场点,选择其临近且场地条件类似的台站加速度提取平稳随机过程,结合高频辐射分布和衰减关系得到的包络,合成了加速度时程,可为汶川地震结构震害分析提供地震动输入.Abstract: It s helpful for studying earthquake disaster by estimating seismic oscillation reasonably in Wenchuan area. Based on the line source model, the high-frequency ( > 1 Hz) wave radiation areas on the Wenchuan earthquake fault plane are inversed by the differential evolution method, using the acceleration envelopes attenuation relationship of Lushan earthquake and envelopes of 30 near-field stations acceleration seismograms in Wenchuan earthquake. The results indicate that the high-frequency wave radiation areas are very nonuniform, with most of the High-frequency waves radiated in: (1) the surface rupture areas, including Yingxiu, Beichuan and Nanba areas; (2) the areas close to the boundaries of the asperities, including that with epicentral distance from 60 to 90 km northeast of epicenter, and areas 30 km northeast of Beichuan and Nanba; (3) the area within 30 km length near the fault northeastern tip. Both high and low frequency wave radiation were much higher in areas with large surface rupture. Utilizing the inversed high-frequency wave radiation areas and the acceleration envelopes attenuation relationship, near-field accelerations are synthesized. The accelerations in areas with no seismic records are synthesized by the synthetic envelopes and a stationary stochastic process extracted from its near station with similar site conditions. The results could be used as the earthquake input for analyzing seismic damage of structures in Wenchuan earthquake.
-
图 3 本文震中距与包络参数t1、ts和C的关系与霍俊荣 (1989)、肖亮 (2011)相应结果的对比
黑色表示霍俊荣的结果,褐色表示肖亮的结果,红色表示本文南北向结果,蓝色表示本文东西向结果
Fig. 3. Comparison about the relation of envelope parameters t1, ts and C to epicentral distance in the article, Huo (1989) and Xiao (2011)
表 1 芦山地震43个台站位置及震中距
Table 1. Locations and epicentral distance of the 43 stations of Lushan earthquake
台站代码 经度 (E) 纬度 (N) 震中距 (km) 51BXD 102.81° 30.37° 16.5 51BXZ 102.89° 30.47° 21.8 51BXM 102.71° 30.38° 25.7 51BXY 102.90° 30.53° 27.8 51YAM 103.11° 30.07° 28.1 51LSF 102.90° 30.02° 29.8 51QLY 103.27° 30.41° 32.9 51YAD 103.01° 29.98° 34.2 51HYT 103.37° 29.91° 58.1 51PJW 103.65° 30.30° 67.1 51KDZ 102.18° 30.12° 77.1 51XJW 102.64° 30.96° 81.4 51HYQ 102.62° 29.58° 84.8 51HYY 102.45° 29.65° 86.0 51XJD 102.36° 31.00° 97.6 51LDJ 102.21° 29.69° 98.1 51KDT 101.96° 30.05° 99.1 51DJZ 103.59° 31.02° 102.3 51PXZ 103.76° 30.91° 103.7 51CDZ 104.09° 30.56° 113.4 51HYW 102.90° 29.22° 118.2 51KDG 101.57° 29.96° 137.7 51DFB 101.48° 30.48° 142.9 51KDX 101.50° 30.04° 143.1 51GLQ 102.77° 28.97° 147.8 51SFB 104.00° 31.28° 149.1 51MNW 102.28° 28.81° 177.1 51HSS 103.42° 31.94° 190.0 51MNC 102.24° 28.64° 195.3 51MNA 102.17° 28.61° 201.2 51MNJ 102.18° 28.55° 207.2 51MNT 102.16° 28.55° 208.3 51MNH 102.07° 28.46° 220.7 51LBH 103.79° 28.44° 220.9 51JYH 104.61° 31.77° 228.6 51LBD 103.57° 28.26° 232.8 51MNL 102.19° 28.29° 233.9 51JYT 104.75° 31.78° 238.4 51MNM 102.17° 28.20° 243.8 51MNZ 102.07° 28.20° 246.8 51JYW 104.78° 31.88° 248.8 51XCY 102.16° 27.74° 293.8 51YYJ 101.96° 27.72° 301.9 表 2 包络衰减关系的回归系数
Table 2. Regression coefficient of attenuation relationship of envelope
方向 参数 C1 C2 C3 R0(km) ε 东西 t1 -1.836 0.234 0.674 10 0.176 I0 -0.257 0.752 -1.721 10 0.247 ts -2.036 0.295 0.573 10 0.137 C 1.361 -0.221 -0.488 10 0.107 南北 t1 -1.303 0.145 0.730 10 0.101 I0 -0.396 0.716 -1.523 10 0.211 ts -2.073 0.334 0.439 10 0.129 C 1.321 -0.242 -0.405 10 0.104 表 3 汶川地震30个台站位置及震中距、断层距
Table 3. The locations of 30 stations and their epicenter and fault distance
代码 经度 (E) 纬度 (N) 震中距 (km) 断层距 (km) 上盘 下盘 51WCW 103.18° 31.04° 18.0 16.1 是 51DXY 103.52° 30.59° 46.9 43.9 是 51LXT 103.45° 31.56° 64.0 43.6 是 51LXM 103.34° 31.57° 64.5 51.4 是 51QLY 103.27° 30.41° 65.1 43.4 \ \ 51BXY 102.91° 30.53° 66.4 10.8 \ \ 51SFB 103.99° 31.28° 68.1 14.0 是 51XJD 102.64° 30.97° 68.7 44.0 是 51LXS 102.91° 31.53° 73.7 74.9 是 51MXN 103.73° 31.58° 74.4 27.8 是 51PJW 103.63° 30.29° 82.0 76.2 是 51PJD 103.41° 30.25° 82.4 65.9 \ \ 51MZQ 104.09° 31.52° 91.0 0.2 是 51LSJ 102.93° 30.16° 101.1 49.3 \ \ 51AXT 104.30° 31.54° 108.3 11.2 是 51DYB 104.46° 31.29° 109.9 42.5 是 51HSL 103.26° 32.06° 119.4 98.1 是 51MXD 103.68° 32.04° 120.6 70.2 是 51JYH 104.63° 31.78° 149.2 11.3 是 51JYD 104.74° 31.78° 157.7 18.2 是 51SPA 103.64° 32.51° 171.1 112.6 是 51JYC 104.99° 31.90° 184.8 23.6 是 51SPC 103.62° 32.78° 200.5 136.8 是 51PWM 104.52° 32.62° 211.8 67.1 是 51JZW 104.21° 33.03° 240.6 121.2 是 51JZG 104.32° 33.12° 253.5 122.0 是 51CXQ 105.93° 31.74° 257.9 95.8 是 51GYS 105.84° 32.15° 268.0 55.2 是 62WUD 104.99° 33.35° 304.0 99.7 是 51GYZ 106.11° 32.62° 316.8 31.9 \ \ 表 4 采用4种不同破裂速度和5种不同时间间隔得到的合成包络与观测包络的残差
Table 4. Residue of synthetic and observed envelopes at 4 different rupture velocity and 5 time interva
vr(km/s) Δt(s) 0.6 0.8 1.0 1.2 1.4 2.6 257.7 258.1 258.4 257.2 257.8 2.8 243.5 241.9 240.8 241.1 240.2 3.0 239.9 234.4 232.5 229.2 230.2 3.2 239.8 233.1 229.0 224.5 227.3 -
Aguirre, J., Irikura, K., 2003.Reliability of Envelope Inversion for the High-Frequency Radiation Source Process Using Strong Motion Data:Example of the 1995 Hyogoken Nanbu Earthquake.Bull.Seismol.Soc.Amer.,93(5):2005-2016.doi: 10.1785/0120020132 Cocco, M., Boatwright, J., 1993.The Envelopes of Acceleration Time Histories.Bull.Seismol.Soc.Amer.,83(4):1095-1114. Du, H.L.., Xu, L.S., Chen, Y.T, 2009.Rupture Process of the 2008 Great Wenchuan Earthquake from the Analysis of the Alaska-Array Data.Chinese J.Geophys.,52(2):372-378 (in Chinese with English abstract). http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract918.shtml Li, X.J., Liu, L., Wang, Y.S., et al., 2010.Analysis of Horizontal Strong-Motion Attenuation in the Great 2008 Wenchuan Earthquake.Bull.Seismol.Soc.Amer.,100(5B):2440-2449.doi: 10.1785/0120090245 Liu, Q.F., Li, X.J., 2009.Preliminary Analysis of the Hanging Wall Effect and Velocity Pulse of the 5.12 Wenchuan earthquake.Earthquake Engineering and Engineering Vibration,8(2):165-177.doi: 10.1007/s11803-009-9043-2 Hanks, T.C., 1974.The Faulting Mechanism of the San Fernando Earthquake.J.Geophys.Res.,79(8):1215-1229.doi: 10.1029/JB079i008p01215 Hartzell, S., Liu, P.C., Mendoza, C., 1996.The 1994 Northridge, California, Earthquake:Investigation of Rupture Velocity, Risetime, and High-Frequency Radiation.J.Geophys.Res.,101:20091-20108.doi: 10.1785/0120120108 Hartzell, S., Mendoza, C., Ramirez-Guzman, L., et al., 2013.Rupture History of the 2008 Mw 7.9 Wenchuan, China, Earthquake:Evaluation of Separate and Joint Inversions of Geodetic, Teleseismic, and Strong-Motion Data.Bull.Seismol.Soc.Amer.,103(1):353-370.doi: 10.1785/0120120108 Huo, J.R., 1989.Study on the Attenuation Laws of Strong Earthquake Ground Motion Near the Source (Dissertation).Institute of engineering mechanics, China earthquake administration, Haerbin (in Chinese with English abstract). Kakehi, Y., Irikura, K., 1996.Estimation of High-Frequency Wave Radiation Areas on the Fault Plane by the Envelope Inversion of Acceleration Seismograms.Geophys.J.Int.,125(3):892-900.doi: 10.1111/j.1365-246X.1996.tb06032.x Kakehi, Y., Irikura, K., Hoshiba, M., 1996.Estimation of High-Frequency Wave Radiation Areas on the Fault Plane of the 1995 Hyogo-ken Nanbu Earthquake by the Envelope Inversion of Acceleration Seismograms.J.Phys.Earth,44:505-517. doi: 10.4294/jpe1952.44.505 Kakehi, Y., Irikura, K., 1997.High-Frequency Radiation Process During Earthquake Faulting Envelope Inversion of Acceleration Seismograms from the 1993 Hokkaido-Nasei-Oki, Japan, Earthquake.Bull.Seismol.Soc.Amer.,87(4):904-917. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.660.988&rep=rep1&type=pdf Madariaga, R., 1977.High Frequency Radiation from Crack (Stress Drop) Models of Earthquake Faulting.Geophys.J.R.Str.Soc.,1(3):625-651.doi: 10.1111/j.1365-246X.1977.tb04211.x Mikumo, T., Hirahara, K., Miyatake, T., 1987.Dynamical Fault Rupture Process in Heterogeneous Media.Techtonophysics,144(1-3):19-36.doi: 10.1016/0040-1951(87)90006-0 Nakahara, H., Nishimura, T., Sato, H., et al., 1998.Seismogram Envelope Inversion for the Spatial Distribution of High-Frequency Energy Radiation from the Earthquake Fault:Application to the 1994 far East off Sanriku Earthquake, Japan.J.Geophys.Res.,103:855-867.doi: 10.1029/97JB02676 Nakahara, H., 2008.Seismogram Envelope Inversion for High-Frequency Seismic Energy Radiation from Moderate to Large Earthquakes.Adv.Geophy.,50:401-426. doi: 10.1016/S0065-2687(08)00015-0 Nakahara, H., 2013.Envelope Inversion Analysis for High-Frequency Seismic Energy Radiation from the 2011 Mw 9.0 off the Pacific Coast of Tohoku Earthquake.Bull.Seismol.Soc.Amer.,103(2B):1348-1359.doi: 10.1785/0120120155 Nakamura, T., Tsuboi, S., Kaneda, Y., et al., 2010.Rupture Process of the 2008 Wenchuan, China Earthquake Inferred from Teleseismic Waveform Inversion and forward Modeling of Broadband Seismic Waves.Tectonophysics,491(1-4):72-84.doi: 10.1016/j.tecto.2009.09.020 Tang, H., Li, X.J., Li Y.Q., 2012.Site Effect of Topograghy on Ground Motions of Xishan Park of Zigong City.Journal of Vibration and Shock,31(8):74-79 (in Chinese with English abstract). https://www.researchgate.net/publication/272601946_Research_of_Earthquake_Topographic_Effect Wang, W.M.., Zhao, L.F., Li, J., et al., 2008.Rupture Process of the Ms 8.0 Wenchuan Earthquake of Sichuan, China.Chinese J.Geophys.,51(5):1403-1410 (in Chinese). https://www.researchgate.net/publication/235769248_Rupture_process_of_the_1944_Tonankai_earthquake_MS_81_from_the_inversion_of_teleseismic_and_regional_seismograms Wen, R.Z., Ren, Y.F., Huang, X.T., 2013.Strong Motion Records and Their Engineering Damage Implications for Lushan Earthquake on April 20, 2013.Journal of Earthquake Engineering and Engineering Vibration,33(4):1-14 (in Chinese with English abstract). https://www.researchgate.net/publication/279703557_Maximum_acceleration_recording_from_Lushan_earthquake_on_April_20_2013 Xiao, L., 2011.Study on the Attenuation Relationships of Horizontal Ground Motion Parameters Near the Sourse of Rock Site (Dissertation).Institute of geophysics, China earthquake administration, Beijing (in Chinese with English abstract). Xu, X.W., Wen, X.Z., Ye, J.Q., et al., 2008.The Ms8.0 Wenchuan Earthquake Surface Ruptures and its Seismogenic Structure.Seismology and Geology,30(3):597-629(in Chinese with English abstract). https://www.researchgate.net/publication/286044433_The_Ms80_Wenchuan_Earthquake_and_co-seismic_river_response Yamada, M., Heaton, T., 2008.Real-Time Estimation of Fault Rupture Extent Using Envelopes of Acceleration.Bull.Seismol.Soc.Amer.,98(2):607-619.doi: 10.1785/0120060218 Yuan, Y.F., 2008.Loss Assessment of Wenchuan Earthquake.Journal of Earthquake Engineering and Engineering Vibration,28(5):10-19 (in Chinese with English abstract). https://www.researchgate.net/publication/296555369_Loss_assessment_of_Wenchuan_Earthquake Yu, Y., 2012.Empirical Estimate Model for Ground Motion of Wenchuan Earthquake Zone (Dissertation).Institute of Engineering Mechanics, China Earthquake Administration, Harbin (in Chinese with English abstract). Zeng, Y.H., Aki, K., Teng, T.L., 1993.Mapping of the High-Frequency Source Radiation for the Loma Prieta Earthquake, California.J.Geophys.Res.,98(B7):11981-11993.doi: 10.1029/93JB00346 Zhang, H., GE, Z.X., 2010.Tracking the Rupture of the 2008 Wenchuan Earthquake by Using the Relative Back-Projection Method.Bull.Seismol.Soc.Amer.,100(5B):2551-2560.doi: 10.1785/0120090243 Zhang, Y., Feng, W.P., Xu L.S., et al., 2008.The Rupture Process of the Great Wenchuan Earthquake.Science China Earthquake Sciences,38(10):1186-1194 (in Chinese). doi: 10.1007%2Fs11589-010-0752-4.pdf Zhang, Z.W., Zhou, L.Q., Cheng, W.Z., et al., 2015.Focal Mechanism Solutions of Lushan Mw6.6 Earthquake Sequence and Stress Field for Aftershock Zone.Earth Science,40(10):1710-1722(in Chinese with English abstract). https://www.researchgate.net/publication/284735585_Focal_mechanism_solutions_of_Lushan_Mw66_earthquake_sequence_and_stress_field_for_aftershock_zone Zhao, C.P., Chen, Z.L., Zhou, L.Q., et al., 2009.Rupture Process of the 8.0 Wenchuan Earthquake of Sichuan, China:The Segmentation Feature.Chinese Sci.Bull.,54:3475-3482 (in Chinese with English abstract). Zhao, Z., Zhang, R.S., 1987.Primary Study of Crustal and Upper Mantle Velocity Structure of Sichuan Province.Acta Sesimologica Sinica,9(2):154-166 (in Chinese with English abstract). 杜海林, 许力生, 陈运泰, 2009.利用阿拉斯加台阵资料分析2008年汶川大地震的破裂过程.地球物理学报, 52(2):372-378. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902010.htm 霍俊荣, 1989.近场强地面运动衰减规律的研究 (博士学位论文).哈尔滨:中国地震局地球物理研究所. 唐晖, 李小军, 李亚琦, 2012.自贡西山公园山脊地形场地效应分析.振动与冲击, 31(8):74-79. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201104011.htm 王卫民, 赵连锋, 李娟, 等, 2008.四川汶川8.0级地震震源过程.地球物理学报, 51(5):1403-1410. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200805014.htm 温瑞智, 任叶飞, 黄旭涛, 等, 2013.芦山7.0级地震强震动记录及其震害相关性.地震工程与工程振动, 33(4):1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201304001.htm 肖亮, 2011.水平向基岩强地面运动参数衰减关系研究 (博士学位论文).北京:中国地震局地球物理研究所. 徐锡伟, 闻学泽, 叶建青, 等, 2008.汶川Ms8.0地震地表破裂带及其发震构造.地震地质, 30(3):597-629. 袁一凡, 2008.四川汶川8.0级地震损失评估.地震工程与工程振动, 28(5):10-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200805002.htm 喻烟, 2012.汶川地震区地震动估计经验模型 (博士学位论文).哈尔滨:中国地震局工程力学研究所. 张勇, 冯万鹏, 许力生, 等, 2008.2008年汶川大地震的时空破裂过程.中国科学 (D辑), 38:1186-1194. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200810003.htm 张致伟, 周龙泉, 程万正, 等, 2015.芦山Mw6.6地震序列的震源机制及震源区应力场.地球科学, 40(10):1710-1722. http://earth-science.net/WebPage/qk.aspx?id=142# 赵翠萍, 陈章立, 周连庆, 等, 2009.汶川Mw8.0级地震震源破裂过程研究:分段特征.科学通报, 54:3475-3482. 赵珠, 张润生, 1987.四川地区地壳上地慢速度结构的初步研究.地震学报, 9(2):154-166. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198702003.htm 中国地震局震害防御司, 2008.2008汶川8.0级地震未校正加速度记录.北京:地震出版社.