Hydrochemical Characteristics of Geothermal Water in Guide Basin
-
摘要: 研究工作对完善区内高温地热系统成因机理和后期勘探及钻探工作提供一定的参考意义.为进一步研究贵德盆地地热资源赋存状态及热源来源,在充分了解贵德盆地地热地质条件的基础上,采集区内地热流体样品,进行水化学全分析和氢氧同位素分析,得到该区地热流体化学特征和氢氧同位素特征,估算了区内高温热田-扎仓寺热田的热储温度.分析结果表明:该区高温地下热水的水化学类型主要为SO4·Cl-Na型,低温水水化学类型较为复杂,主要为SO4-Na、SO4·HCO3-Na型;扎仓寺热田地下热水中Li+、F-、Sr2+、As3+与Cl-存在很好的正相关性,显示了相同的物质来源,SiO22-与Cl-极高的正相关性进一步验证了扎仓寺地热为深部热源;氢氧同位素数据都集中在当地大气降水线附近,说明地下热水主要为大气降水补给.选用合理的水文地球化学温标计算了扎仓寺热田的热储温度,并利用硅-焓模型分析了该热田地热流体中冷水混入比例及冷水混入前的热储温度,分析认为扎仓寺热田4 000 m以内存在两个热储层,第一热储层热储温度约为133 °C,热循环深度为1 800 m;第二热储层热储温度约为222 °C,热循环深度约为3 200 m.Abstract: In order to further study the occurrence state and origin of geothermal resources in Guide basin, the hydrochemistry, hydrogen and oxygen isotope data from the study area are collected to analyze the geochemical properties and evolution of geothermal water and to calculate the geothermal reservoir temperature of high-temperature field. Hydrochemistry analysis of geothermal fluids show that the high-temperature thermal water is mainly of SO4·Cl-Na type, and the low-temperature thermal water is mainly of SO4-Na、SO4·HCO3-Na. There is a positive correlation between Li, F, Sr, As and Cl in Zhacangsi thermal field, which indicates the possible same origin, and the positive correlation between SiO2 and Cl confirms the deep hot source of geothermal resources. The δD values range from-59‰ to-87‰, the δ18O values range from-8.6‰ to 12.2‰, and they are all distributed near the local meteoric water line, which suggests the thermal water in study area is recharged from the atmospheric precipitation mainly. The temperature and depths of geothermal reservoir of Zhacangsi thermal field are calculated using reasonable geothermometers. The Na-K-Mg equilibrium diagram reflects that the cold water mixing action occurred in Zhacangsi thermal field during the hot water rising process, the cold water mix proportions and the geothermal reservoir temperature before the cold water mixed are obtained using Si-enthalpy model. The geothermal reservoir temperature of Zhacangsi thermal field is about 133 °C calculated by multi mineral balance method and geothermometers, which is close to the shallow reservoir temperature, the depth of the thermal cycle is about 1 800 m; while the geothermal reservoir average temperature of Zhacangsi geothermal field is 222 °C before the cold water mixed and the cold water in geothermal fluid mixed with 60%-68% analyzed by Si-enthalpy model, which is close to the deep geothermal reservoir temperature, the depth of the thermal cycle is about 3 200 m. It is concluded that there are two geothermal reservoirs in Zhacangsi thermal field within the depth of 4 000 m This paper can facilitate further study of genetical mechanism of the high-temperature geothermal systems and provide guidance for exploration and drilling in the area.
-
表 1 扎仓寺地热流体地球化学温标计算结果
Table 1. Geothermometers calculation results of geothermal fluids in zhacangsi
样点编号 深度 (m) 多矿物平衡法 (°C) 阳离子温标 (°C) T热储(°C) T石英 T玉髓 TNa-K-Ca
β=1/3TNa-K T玉髓 T石英 GDA32 泉点 126 126 136 139 120 146 132 GDA34 泉点 135 135 137 140 113 138 133 GDA37 311 132 132 134 134 117 143 132 表 2 热水温度、焓以及SiO2含量之间的关系
Table 2. The relationship between the temperature of hot water, enthalpy and SiO2
温度 (°C) 焓 (J/g) ρSiO2(mg/L) 50 50.0 13.5 75 75.0 26.6 100 100.1 48.0 125 125.1 80.0 150 151.0 125.0 175 177.0 185.0 200 203.6 265.0 225 230.9 365.0 250 259.2 486.0 275 289.0 614.0 300 321.0 692.0 - - - -
Chai R.2010.Selection of Geothermometers and Estimate of the Temperature of Geothermal Resevior in Pingdingshan 8th Mine.Coal Geology & Exploration,38(1):60-61 (in Chinese with English abstract). http://www.wenkuxiazai.com/doc/d80a77a50029bd64783e2cda.html Chai R., Wang H., Liu Y.2010.Application of Multi Mineral Balance Method to Estimation of Geothermal Temperature.Coal Science and Technology,38(4):101-103 (in Chinese with English abstract). https://pangea.stanford.edu/researchgroups/suprid/modeling-reservoir-temperature-transients-and-matching-permanent-downhole-gauge-pdg-data-reservoir-p Chen F.L., Zhang M.J., Ma Q., et al.2013.Characteristics of δ18O in Precipitation and Water Vapor Sources in Lanzhou City and Its Surrounding Area.Environmental Science,34(10):3756-3759 (in Chines with English abstract). http://www.academia.edu/4383864/87Sr_86Sr_and_Sr_Ca_in_speleothems_for_paleoclimate_reconstruction_in_Central_China_between_70_and_280_kyr_ago Chen L.A.1995.Estimate of Thermal Reservoir Temperature of Thermal Mineral Water in Guizhou.Guizhou Geology,12(1):75-78 (in Chinese with English abstract). https://www.geothermal-energy.org/pdf/IGAstandard/WGC/1995/3-arnorsson.pdf Chen H.J., Zhao Z., Luo Y.F., et al.2010.Occurrence Conditions and Prospect Analysisof Geothermal Resources in Guide Basin Qinghai.Journal of Qinghai Environment,20(4):198-202(in Chinese). https://www.researchgate.net/publication/281411857_Geology_of_the_Emigrant_Geothermal_prospect_Esmeralda_County_Nevada Doan V.T., Tran A.V., Nguyen T.K.T.2012.Geochemical Characteristics of Geothermal Hot Water Sources on the Territory of Vietnam.Thirty-Eighth Workshop on Geothermal Reservoir Engineering Standford University Stanford, 1-8. https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2014/Doan.pdf Fournier R.O.1977.Chemical Geothermometers and Mixing Models for Geothermal Systems.Geothermics,5(1):41-50 Geothermal Resources Evaluation Method, 1985.The Geological and Mineral Department Standard of the People's Republic of China DZ40-85:19 (in Chinese). Ghadimi F., Mirzaei M., Ghomi M., et al.2012.Hydrochemical Properties of the Thermal Waters of MahalatAbgarm Iran.GRC Transactions,36:1355-1357. https://www.researchgate.net/publication/286618264_Hydrochemical_properties_of_the_thermal_waters_of_Mahalat_Abgarm_Iran Gu Z.G., Bai S.H., Zhang X.T., et al.1992.Division and Correlation of the Neogene Rocks in the Guide and Hualong Basins in Qinghai Province.Journal of Stratigraphy,16(2):96-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199203004.htm Guo W.C., Shi X.M.2008.The Development and Utilization of Guide Basin's Geothermal Resources of Qinghai Province.Hydrogeology & Engineering Geology,35(3):79-81 (in Chinese with English abstract). https://www.researchgate.net/profile/Xinli_Lu/publication/284009809_A_review_of_geothermal_energy_resources_development_and_applications_in_China_Current_status_and_prospects/links/5657d03608ae4988a7b5839e.pdf Guo Z.J., Song H.Z.2005.Application on Data Mining of Hyperspectrum to Identification and Extraction of Alteration Minerals.Resources Environment & Engineering,19(3):200-202 (in Chinese with English abstract). doi: 10.1007/978-3-662-47456-3_9 Li B., Shi H.B., Zhang J.G, et al.2014.Hydrochemical Characteristics of Groundwater before and after Water-saving Reform in Hetao Irrigation District Inner Mongolia.Transactions of the Chinese Society of Agricultural Engineering,30(21):102-106 (in Chinese with English abstract). https://www.researchgate.net/publication/287704686_Effect_of_irrigated_agriculture_development_on_evolution_of_shallow_groundwater_system_in_Delingshan_area_Inner_Mongolia Li J.X., Guo Q.H., Wang Y.X.2015.Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Processes during Ascent to Surfase:A Case Study in Rehai Geothermal Field Tengchong.Earth Science,40(9):1578-1579 (in Chinese with English abstract). https://www.researchgate.net/publication/257266086_Hydrogeochemistry_of_high-temperature_geothermal_systems_in_China_A_review Liao Y., Ma T., Chen L.Z., et al.2013.Hydrochemistry of High-Arsenic Thermal Groundwater of Low-Temperature in the Guide Basin in Qinghai China.Hydrogeology & Engineering Geology,40(4):122-123 (in Chinese with English abstract). doi: 10.1007%2Fs12665-016-5991-9.pdf Liu Z., Lin W.J., Zhang M., et al.2014.Geothermal Fluid Genesis and Mantle Fluids Contributions in Nimu-Naqu Tibet.Earth Science Frontiers,21:7-9 (in Chinese with English abstract). Local Chronicles Compilation Committee of Guide County, 1995.Guide County Chronicles.Shanxi People's Publishing House Xi'an, 73-106(in Chinese). Long Z.Y., Xue G.Q., Zhou N.N., et al.2009.Investigation of Deep Geothermal Resources in Guide Basin by Using Geophysical Method.Progress in Geophysics,24(6):2261-2266 (in Chinese with English abstract). http://manu39.magtech.com.cn/Geoprog/EN/abstract/abstract2252.shtml Reed M.H., Spycher N.F.1984.Calculation of pH and Mineral Equilibria in Hydrothermal Waters with Application to Geothermometry and Studies of Boiling and Dilution.Geochimca et Cosmochim Acta,48:1479-1490.doi: 10.1016/0016-7037(84)90404-6 Rybach L., Muffler L.J.P.1986.Geothermal Systems Principles and Case Histories.Translated by Geothermal Research of Department of Geology Peking University.Geological Publishing House Beijing, 19-104(in Chinese). Song C.H., Fang X.M., Gao J.P., et al.2001.Tectonic Uplift and Sedimentary Evolution of the Guide Basin in the Northeast Margin of Tibetan Plateau in Cenozoic Era.Acta Sedinmentologica Sinica,19(4):498-506 (in Chinese with English abstract). http://www.nsfc.gov.cn/Portals/0/fj/english/fj/pdf/2009/021.doc Sanchez Navarro J.A., Coloma Lopez P., Perez-Garcia A.2004.Evaluation of Geothermal Flow at the Springs in Aragon (Spain), and Its Relation to Geologic Structure.Hydrogeology Journal,12:601-609.doi: 10.1007/s10040-004-0330-8 Shi W.D., Guo J.Q., Zhang S.Q., et al.2010.The Distribution and Geochemistry of Geothermal Groundwater Bearing F and As in the Guide Basin.Hydrogeology & Engineering Geology,37(2):35-37 (in Chinese with English abstract). doi: 10.1007/s10653-011-9393-3 Song C.H., Fang X.M., Gao J.P., et al.2001.Tectonic Uplift and Sedimentary Evolution of the Guide Basin in the Northeast Margin of Tibetan Plateau in Cenozoic Era.Acta Sedinmentologica Sinica,19(4):498-506 (in Chinese with English abstract). http://www.nsfc.gov.cn/Portals/0/fj/english/fj/pdf/2009/021.doc Sorey M.L., Colvard E.M.1997.Hydrologic Investigations in the Mammoth Corridor Yellow-Stone National Park and Vicinity U.S.A..Geothermics,26(2):221-249. doi: 10.1016/S0375-6505(96)00041-7 Tong W., Zhang M.T., Zhang Z.F., et al.1981.Tibetan Geothermal.Science Press Beijing, 74-118(in Chinese). http://or.nsfc.gov.cn/handle/00001903-5/265495 Wang D.S., Wang J.L.1996. Genetic Characteristics and Basic Types of Geothermal Water in China.Quaternary Sciences,2:140-145(in Chinese with English abstract). https://www.researchgate.net/publication/318464532_Hydrochemical_characteristics_and_mixing_behavior_of_thermal_springs_along_the_Bijiang_River_in_the_Lanping_basin_of_China Wang G.L., Zhang F.W., Liu Z.M.2000.An Analysis of Present Situation and Prospects of Geothermal Energy Development and Utilization in the World.Acta Geoscientia Sinica,21(2):134-137 (in Chinese with English abstract). https://www.geothermal-energy.org/pdf/IGAstandard/ARGeo/2008/Uwera_Rwanda.pdf Wang J., Zhou J.P.1991.Geothermal Resources Characteristic and Utilizing Problem in Hejian County.Transactions of the Chinese Society of Agricultural Engineering,7(3):54-56 (in Chines with English abstract). http://www.ogj.com/articles/print/volume-103/issue-33/exploration-development/geothermal-electric-power-supply-possible-from-gulf-coast-midcontinent-oil-field-waters.html Wu H.M., Sun Z.X.2000.Calculation of the Fluid-Rock Equilibrium State in the Geothermal System.Journal of East China Geological Institute,23(1):39 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ200001008.htm Wu K.J., Ma C.M.2010.Geochemical Characteristics of Geothermal Water in Zhengzhou City.Geotechnical Investigation & Surveying,5:45-49 (in Chines with English abstract). https://www.ripublication.com/ijaer16/ijaerv11n18_19.pdf Wu X.N., Gu F.B.1991.Regional Geology of Qinghai Province.Geological Publishing House Beijing, 560-574 (in Chinese). Xue J.Q., Gan B., Li B.X., et al.2013.Geological-Geophysical Characteristics of Enhanced Geothermal Systems (Hot Dry Rock) in Gonghe-Guide Basin.Geophysical & Geochemical Exploration,7(1):37-39 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_wtyht201301006 Yu T.T., Gan Y.Q., Zhou A.G.2010.Characteristics of Oxygen and Hydrogen Isotope Distribution of Surface Runoff in the Lhasa River Basin.Earth Science,35(5):876(in Chines with English abstract). doi: 10.1007/s00254-008-1324-y Zhao P., Jin J., Zhang H.Z.1998.Chemical Composition of Thermal Water in the Yangbajing Geothermal Field Tibet.Scientia Geologica Sinica,33(1):66 (in Chinese with English abstract). http://www.nsfc.gov.cn/Portals/0/fj/fj20170118_03.xls Zheng S.H., Wu W.Y., Li Y., et al.1985.Late Cenozoic Mammalian Faunas of Guide and Gonghe Basins Qinghai Province.Certebrata Palasiatica,23(2):89-134 (in Chinese with English abstract). doi: 10.1007%2F978-94-024-1050-1_4 Zheng X.L., Liu H.J.1996.Study of the Water-Rock Equilibrium State in the Application of Geothermometer.Journal of Xi'an College of Geology,18(1):75-79 (in Chinese with English abstract). Zhou X.B., Li C., Li Y.K.2005.Geothermal Field Causes of Zhacangsi, in Guide Qinghai.Qinghai Science and Technology,2:18-20(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201603031.htm 柴蕊, 2010.平顶山八矿地热温标的选取及热储温度估算.煤田地质与勘探, 38(1):60-61. http://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201001017.htm 柴蕊, 王皓, 刘洋, 2010.多矿物平衡法在地下热储温度估算中的应用.煤炭科学技术, 38(4):101-103. http://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201004031.htm 陈粉丽, 张明军, 马潜, 等, 2013.兰州及其周边区域大气降水δ18O特征及其水汽来源.环境科学, 34(10):3756-3759. 陈慧娟, 赵振, 罗银飞, 等, 2010.青海省贵德盆地地热资源赋存条件及开发利用前景分析.青海环境, 20(4):198-202. http://www.cnki.com.cn/Article/CJFDTOTAL-QHHJ201004014.htm 陈履安, 1995.贵州热矿水热储温度的估算.贵州地质, 12(1):75-78. http://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ501.009.htm 地热资源评价方法, 1985, 中华人民共和国地质矿产部部标准, DZ40-85:19. 谷祖纲, 白生海, 张显庭, 等, 1992.青海省贵德、化隆两盆地新第三系的划分与对比.地质学杂志, 16(2):96-104. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199202001.htm 贵德县地方志编纂委员会, 1995.贵德县志.西安:陕西人民出版社, 73-106. 郭万成, 时兴梅, 2008.青海省贵德县 (盆地) 地热资源的开发利用.水文地质工程地质, 35(3):79-81. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200803018.htm 郭张军, 宋汉周, 2005.地下水化学组分存在形式及其SI值计算.资源环境与工程, 19(03):200-202. doi: 10.3969/j.issn.1671-1211.2005.03.011 李彬, 史海滨, 张建国, 等, 2014.节水改造前后内蒙古河套灌区地下水水化学特征.农业工程学报, 30(21):102-106. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201421013.htm 李洁祥, 郭清海, 王焰新, 2015.高温热田深部母地热流体的温度计算及其升流后经历的冷却过程:以腾冲热海热田为例.地球科学, 40(9): 1578-1579. http://earth-science.net/WebPage/Article.aspx?id=3161 廖媛, 马腾, 陈柳竹, 等, 2013.青海贵德盆地高砷低温地热水水化学特征.水文地质工程地质, 40(4):122-123. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201304024.htm 刘昭, 蔺文静, 张萌, 等, 2014.西藏尼木-那曲地热流体成因及幔源流体贡献.地学前缘, 21:7-9. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201406040.htm 龙作元, 薛国强, 周楠楠, 等, 2009.贵德盆地深部地热资源地球物理评价.地球物理学进展, 24(6):2261-2266. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200906048.htm Rybach L., Muffler L.J.P.1986.地热系统原理和典型地热系统分析.北京大学地质学系地热研究室译.北京:地质出版社, 19-104. 石维栋, 郭建强, 张森琦, 等, 2010.贵德盆地高氟、高砷地下热水分布及水化学特征.水文地质工程地质, 37(2):35-37. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201002013.htm 宋春晖, 方小敏, 高军平, 等, 2001.青藏高原东北部贵德盆地新生代沉积演化与构造隆升.沉积学报, 19(4):498-506. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200104002.htm 佟伟, 章铭陶, 张知非, 等, 1981.西藏地热.北京:科学出版社, 74-118. 王东升, 王经兰, 1996.中国地下热水的基本类型和成因特征.第四纪研究, (2):140-145. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ602.005.htm 王贵玲, 张发旺, 刘志明, 2000.国内外地热能开发利用现状及前景分析.地球学报, 21(2):134-137. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200002003.htm 吴红梅, 孙占学, 2000.地热系统中矿物-流体化学平衡的计算.华东地质学院学报, 23(1):39. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200001008.htm 吴孔军, 马传明, 2010.郑州市地下热水地球化学特征.工程勘察, (5):45-49. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201005013.htm 吴向农, 古风宝, 1991.青海省区域地质志.北京:地质出版社, 560-574. 薛建球, 甘斌, 李百祥, 等, 2013.青海共和-贵德盆地增强型地热系统 (干热岩) 地质-地球物理特征.物探与化探, 37(1):37-39. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201301007.htm 余婷婷, 甘义群, 周爱国, 等, 2010.拉萨河流域地表径流氢氧同位素空间分布特征.地球科学, 35(5):876. http://earth-science.net/WebPage/Article.aspx?id=2032 赵平, 金建, 张海政, 1998.西藏羊八井地热田热水的化学组成.地质科学, 33(1):66. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX801.007.htm 郑绍华, 吴文裕, 李毅, 等, 1985.青海贵德、共和两盆地晚新生代哺乳动物.古脊椎动物学报, 23(2):89-134. http://www.cnki.com.cn/Article/CJFDTOTAL-GJZD198502000.htm 郑西来, 刘鸿俊, 1996.地热温标中的水-岩平衡状态研究.西安地质学院学报, 18(1):75-79. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX601.014.htm 周小波, 李纯, 李育昆, 2005.青海省贵德县扎仓寺地热田成因探讨.青海科技, 2:18-20. http://www.cnki.com.cn/Article/CJFDTOTAL-QKKJ200502008.htm