Experiment of Energy Dissipation and Energy Release during Stick-Slip within Glass Beads
-
摘要: 近年来,利用断层产物以及其中的颗粒来研究断层或地震带的能量耗散与释放,已引起大家的重视.在围压分别为30 kPa、60 kPa、100 kPa、200 kPa、400 kPa和600 kPa的条件下,采用直径为0.6~0.8 mm的玻璃珠以0.02 mm/min的轴向应变速率进行干燥、松散细颗粒材料的固结不排水三轴压缩试验.为了减少轴向应变过大时主应力轴旋转产生的误差及其对做功的影响,试验只分析加载后轴向应变为10%时试样变形破坏过程中的能量耗散与能量释放特性.试验结果表明:随着围压的增大,主震频率减小、偏应力降幅增大,但偏应力降幅与最大偏应力的比值逐渐趋于稳定.粘滑运动过程中,在偏应力骤降瞬间,声发射强烈、试样体积收缩,说明能量控制着试样的变形与破坏特征,耗散结构能量越大,系统发生滑动的频率越小.粘滑运动过程可以表示为能量耗散与能量突然释放.最后,从热力学的角度分析滑动过程的3个阶段,得出粘滑运动为不可逆耗散能与可释放应变能共同作用的结果.Abstract: The energy dissipation and energy release of fault gouge could be explained by analyzing the characteristics of stick-slip of glass beads. The glass beads of 0.6-0.8 mm were used to conduct the test from CVP company. The triaxial tests of dry and loose glass beads were carried out under the cell pressure of 30, 60, 100, 200, 400 and 600 kPa with axial strain rate of 0.02 mm/min. The energy dissipation and energy release in the process of failure are discussed with the axial strain rate of 10% in order to decrease the errors due to the rotation of principal stress. The results show that with increasing of cell pressure, the frequency of main shock decreases, the deviatoric stress drop increases, the ratio of deviatoric stress drop to maximum deviatoric stress becomes stable gradually. The volume of sample shrinks and acoustic emission appears in the moment of deviatoric stress drop. The energy controls the deformation and failure properties of the sample during stick-slip: the more the dissipation is, the less the frequency of sliding becomes. Stick-slip can be expressed as the process of energy dissipation and energy release. Finally, the three stages of sliding during stick-slip are discussed from the aspect of thermodynamics. The stick-slip motion is a combined effect of irreversible dissipated energy and releasable strain energy.
-
Key words:
- soda-lime glass bead /
- stick-slip /
- energy dissipation /
- energy release /
- engineering geology
-
表 1 不同围压条件下试样的峰值强度和摩擦角
Table 1. Peak strengths and friction angles of glass beads within different cell pressures
编号 高度(mm) 直径(mm) 围压(kPa) 峰值强度(kPa) 内摩擦角(°) UU_D1 100 50 30 64.62 31.23 UU_D2 100 50 60 130.67 31.42 UU_D3 100 50 100 218.45 31.47 UU_D4 100 50 200 442.43 31.68 UU_D5 100 50 400 836.18 30.73 UU_D6 100 50 600 1299.31 31.32 表 2 不同围压条件下外力对试样所做的功
Table 2. The work of external force on the samples
试样编号 围压(kPa) 固结阶段做功(N·m) 加载阶段做功(N·m) 外力总功(N·m) UU_D1 30 0.002 1.469 1.471 UU_D2 60 0.034 2.170 2.203 UU_D3 100 0.207 5.571 5.778 UU_D4 200 0.457 11.147 11.604 UU_D5 400 7.311 23.214 30.525 UU_D6 600 11.638 37.879 49.517 -
Adjemian, F., Evesque, P., 2004.Experimental Study of Stick-Slip Behaviour.International Journal for Numerical and Analytical Methods in Geomechanics, 28(6):501-530.doi: 10.1002/nag.350 Brown, S.R., 1998.Frictional Heating on Faults:Stable Sliding versus Stick Slip.Journal of Geophysical Research(Solid Earth), 103(B4):7413-7420.doi: 10.1029/98jb00200 Brune, J.N., Henyey, T.L., Roy, R.F., 1969.Heat Flow, Stress, and Rate of Slip along the San Andreas Fault, California.Journal of Geophysical Research, 74(15):3821-3827.doi: 10.1029/jb074i015p03821 Dai, Z.D., Xue, Q.J., Wang, M., 1998.Non-Equilibrium Thermodynamical Study of Friction and Wear Pocesses.Nature Magazine, 20(4):220-228 (in Chinese). https://www.deepdyve.com/lp/elsevier/entropy-generation-related-to-plastic-deformation-in-fretting-friction-4OtvImBGTy Daniels, K.E., Bauer, C., Shinbrot, T., 2014.Correlations between Electrical and Mechanical Signals during Granular Stick-Slip Events.Granular Matter, 16(2):217-222.doi: 10.1007/s10035-013-0471-3 Doanh, T., Hoang, M.T., Roux, J.N., et al., 2012.Stick-Slip Behaviour of Model Granular Materials in Drained Triaxial Compression.Granular Matter, 15(1):1-23.doi: 10.1007/s10035-012-0384-6 Doanh, T., Le Bot, A., Abdelmoula, N., et al., 2014.Liquefaction of Immersed Granular Media under Isotropic Compression.EPL(Europhysics Letters), 108(2):24004.doi: 10.1209/0295-5075/108/24004 Elkholy, K.N., Khonsari, M.M., 2008.Experimental Investigation on the Stick-Slip Phenomenon in Granular Collision Lubrication.Journal of Tribology, 130(2):021302.doi: 10.1115/1.2842244 Fulton, P.M., Rathbun, A.P., 2011.Experimental Constraints on Energy Partitioning during Stick-Slip and Stable Sliding within Analog Fault Gouge.Earth and Planetary Science Letters, 308(1-2):185-192.doi: 10.1016/j.epsl.2011.05.051 Gong, X.N., 2000.Prospects for the Development of Geotechnical Engineering in the 21th Century.Chinese Journal of Geotechnical Engineering, 22(2):238-242(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC200002019.htm Guo, Q., Yang Y.C., Lü, J., et al., 2014.Observation of Local Infrasound Coupled by Seismic Wave on Wide Spread Infrasound Network.Earth Science, 39(12):1807-1817(in Chinese with English abstract). https://www.researchgate.net/publication/289775140_Observation_of_local_infrasound_coupled_by_seismic_wave_on_wide_spread_infrasound_network Kondepudi, D., Prigogine, I., 1998.Modern Thermodynamics:From Heat Engines to Dissipative Structures.John Wiley & Sons, Chichester. Krim, J., Yu, P.D., Behringer, R.P., 2011.Stick-Slip and the Transition to Steady Sliding in a 2D Granular Medium and a Fixed Particle Lattice.Pure and Applied Geophysics, 168(12):2259-2275.doi: 10.1007/s00024-011-0364-5 Lachenbruch, A.H., Sass, J.H., 1980.Heat Flow and Energetics of the San Andreas Fault Zone.Journal of Geophysical Research(Solid Earth), 85(B11):6185-6222.doi: 10.1029/jb085ib11p06185 Lieou, C.K.C., Elbanna, A.E., Langer, J.S., et al., 2015.Stick-Slip Instabilities in Sheared Granular Flow:The Role of Friction and Acoustic Vibrations.Physical Review E, 92(2):022209.doi: 10.1103/physreve.92.022209 Li, X.R., Zeng, Z.X., Zhou, Q., et al., 2014.Seismogenesis of Badong Earthquake (Ms5.1) in Three Gorges Reservoir Area and Infrasound Anomaly.Earth Science, 39(12):1793-1806(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201412005.htm Rockwell, T., Sisk, M., Girty, G., et al., 2009.Chemical and Physical Characteristics of Pulverized Tejon Lookout Granite Adjacent to the San Andreas and Garlock Faults:Implications for Earthquake Physics.Pure & Applied Geophysics, 166(10):1725-1746.doi: 10.1007/978-3-0346-0138-2_9 Shen, Y., Zhou, J., Gong, X.N., 2006.Experimental Progress Research on Influence of Principal Stress Rotation on Soils Characteristics.Chinese Journal of Rock Mechanics and Engineering, 25(7):1408-1416(in Chinese with English abstract). http://www.oalib.com/paper/1485706 Tanaka, H., Chen, W.M., Wang, C.Y., et al., 2006.Frictional Heat from Faulting of the 1999 Chi-Chi, Taiwan Earthquake.Geophysical Research Letters, 33(16):373-386.doi: 10.1029/2006gl026673 Volfson, D., Tsimring, L.S., Aranson, I.S., 2004.Stick-Slip Dynamics of a Granular Layer under Shear.Physical Review E, 69(3):287-316.doi: 10.1103/physreve.69.031302 Wilson, B., Dewers, T., Reches, Z., et al., 2005.Particle Size and Energetics of Gouge from Earthquake Rupture Zones.Nature, 434(7034):749-752.doi: 10.1038/nature03433 Xie, H.P., Ju, Y., Li, L.Y., 2005.Criteria for Strength and Structural Failure of Rocks Based on Energy Dissipation and Energy Release Principles.Chinese Journal of Rock Mechanics and Engineering, 24(17):3003-3010(in Chinese with English abstract). https://www.researchgate.net/publication/245568373_Energy_analysis_and_criteria_for_structural_failure_of_rocks Xie, H.P., Peng, R.D., Ju, Y., 2004.Energy Dissipation of Rock Deformation and Fracture.Chinese Journal of Rock Mechanics and Engineering, 23(21):3565-3570(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX200421001.htm Zhang, Y.S., Guo, X., Zhong, M.J., et al., 2010.Wenchuan Earthquake:Brightness Temperature Changes from Satellite Infrared Information.Chinese Science Bulletin, 55(10):904-910(in Chinese). doi: 10.1007%2Fs11434-010-3016-8.pdf Zhao, H.J., Ma, F.S., Li, G.Q., et al., 2008.Fault Effect Due to Underground Excavation in Hangingwalls and Footwalls of Faults.Chinese Journal of Geotechnical Engineering, 30(9):1372-1375 (in Chinese with English abstract). https://www.researchgate.net/publication/293738959_Features_of_fault_zone_rockmass_engineering_geological_mechanics_and_its_effect_on_leaving_fault_waterproof_pillar Zhao, Z.H., Xie, H.P., 2008.Energy Transfer and Energy Dissipation in Rock Deformation and Fracture.Journal of Sichuan University (Engineering Science Edition), 40(2):26-31(in Chinese with English abstract). https://www.researchgate.net/publication/287638566_Energy_transfer_and_energy_dissipation_in_rock_deformation_and_fracture 戴振东, 薛群基, 王珉, 1998.摩擦磨损过程的非平衡态热力学研究.自然杂志, 20(4): 220-228. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199804008.htm 龚晓南, 2000.21世纪岩土工程发展展望.岩土工程学报, 22(2): 238-242. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200002019.htm 郭泉, 杨亦春, 吕君, 等, 2014.基于广域次声传感器网络的地震本地次声波监测.地球科学, 39(12): 1807-1817. http://www.earth-science.net/WebPage/Article.aspx?id=2994 李献瑞, 曾佐勋, 周强, 等, 2014.三峡库区巴东地震(Ms5.1) 成因机制及次声波信号.地球科学, 39(12): 1793-1806. http://www.earth-science.net/WebPage/Article.aspx?id=3011 沈扬, 周建, 龚晓南, 2006.主应力轴旋转对土体性状影响的试验进展研究.岩石力学与工程学报, 25(7): 1408-1416. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200607016.htm 谢和平, 鞠杨, 黎立云, 2005.基于能量耗散与释放原理的岩石强度与整体破坏准则.岩石力学与工程学报, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001 谢和平, 彭瑞东, 鞠杨, 2004.岩石变形破坏过程中的能量耗散分析.岩石力学与工程学报, 23(21): 3565-3570. doi: 10.3321/j.issn:1000-6915.2004.21.001 张元生, 郭晓, 钟美娇, 等, 2010.汶川地震卫星热红外亮温变化.科学通报, 55(10): 904-910. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201010010.htm 赵海军, 马凤山, 李国庆, 等, 2008.断层上下盘开挖引起岩移的断层效应.岩土工程学报, 30(9): 1372-1375. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200809022.htm 赵忠虎, 谢和平, 2008.岩石变形破坏过程中的能量传递和耗散研究.四川大学学报(工程科学版), 40(2): 26-31. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200802006.htm