Provenance Analysis and Petroleum Geological Significance of Shallow-Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea
-
摘要: 莺歌海盆地中央带上中新统黄流组一段近年新发现一套浅海重力流沉积体系,夹持于海南古隆起和越南昆嵩古隆起之间,探讨其物源供给对掌握砂体展布规律以及“源-汇复合体系”的研究具有重要意义.结合东方气田新钻井资料和岩石测试资料,如砂岩碎屑组分、重矿物组合特征及元素地球化学特征对研究区黄流组物源进行了分析, 结果表明:(1) 西部昆嵩隆起物源是本区浅海重力流沉积体系的主要物源区,浅海重力流砂岩长石、岩屑含量较高,结构成熟度高,泥质含量低(平均3.8%),以岩屑石英细-极细砂岩为主;源自东部物源浅海砂坝砂岩的长石、岩屑含量较低,成分成熟度高,但泥质含量高(平均18.6%),以岩屑石英粉砂岩-石英粉砂岩为主;(2) 源于西部物源的浅海重力流砂岩锆石、电气石含量低,磁铁矿、石榴石含量高,源于东部物源的浅海砂坝锆石、电气石、白钛矿含量高,磁铁矿、石榴石含量低.此外,区域古水流方向主要为南东-东西向,反映其可能受到西部越南水系的影响;(3) 岩心样品相似的稀土元素配分模式表明浅海重力流砂岩具有一致的物质来源,稀土元素含量及比值、Th-Sc及Co/Th-La/Sc图解均显示中性-长英质源岩特征,La-Th-Sc三角图、Th-Sc-Zr/10三角图以及主量元素判别图解均显示样品落在主动大陆边缘或大陆岛弧区域,说明浅海重力流砂岩源区为挤压构造背景,与昆嵩隆起相符合;(4) 中央底辟带西侧的浅海重力流砂体规模大,物性好,含气丰富,为下一步向西部勘探的主力砂体,而中央底辟带东侧的浅海砂坝储层规模较小,储层质量较差.Abstract: The reservoir in Upper Miocene Huangliu Formation of Yinggehai basin, which is located between Kuntum paleo-uplift and Hainan paleo-uplift, is shallow-marine gravity flow deposits with burial depth ranging from 2 600 to 3 500 m. Analyzing the provenance of the sandbody is significant in understanding its distribution and "source to sink system", hence for the oil-gas exploration and development in this area. The provenance of sediments in Upper Miocene Huangliu Formation was analyzed by integrating the components of the sandstones, assemblage styles of the heavy mineral, paleo-current direction and geochemistry characteristics of the sandstones. Results show follows. (1) There are two provenances, one from west and the other from east, in the study area. Western sourced sandstones form the shallow-marine gravity flow which are mainly sublitharenite with high feldspar (average is 6.1%) and lithic (average is 11.7%) contents, low shale content (average is 3.8%). However, eastern sourced sandstones, which are mainly subarkose-quartz siltstone with low feldspar and lithic contents with averages of 4.6% and 2.7%, respectively, high compositional maturity, high shale contents (average is 18.6%), form the neritic sand bar. (2) The shallow-marine gravity flow sandstones exhibit low zircon, tourmaline contents, and high magnetite, garnet contents, while the neritic sand bar sandstones exhibit high zircon, tourmaline and leucosphenite contents, and low magnetite, garnet contents. The direction of paleo-current in study area is from southeastward to eastward. (3) The similar rare earth element (REE) patterns of 28 sandstones from three western wells indicate that they were sourced from the same provenance. The diagrams of Th-Sc and Co/Th-La/Sc and elemental ratios of these sandstone samples show that they were derived from intermediate to felsic source rocks. The measured geochemistry data of these core samples fall into the fields of active continental margin or continental island arc in the diagrams of La-Th-Sc, Th-Sc-Zr/10, Ti/Zr-La/Sc and major element discrimination, indicating that the source rocks of the shallow-marine gravity flow sandstones were formed under the tectonic setting of an convergent environment. (4) The integrated method for provenance analysis indicates that the shallow-marine gravity flow sandstones were derived from the western Kuntum uplift. The shallow-marine gravity flow sandstones in western mud diaper belts are large in scale, rich in gas, better in reservoir properties and the main favorable exploration target towards the west, whereas the neritic sand bar sandstones in eastern mud diaper belts are small in scale, poor in reservoir quality.
-
Key words:
- provenance /
- shallow-marine gravity flow /
- Huangliu Formation /
- geochemistry /
- hydrocarbon /
-
图 6 黄流组砂岩稀土元素配分模式
球粒陨石、UCC及PAAS数据来自于Henderson(1984)、Taylor and McLennan(1985)及Rudnick and Gao(2003)
Fig. 6. The REE pattern of the sandstone samples from Huangliu Formation
图 7 黄流组砂岩Th-Sc(a)及Co/Th-La/Sc(b)图解
Th/Sc=1代表平均大陆上地壳,据Taylor and McLennan(1985)
Fig. 7. Th-Sc (a) and Co/Th-La/Sc (b) diagram of sandstones from Huangliu Formation
表 1 莺歌海盆地东方区岩石成分
Table 1. The proportion of sandstone components of study area
微相 井号 气组 厚度(m) 面孔率(%) 粒度中值(μm) 胶结物含量(%) 碎屑组分(%) 结构成熟度 成分成熟度 排替压力(MPa) 中值压力(MPa) 平均孔喉半径(μm) 岩石类型 石英 长石 岩屑 泥质含量(%) 成熟度 指数 成熟度 浅海砂坝 C-12 Ⅱ 10 8.2 62 8.0 52.5 5.2 6.3 17.6 低 7.3 极高 / / / 长石石英粉砂岩-石英粉砂岩 A-3 Ⅰ 18 2.9 48 4.8 58.0 4.2 3.8 19.6 低 7.3 极高 3.60 22.59 0.07 长石石英粉砂岩 浅海重力流 A-2 Ⅰ 15 16.4 88 10.5 57.7 4.0 7.5 2.9 高 5.1 高 0.42 2.05 0.57 岩屑石英极细砂岩 A-2 Ⅱ 38 19.3 65 5.4 62.9 4.1 8.5 0.5 高 5.1 高 0.41 1.15 0.73 岩屑石英极细砂岩 A-4 Ⅰ 23 18.7 165 7.7 58.1 3.9 11.4 0.7 高 4.1 高 0.19 0.74 1.44 岩屑石英细砂岩 A-5 Ⅰ 28 14.2 231 3.2 58.0 7.5 11.9 0.9 高 3.1 中 0.36 2.25 0.66 岩屑石英细砂岩 A-6 Ⅱ 44 19.6 71 6.0 61.5 3.0 0.8 1.2 高 5.0 高 0.37 1.33 0.74 岩屑石英极细砂岩 A-7 Ⅰ 20 20.0 79 3.8 57.3 5.4 3.2 0.5 高 3.1 中 0.17 3.18 1.41 岩屑石英细-极细砂岩 A-7 Ⅱ 37 19.0 123 4.7 57.2 5.3 13.5 1.1 高 3.1 中 0.17 0.99 1.54 岩屑石英细-极细砂岩 A-8 Ⅰ 8 15.5 188 5.6 54.3 4.3 14.3 8.0 中 2.6 中 / / / 岩屑石英极细-细砂岩 A-8 Ⅱ 18 17.5 90 4.5 54.3 6.1 15.1 3.1 高 2.6 中 / / / 岩屑石英细-极细砂岩 B-1 Ⅱ 20 12.1 99 2.1 62.9 8.5 13.3 1.2 高 2.9 中 / / / 长石岩屑石英极细砂岩 B-2 Ⅱ 10 10.7 125 3.1 61.1 5.7 8.9 10.5 低 4.4 高 0.17 5.72 1.39 石英细-极细砂岩 B-4 Ⅰ 20 15.9 135 8.9 45.6 6.6 13.9 3.3 中 2.3 中 0.11 1.64 2.35 长石岩屑石英细砂岩 B-6 Ⅰ 10 15.8 193 5.2 42.5 5.4 13.8 3.3 高 2.2 中 0.71 0.19 4.48 岩屑石英中-细砂岩 B-6 Ⅱ 8 15.1 146 5.0 49.9 6.3 12.9 6.4 高 2.6 中 0.29 2.00 1.43 岩屑石英细-极细砂岩 B-8 Ⅰ 29 18.7 154 4.9 52.9 6.9 12.1 2.1 高 2.8 中 0.10 0.58 3.31 长石岩屑石英细砂岩 附表 1 黄流组砂岩主量元素含量(%)
附表 1. The concentrations of major element for the sandstones from Huangliu Formation (%)
样号 Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 FeO Fe2O3/ Total LOI SUM Al2O3/TiO2 SiO2/Al2O3 1 1.24 2.17 12.20 65.72 0.15 2.69 3.51 0.74 0.06 1.54 3.60 5.54 5.76 99.38 16.49 5.39 2 1.09 1.90 10.57 71.15 0.12 2.25 2.78 0.69 0.05 1.34 3.25 4.96 4.62 99.82 15.38 6.73 3 0.98 1.23 7.93 77.40 0.12 1.78 2.74 0.53 0.04 0.98 2.20 3.43 3.86 99.80 15.00 9.76 4 0.97 1.08 6.69 75.37 0.10 1.72 5.08 0.45 0.08 0.53 2.15 2.92 5.31 99.55 14.73 11.27 5 1.10 1.56 8.81 75.08 0.11 2.11 2.31 0.58 0.04 0.95 3.10 4.39 3.74 99.49 15.25 8.52 6 1.04 1.34 7.74 77.63 0.10 2.01 2.47 0.52 0.04 0.71 2.65 3.65 3.59 99.84 14.88 10.03 7 0.90 1.11 6.84 82.42 0.10 1.77 0.99 0.62 0.02 0.64 2.20 3.08 2.31 99.92 11.03 12.05 8 0.93 1.16 7.32 80.55 0.10 1.90 1.72 0.43 0.04 0.60 2.45 3.32 2.73 99.93 17.02 11.00 9 0.82 1.03 6.70 82.79 0.09 1.77 1.07 0.50 0.03 0.65 2.05 2.93 2.14 99.64 13.40 12.36 10 1.25 1.46 7.76 75.72 0.10 1.72 2.20 0.56 0.05 0.44 2.87 3.63 5.66 99.79 13.86 9.76 11 1.28 1.59 8.08 73.33 0.10 1.78 2.86 0.58 0.07 0.70 2.90 3.92 6.20 99.47 13.93 9.08 12 1.19 1.76 11.65 70.67 0.12 1.80 2.13 0.72 0.07 1.16 2.77 4.23 5.50 99.52 16.07 6.07 13 1.42 1.57 10.43 73.05 0.12 1.80 2.12 0.71 0.03 0.99 2.50 3.77 4.92 99.66 14.69 7.00 14 1.10 1.97 13.05 62.87 0.13 2.65 3.36 1.00 0.04 1.39 4.15 6.00 7.73 99.44 13.05 4.82 15 0.97 1.74 12.35 62.80 0.13 2.18 5.96 0.78 0.05 1.26 3.15 4.76 8.49 99.86 15.83 5.09 16 1.08 1.32 7.57 78.18 0.10 1.87 1.47 0.60 0.04 0.68 2.60 3.57 4.49 100.00 12.62 10.33 17 1.32 1.68 8.86 73.13 0.10 2.10 2.23 0.60 0.04 0.67 3.20 4.23 5.93 99.86 14.77 8.25 18 1.28 1.57 8.40 74.37 0.10 2.01 1.91 0.60 0.04 0.71 2.87 3.90 5.45 99.31 14.00 8.85 19 1.30 1.61 8.51 74.15 0.10 2.02 1.99 0.60 0.03 0.68 2.90 3.90 5.62 99.52 14.17 8.72 20 1.19 1.59 8.39 74.71 0.10 2.05 1.81 0.60 0.04 0.75 3.10 4.19 5.44 99.77 13.98 8.90 21 1.18 1.51 8.19 75.76 0.10 1.98 1.65 0.59 0.04 0.67 2.83 3.81 5.05 99.55 13.88 9.25 22 1.28 1.93 9.71 70.15 0.12 2.26 2.19 0.73 0.05 1.73 3.00 5.06 6.60 99.75 13.30 7.22 23 1.29 1.76 8.73 72.30 0.10 1.99 2.40 0.63 0.05 0.92 3.10 4.36 6.26 99.53 13.86 8.28 24 1.24 1.50 8.24 75.17 0.09 1.91 2.37 0.52 0.04 0.30 2.85 3.46 5.48 99.71 15.84 9.13 25 1.10 1.43 7.86 76.30 0.11 1.87 2.07 0.60 0.04 0.69 2.65 3.63 5.17 99.89 13.10 9.71 26 1.18 1.53 8.53 74.58 0.10 2.04 2.14 0.55 0.04 0.66 2.90 3.88 5.47 99.72 15.51 8.74 27 1.21 1.49 8.45 74.98 0.10 2.04 1.80 0.57 0.04 0.78 2.85 3.95 5.27 99.58 14.82 8.87 28 1.03 1.54 8.24 74.58 0.10 2.00 2.39 0.55 0.04 0.58 2.97 3.88 5.71 99.73 14.98 9.05 附表 2 黄流组砂岩主量、微量元素相关系数矩阵
附表 2. Correlation coefflcient matrix of chemical elements in the samples
Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 FeO CO2 Lost Sc Cu Rb Zr Hf Th U Ba Cr Ni Sr V B Na2O 1.00 MgO 0.59 1.00 Al2O3 0.29 0.84 1.00 SiO2 -0.37 -0.86 -0.91 1.00 P2O5 0.10 0.69 0.84 -0.76 1.00 K2O 0.18 0.79 0.73 -0.73 0.69 1.00 CaO -0.11 0.29 0.47 -0.67 0.53 0.30 1.00 TiO2 0.26 0.75 0.88 -0.81 0.72 0.68 0.30 1.00 MnO 0.11 0.26 0.22 -0.40 0.26 0.03 0.61 0.03 1.00 Fe2O3 0.13 0.73 0.79 -0.71 0.86 0.70 0.33 0.76 0.21 1.00 FeO 0.43 0.88 0.75 -0.81 0.53 0.86 0.29 0.72 0.14 0.52 1.00 CO2 0.53 0.56 0.46 -0.69 0.16 0.31 0.40 0.51 0.27 0.20 0.58 1.00 Lost 0.49 0.71 0.64 -0.87 0.41 0.47 0.61 0.62 0.40 0.39 0.69 0.93 1.00 Sc 0.29 0.81 0.71 -0.75 0.73 0.84 0.30 0.75 0.12 0.75 0.76 0.44 0.58 1.00 Cu 0.32 0.88 0.84 -0.87 0.74 0.88 0.44 0.75 0.17 0.67 0.88 0.49 0.67 0.81 1.00 Rb 0.02 0.60 0.68 -0.64 0.50 0.76 0.23 0.65 -0.24 0.52 0.74 0.40 0.49 0.60 0.75 1.00 Zr -0.07 0.34 0.58 -0.51 0.45 0.48 0.19 0.83 -0.15 0.44 0.52 0.34 0.37 0.50 0.48 0.56 1.00 Hf -0.08 0.33 0.57 -0.49 0.44 0.46 0.18 0.83 -0.15 0.43 0.50 0.32 0.36 0.48 0.47 0.55 1.00 1.00 Th -0.13 0.44 0.67 -0.61 0.58 0.63 0.33 0.82 -0.08 0.51 0.62 0.30 0.40 0.58 0.64 0.68 0.95 0.94 1.00 U -0.06 0.55 0.77 -0.72 0.69 0.71 0.41 0.87 0.02 0.63 0.68 0.35 0.48 0.66 0.74 0.72 0.90 0.90 0.98 1.00 Ba 0.42 0.18 0.03 -0.15 -0.13 -0.15 0.01 0.09 0.30 -0.14 0.20 0.42 0.33 0.01 0.09 -0.10 0.06 0.07 -0.00 0.02 1.00 Cr -0.03 0.64 0.74 -0.66 0.73 0.77 0.28 0.85 -0.01 0.74 0.70 0.20 0.36 0.74 0.77 0.66 0.80 0.80 0.89 0.91 -0.02 1.00 Ni 0.34 0.87 0.71 -0.74 0.65 0.86 0.25 0.66 0.10 0.75 0.83 0.41 0.57 0.85 0.86 0.70 0.35 0.33 0.48 0.59 -0.02 0.72 1.00 Sr -0.06 0.31 0.50 -0.68 0.52 0.31 0.93 0.38 0.56 0.39 0.30 0.46 0.63 0.29 0.42 0.25 0.26 0.25 0.35 0.44 0.09 0.32 0.30 1.00 V 0.21 0.85 0.86 -0.86 0.80 0.90 0.42 0.85 0.14 0.79 0.87 0.42 0.61 0.88 0.93 0.76 0.64 0.63 0.77 0.85 0.05 0.91 0.89 0.45 1.00 B 0.57 0.73 0.54 -0.63 0.38 0.63 0.09 0.62 -0.08 0.48 0.70 0.66 0.67 0.63 0.69 0.60 0.35 0.34 0.37 0.43 0.07 0.44 0.69 0.16 0.64 1.00 附表 3 黄流组砂岩稀土元素含量(10-6)
附表 3. The concentrations of rare earth element for the sandstones from Huangliu Formation (10-6)
样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y SUM LREE HREE LREE/HREE Eu/Eu* (La/Yb)N (Gd/Yb)N 1 41.35 77.82 9.11 33.99 6.26 1.20 5.25 0.89 4.76 0.94 2.69 0.41 2.50 0.36 25.19 212.71 169.72 17.80 9.53 0.64 11.15 1.69 2 36.98 71.17 8.37 31.33 5.74 1.10 4.96 0.81 4.43 0.89 2.46 0.37 2.21 0.32 22.66 193.78 154.69 16.43 9.42 0.63 11.29 1.81 3 29.84 58.47 6.78 25.69 4.76 0.98 4.18 0.69 3.71 0.72 2.02 0.30 1.78 0.26 18.74 158.91 126.52 13.65 9.27 0.67 11.29 1.89 4 28.31 56.14 6.60 25.88 4.87 1.02 4.36 0.74 3.93 0.77 2.13 0.31 1.89 0.27 20.04 157.26 122.82 14.40 8.53 0.68 10.08 1.86 5 28.90 56.11 6.62 25.21 4.45 0.92 4.00 0.66 3.52 0.69 1.92 0.29 1.73 0.26 17.91 153.18 122.21 13.06 9.36 0.67 11.24 1.86 6 27.30 53.90 6.37 24.15 4.48 0.90 3.98 0.66 3.54 0.69 1.93 0.30 1.69 0.27 17.62 147.76 117.09 13.05 8.97 0.65 10.89 1.90 7 38.18 74.92 8.66 32.32 5.90 1.02 4.97 0.78 4.12 0.80 2.29 0.36 2.11 0.30 20.96 197.69 161.00 15.73 10.23 0.57 12.19 1.90 8 27.17 54.06 6.23 23.90 4.51 0.95 3.99 0.65 3.35 0.64 1.85 0.26 1.56 0.24 16.53 145.89 116.82 12.54 9.32 0.68 11.76 2.07 9 27.59 58.86 6.27 23.93 4.61 0.79 4.32 0.72 4.04 0.83 2.45 0.41 2.60 0.41 25.17 163.00 122.05 15.78 7.73 0.54 7.15 1.34 10 28.70 56.96 6.91 26.25 4.78 0.91 4.26 0.68 3.67 0.76 2.03 0.30 1.83 0.27 18.62 156.93 124.51 13.80 9.02 0.62 10.58 1.88 11 29.53 58.02 6.96 26.54 4.92 0.95 4.13 0.67 3.65 0.72 2.00 0.30 1.69 0.26 18.16 158.50 126.92 13.42 9.46 0.65 11.79 1.97 12 31.51 59.88 7.19 26.96 4.94 0.98 4.30 0.70 3.64 0.75 2.04 0.32 1.87 0.29 18.68 164.04 131.46 13.89 9.46 0.65 11.38 1.86 13 36.58 69.38 8.25 31.09 5.51 1.06 4.67 0.74 4.05 0.80 2.26 0.34 2.00 0.29 20.44 187.44 151.87 15.13 10.03 0.64 12.36 1.89 14 77.28 146.47 16.81 61.99 10.99 1.56 9.05 1.40 7.31 1.52 4.02 0.62 3.85 0.57 37.73 381.16 315.09 28.34 11.12 0.48 13.55 1.90 15 40.67 78.87 9.19 34.45 6.29 1.12 5.36 0.87 4.66 0.97 2.69 0.41 2.51 0.38 24.66 213.10 170.59 17.85 9.56 0.59 10.94 1.73 16 32.67 62.62 7.38 27.96 5.07 1.00 4.29 0.69 3.63 0.71 2.03 0.29 1.72 0.25 17.99 168.28 136.69 13.60 10.05 0.66 12.78 2.01 17 31.15 58.76 7.17 27.18 4.84 0.99 4.20 0.69 3.63 0.73 2.04 0.30 1.97 0.27 19.21 163.14 130.10 13.83 9.41 0.67 10.64 1.72 18 31.12 58.50 7.14 27.00 4.90 0.98 4.28 0.70 3.79 0.75 2.08 0.31 1.81 0.28 19.58 163.22 129.64 14.00 9.26 0.66 11.62 1.91 19 30.81 59.03 7.10 27.15 4.92 0.99 4.17 0.70 3.76 0.74 2.02 0.33 1.96 0.27 19.09 163.05 130.00 13.95 9.32 0.67 10.60 1.72 20 30.99 60.50 7.18 27.32 4.97 0.98 4.25 0.68 3.62 0.71 1.99 0.30 1.73 0.26 17.79 163.24 131.93 13.52 9.75 0.65 12.11 1.99 21 31.40 60.56 7.26 27.22 5.08 1.01 4.24 0.71 3.79 0.72 2.06 0.31 1.86 0.28 19.06 165.55 132.53 13.96 9.50 0.67 11.36 1.83 22 38.51 69.70 8.48 31.83 5.74 1.13 5.14 0.86 4.78 0.96 2.69 0.43 2.67 0.41 26.15 199.49 155.40 17.94 8.66 0.64 9.72 1.55 23 31.41 57.19 7.15 27.25 5.30 1.02 4.81 0.84 4.59 0.91 2.60 0.40 2.53 0.37 23.24 169.62 129.32 17.05 7.58 0.62 8.36 1.53 24 24.15 46.12 5.50 21.04 3.89 0.81 3.45 0.56 2.98 0.58 1.69 0.25 1.46 0.21 15.64 128.35 101.52 11.19 9.08 0.68 11.15 1.91 25 36.05 61.28 7.89 29.54 5.46 1.04 4.68 0.84 4.51 0.87 2.58 0.43 2.47 0.38 23.11 181.12 141.27 16.74 8.44 0.63 9.85 1.53 26 30.22 56.66 6.83 25.82 4.67 1.00 4.10 0.68 3.62 0.71 2.00 0.29 1.76 0.26 18.01 156.63 125.20 13.42 9.33 0.70 11.55 1.88 27 27.38 52.71 6.28 23.84 4.24 0.91 3.89 0.61 3.28 0.64 1.83 0.28 1.75 0.25 16.83 144.72 115.36 12.53 9.21 0.69 10.54 1.79 28 29.46 56.54 6.73 25.44 4.67 0.96 3.97 0.65 3.61 0.70 1.94 0.30 1.79 0.26 18.11 155.13 123.79 13.23 9.36 0.68 11.12 1.79 附表 4 黄流组砂岩微量元素含量(10-6)
附表 4. The concentrations of trace element for the sandstones from Huangliu Formation (10-6)
样号 Sc Co Cu Rb Zr Hf Th U Ba Cr Ni Sr V B Cr/Ni Th/Sc Cr/Th La/Sc 1 11.61 11.92 13.04 84.14 266.1 8.60 12.30 2.00 424.1 68.43 28.52 141.3 81.99 64.79 2.40 1.06 5.56 3.56 2 9.45 11.76 10.70 76.26 280.9 9.57 12.14 1.80 454.1 71.72 27.85 129.0 77.44 58.57 2.58 1.28 5.91 3.91 3 7.08 8.56 6.48 73.76 227.8 7.25 9.57 1.47 335.1 55.84 22.11 131.2 57.05 45.82 2.53 1.35 5.84 4.21 4 6.35 5.83 5.14 42.32 187.5 6.23 7.93 1.23 320.7 48.27 15.18 179.9 47.86 35.81 3.18 1.25 6.09 4.46 5 7.25 9.06 7.60 80.17 220.9 7.54 9.71 1.45 360.8 56.82 21.19 111.2 61.81 54.49 2.68 1.34 5.85 3.99 6 6.63 7.27 6.38 74.87 204.9 6.78 8.50 1.33 394.9 51.87 18.70 118.4 54.78 43.24 2.77 1.28 6.10 4.12 7 6.24 6.36 5.82 65.22 447.5 15.27 12.84 1.63 325.8 61.43 15.72 77.21 51.57 42.11 3.91 2.06 4.78 6.12 8 6.16 7.79 6.02 74.74 168.0 5.42 8.11 1.33 365.3 49.76 19.21 94.75 49.88 33.33 2.59 1.32 6.13 4.41 9 6.89 6.01 4.68 66.60 216.6 7.23 7.98 1.16 425.3 52.62 16.86 83.64 48.08 32.00 3.12 1.16 6.60 4.01 10 7.03 8.39 7.51 67.07 240.5 8.27 8.56 1.32 1008 52.73 19.06 122.1 57.76 54.07 2.77 1.22 6.16 4.09 11 7.34 8.53 7.14 65.66 254.1 8.75 9.05 1.41 1033 55.00 19.48 125.9 57.33 44.74 2.82 1.23 6.07 4.02 12 7.03 8.47 7.50 68.19 300.4 10.09 9.50 1.54 513.2 54.28 19.56 114.6 58.02 45.35 2.78 1.35 5.72 4.48 13 7.20 7.78 6.95 66.40 329.8 11.27 10.24 1.53 448.2 55.41 18.24 108.4 56.90 61.20 3.04 1.42 5.41 5.08 14 11.43 13.36 12.84 110.5 887.8 29.35 25.73 3.39 533.4 83.09 28.67 149.2 91.33 75.64 2.90 2.25 3.23 6.76 15 8.75 10.61 10.80 99.77 402.2 13.27 14.07 2.13 484.6 62.76 23.62 223.2 72.89 61.49 2.66 1.61 4.46 4.65 16 6.85 6.66 5.80 63.31 307.7 10.14 8.14 1.26 519.3 53.86 18.71 115.6 54.28 57.70 2.88 1.19 6.62 4.77 17 8.54 9.89 7.99 76.89 237.5 7.50 8.40 1.22 487.3 53.83 23.40 106.8 58.29 59.62 2.30 0.98 6.41 3.65 18 8.05 8.65 7.75 64.55 261.6 8.40 9.61 1.48 704.3 53.98 21.35 118.1 58.24 57.57 2.53 1.19 5.62 3.87 19 8.51 9.06 7.97 75.05 254.3 8.15 8.76 1.41 426.3 55.14 22.62 110.5 60.82 51.10 2.44 1.03 6.30 3.62 20 7.26 8.94 6.98 74.86 272.3 8.87 9.07 1.34 460.6 54.23 22.39 108.2 57.63 61.07 2.42 1.25 5.98 4.27 21 7.29 8.45 7.31 77.93 273.1 9.23 10.02 1.45 469.6 54.75 21.30 117.4 58.64 65.27 2.57 1.37 5.46 4.31 22 10.28 11.80 9.72 83.33 290.9 9.36 9.26 1.65 463.9 60.45 27.56 113.6 69.70 81.79 2.19 0.90 6.53 3.75 23 8.42 9.84 8.23 72.10 216.0 6.72 7.85 1.30 450.6 55.20 25.66 127.7 62.79 63.72 2.15 0.93 7.03 3.73 24 6.50 7.85 9.42 74.86 176.0 5.84 8.20 1.26 569.8 48.54 19.55 101.5 54.14 66.47 2.48 1.26 5.92 3.71 25 9.63 7.52 6.45 70.72 287.3 9.39 9.20 1.32 418.5 51.93 19.31 96.45 56.41 57.88 2.69 0.96 5.65 3.74 26 7.93 8.37 8.16 76.57 198.7 6.84 8.29 1.19 373.8 52.93 21.54 98.16 59.05 54.68 2.46 1.05 6.38 3.81 27 7.28 8.82 7.76 80.59 201.3 6.59 8.33 1.31 384.0 53.08 21.28 121.5 57.37 69.53 2.49 1.14 6.38 3.76 28 7.34 9.47 8.01 86.61 217.4 7.25 10.28 1.51 343.8 54.53 21.02 98.16 59.63 60.61 2.59 1.40 5.30 4.01 表 2 黄流组浅海重力流砂岩微量元素与长英质源岩、铁镁质源岩以及上地壳对比
Table 2. Comparison of elemental ratio of sediments from Huangliu Formation, felsic sources, mafic sources and upper continental crust
元素比值 黄流组 长英质源岩(据Amstrong-Altrin,2004) 铁镁质源岩(据Amstrong-Altrin,2004) 上地壳(据Rudnick and Gao, 2003) La/Sc 3.56~6.76(4.25*) 2.50~16.30 0.43~0.86 2.21 Th/Sc 0.90~2.25(1.28*) 0.84~20.50 0.05~0.22 0.75 Cr/Th 3.23~7.03(5.84*) 4.00~15.00 25.00~500.00 8.76 δEu 0.48~0.70(0.64*) 0.40~0.94 0.71~0.95 0.72 注:上标注*的为平均值. 表 3 黄流组浅海重力流砂岩微量元素与不同构造环境对比
Table 3. Comparison of trace and rare earth elements of sediments from different tectonic settings
大洋岛弧 大陆岛弧 主动大陆边缘 被动大陆边缘 黄流组(平均值) 微量元素(Bhatia, 1985) Th(10-6) 5.5 16.2 28.0 22.0 10.1 U(10-6) 2.4 3.2 6.0 3.6 1.5 La/Sc 1.0 1.8 2.5 1.9 4.3 Ni(10-6) 15.0 18.0 26.0 36.0 21.4 Sc/Ni 1.70 0.96 0.75 0.45 0.37 稀土元素(Bhatia, 1985) La(10-6) 8.0 27.0 37.0 39.0 33.4 Ce(10-6) 19.0 59.0 78.0 85.0 63.9 ΣREE 58.0 146.0 186.0 210.0 175.5 (La/Yb)N 2.8 7.5 8.5 10.8 11.0 Eu/Eu* 1.04 0.78 0.60 0.56 0.64 -
Akarish, A.I.M., El-Gohary, A.M., 2008.Petrography and Geochemistry of Lower Paleozoic Sandstones, East Sinai, Egypt:Implications for Provenance and Tectonic Setting.Journal of African Earth Sciences, 52(1-2):43-54. doi: 10.1016/j.jafrearsci.2008.04.002 Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., et al., 2004.Geochemistry of Sandstones from the Upper Miocene Kudankulam Formation, Southern India:Implications for Provenance, Weathering, and Tectonic Setting.Journal of Sedimentary Research, 74(2):285-297.doi: 10.1306/082803740285 Bhatia, M.R., 1983.Plate Tectonics and Geochemical Composition of Sandstones.The Journal of Geology, 91(6):611-627.doi: 10.1086/628815 Bhatia, M.R., 1985.Rare-Earth Element Geochemistry of Australian Paleozoic Greywackes and Mudrocks:Provenance and Tectonic Control.Sediment Geology, 45(1):97-113.doi: 10.1016/0037-0738(85)90025-9 Bhatia, M.R., Crook, K.A.W., 1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology, 92(2):181-193.doi: 10.1007/bf00375292 Carvajal, C., Steel, R., Petter, A., 2009.Sediment Supply:The Main Driver of Shelf-Margin Growth.Earth-Science Reviews, 96(4):221-248.doi: 10.1016/j.earscirev.2009.06.008 Clark, M.K., Schoenbohm, L.M., Royden, L.H., et al., 2004.Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large-Scale Drainage Patterns.Tectonics, 23(1):1-20.doi: 10.1029/2002tc001402 Clift, P.D., van Long, H.V., Hinton, R., et al., 2008.Evolving East Asian River Systems Reconstructed by Trace Element and Pb and Nd Isotope Variations in Modern and Ancient Red River-Song Hong Sediments.Geochemistry, Geophysics, Geosystems, 9(4):1-29.doi: 10.1029/2007gc001867 Cullers, R.L., 2000.The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian—Permian Age, Colorado, USA:Implications for Provenance and Metamorphic Studies.Lithos, 51(3):181-203.doi: 10.1016/s0024-4937(99)00063-8 Cullers, R.L., Berendsen, P., 1998.The Provenance and Chemical Variation of Sandstones Associated with the Mid-Continent Rift System, U.S.A..European Journal of Mineralogy, 10(5):987-1002.doi: 10.1127/ejm/10/5/0987 Dickinson, W.R., 1985.Interpreting Provenance Relations from Detrital Modes of Sandstones.Provenance of Arenites, 325:333-361.doi: 10.1007/978-94-017-2809-6_15 El-Bialy, M.Z., 2013.Geochemistry of the Neoproterozoic Metasediments of Malhaq and Um Zariq Formations, Kid Metamorphic Complex, Sinai, Egypt:Implications for Source-Area Weathering, Provenance, Recycling, and Depositional Tectonic Setting.Lithos, 175-176:68-85.doi: 10.1016/j.lithos.2013.05.002 Feng, R., Kerrich, R., 1990.Geochemistry of Fine-Grained Clastic Sediments in the Archean Abitibi Greenstone Belt, Canada:Implications for Provenance and Tectonic Setting.Geochimica et Cosmochimica Acta, 54(4):1061-1081.doi: 10.1016/0016-7037(90)90439-r Folk, R.L., 1968.Petrology of Sedimentary Rocks.Hemphill, Austin, TX, 107. https://repositories.lib.utexas.edu/handle/2152/22930 Fu, L., Guan, P., Zhao, W.Y., et al., 2013.Heavy Mineral Feature and Provenance Analysis of Paleogene Lulehe Formation in Qaidam Basin.Acta Petrologica Sinica, 29(8):2867-2875(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201308022.htm Guo, L.Z., Zhong, Z.H., Wang, L.S., et al., 2001.Regional Tectonic Evloution around Yinggehai Basin of South China Sea.Geological Journal of China Universities, 7(1):1-12(in Chinese with English abstract). https://www.researchgate.net/publication/313527601_Regional_tectonic_evolution_around_Yinggehai_Basin_of_South_China_Sea Hao, F., Dong, W.L., Zou, H.Y., et al., 2003.Overpressure Fluid Flow and Rapid Accumulation of Natural Gas in Yinggehai Basin.Acta Petrolei Sinica, 24(6):7-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200306002.htm Hayashi, K.I., Fujisawa, H., Holland, H.D., et al., 1997.Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada.Geochimica et Cosmochimica Acta, 61(19):4115-4137.doi: 10.1016/s0016-7037(97)00214-7 He, W.J., Xie, J.Y., Liu, X.Y., et al., 2011.Foraminiferal Biostratigraphy and Sedimentary Environment Reconstruction Based on Paleontological Data from Bore Hole DF1-1-11, Yinggehai Basin.Journal of Stratigraphy, 35(1):81-87 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0037073816303128 He, X.H., Zhong Z.H., Dong G.N., et al., 2015.Neogene Ocean Current in Yingqiong Basin:Implication of Deep-Water Oil and Gas Exploration.Natural Gas Exploration and Development, 38(1):4-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200402008.htm Henderson, P., 1984.Rare Earth Element Geochemistry.Elsevier, Amsterdam, 52-71. http://ci.nii.ac.jp/ncid/BA03642755 Li, L., Yao, G.Q., Liu, Y.H., et al., 2015.Major and Trace Elements Geochemistry and Geological Implications of Dolomite-Bearing Mudstones in Lower Part of Shahejie Formation in Tanggu Area, Eastern China.Earth Science, 40(9):1480-1496 (in Chinese with English abstract). https://www.researchgate.net/publication/283873592_Major_and_trace_elements_geochemistry_and_geological_implications_of_dolomite-bearing_mudstones_in_lower_part_of_Shahejie_Formation_in_Tanggu_Area_Eastern_China Liao, W.L., Xiao, L., Zhang, L., et al., 2015.Provenance and Tectonic Setting of Early Carboniferous Sedimentary Strata in Western Junggar, Xinjiang.Earth Science, 40(3):485-503 (in Chinese with English abstract). https://www.researchgate.net/publication/281993457_Provenance_and_tectonic_settings_of_early_carboniferous_sedimentary_strata_in_Western_Junggar_Xinjiang McLennan, S.M., 1989.Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes.Mineralogical Society of America Reviews in Mineralogy, 21:169-200. http://rimg.geoscienceworld.org/content/21/1/169.short McLennan, S.M., Hemming, S., McDaniel, D.K., et al., 1993.Geochemical Approaches to Sedimentation, Provenance and Tectonics.In:Johnson, M.J., Basu, A., eds., Processes Controlling the Composition of Clastic Sediments.The Geological Society of America, (Special Paper 284):21-40. http://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=1551660 Moosavirad, S.M., Janardhana, M.R., Sethumadhav, M.S., et al., 2012.Geochemistry of Lower Jurassic Sandstones of Shemshak Formation, Kerman Basin, Central Iran:Provenance, Source Weathering and Tectonic Setting.Journal of the Geological Society of India, 79(5):483-496.doi: 10.1007/s12594-012-0073-4 Morley, C.K., 2002.A Tectonic Model for the Tertiary Evolution of Strike-Slip Faults and Rift Basins in SE Asia.Tectonophysics, 347(4):189-215.doi: 10.1016/s0040-1951(02)00061-6 Morton, A.C., 1987.Influences of Provenance and Diagenesis on Detrital Garnet Suites in the Paleocene Forties Sandstone, Central North Sea.SEPM Journal of Sedimentary Research, 57(6):1027-1032.doi: 10.1306/212f8cd8-2b24-11d7-8648000102c1865d Morton, A.C., Whitham, A.G., Fanning, C.M., 2005.Provenance of Late Cretaceous to Paleocene Submarine Fan Sandstones in the Norwegian Sea:Integration of Heavy Mineral, Mineral Chemical and Zircon Age Data.Sedimentary Geology, 182(1-4):3-28.doi: 10.1016/j.sedgeo.2005.08.007 Nesbitt, H.W., Young, G.M., 1996.Petrogenesis of Sediments in the Absence of Chemical Weathering:Effects of Abrasion and Sorting on Bulk Composition and Mineralogy.Sedimentology, 43(2):341-358.doi: 10.1046/j.1365-3091.1996.d01-12.x Pang, X., Peng, D.J., Chen, C.M., et al., 2007.Three Hierarchies "Source-Conduit-Sink" Coupling Analysis of the Pearl River Deep-Water Fan System.Acta Geologica Sinica, 81(6):857-864(in Chinese with English abstract). http://csb.scichina.com:8080/EN/abstract/abstract516995.shtml Pei, J.X., Yu, J.F., Wang, L.F., et al., 2011.Key Challenges and Strategies for the Success of Natural Gas Exploration in Mid-Deep Strata of the Yinggehai Basin.Acta Petrolei Sinica, 32(4):573-579(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201104004.htm Pettijohn, F.J., Potter, P.E., Siever, R., 1987.Sand and Sandstone.2nd ed..Springer, New York.553. doi: 10.1007/978-1-4615-9974-6_6 Rahman, M.J.J., Suzuki, S., 2007.Geochemistry of Sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh:Implications for Provenance, Tectonic Setting and Wealthering.Geochemical Journal, 41(6):415-428.doi: 10.2343/geochemj.41.415 Roser, B.P., Korsch, R.J., 1986.Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio.The Journal of Geology, 94(5):635-650.doi: 10.1086/629071 Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.In:Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry.Pergamon, Oxford, 1-64. https://www.deepdyve.com/lp/elsevier/the-composition-of-the-continental-crust-b6Dpwl24Ik Saminpanya, S., Duangkrayom, J., Jintasakul, P., et al., 2014.Petrography, Mineralogy and Geochemistry of Cretaceous Sediment Samples from Western Khorat Plateau, Thailand, and Considerations on Their Provenance.Journal of Asian Earth Sciences, 83:13-34.doi: 10.1016/j.jseaes.2014.01.007 Sun, Z., Zhong, Z.H., Zhou, D., et al., 2006.The Development Mechanism of the South China Sea.Science China(Series D), 36(9):797-810(in Chinese). doi: 10.1175/JCLI-D-14-00170.1 Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.The Journal of Geology, 94(4):57-72. http://www.osti.gov/scitech/biblio/6582885 Tong, C.X., Wang, Z.F., Li, X.S., 2012.Pooling Conditions of Gas Reservoirs in the Dongfang 1-1 Gas Field, Yinggehai Basin.Natural Gas Industry, 32(8):11-15, 26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201208004.htm Wang, D.L., Al-Busaidi, S., Lee, D.N.H., 2009.Prediction of Sand Body Trend Based on Stratigraphic Dip Pattern from Microresistivity Images in Permian Sandstone Reservoir, Oman.SPE Saudi Arabia Section Technical Symposium, Saudi Arabia, 1-12.doi: 10.2118/126084-ms Wang, H., Chen, S., Gan, H.J., et al., 2015.Accumulation Mechanism of Large Shallow Marine Turbidite Deposits:A Case Study of Gravity Flow Deposits of the Huangliu Formation in Yinggehai Basin.Earth Science Frontiers, 22(1):21-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201501004.htm Wang, P.X., 1995.ODP and Qinghai/Xizang (Tibetan) Palteau.Advance in Earth Sciences, 10(3):254-257 (in Chinese with English abstract). Xie, Y.H., Fan, C.W., 2010.Some New Knowledge about the Origin of Huangliu Formation Reservoirs in Dongfang Area, Yinggehai Basin.China Offshore Oil and Gas, 22(6):355-359, 386 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201006002.htm Xie, Y.H., Zhang, Y.Z., Li, X.S., et al., 2012.Main Controlling Factors and Formation Models of Natural Gas Reservoirs with High-Temperature and Overpressure in Yinggehai Basin.Acta Petrolei Sinica, 33(4):601-609 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201204010.htm Zaid, S.M., 2013.Provenance, Diagenesis, Tectonic Setting and Reservoir Quality of the Sandstones of the Kareem Formation, Gulf of Suez, Egypt.Journal of African Earth Sciences, 85:31-52.doi: 10.1016/j.jafrearsci.2013.04.010 Zhang, H.L., Pei, J.X., Zhang, Y.Z., et al., 2013.Overpressure Reservoirs of the Huangliu Formation of the Dongfang Area, Yinggehai Basin, South China Sea.Petroleum Exploration and Development, 40(3):102-112 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S1876380413600373 Zhang, Q.M., 1999.Evolution of Ying-Qiong Basin and Its Tectonic-Thermal System.Natural Gas Industry, 19(1):12-18 (in Chinese with English abstract). http://pub.chinasciencejournal.com/MarineGeology&QuaternaryGeology/42172.jhtml Zhao, M., Shao, L., Liang, J.S., et al., 2013.REE Character of Sediment from the Paleo-Red River and Its Implication of Provenance.Earth Science, 38(1):61-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2013S1008.htm Zhong, Z.H., Liu, J.H., Zhang, D.J., et al., 2013.Origin and Sedimentary Reservoir Characteristics of a Large Submarine Fan in Dongfang Area, Yinggehai Basin.Acta Petrolei Sinica, 34(Suppl.2):284-293 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2013S2013.htm Zimmermann, U., Bahlburg, H., 2003.Provenance Analysis and Tectonic Setting of the Ordovician Clastic Deposits in the Southern Puna Basin, NW Argentina.Sedimentology, 50(6):1079-1104.doi: 10.1046/j.1365-3091.2003.00595.x 付玲, 关平, 赵为永, 等, 2013.柴达木盆地古近系路乐河组重矿物特征与物源分析.岩石学报, 29(8): 2867-2875. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308022.htm 郭令智, 钟志洪, 王良书, 等, 2001.莺歌海盆地周边区域构造演化.高校地质学报, 7(1): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200101000.htm 郝芳, 董伟良, 邹华耀, 等, 2003.莺歌海盆地汇聚型超压流体流动及天然气晚期快速成藏.石油学报, 24(6): 7-12. doi: 10.7623/syxb200306002 何卫军, 谢金有, 刘新宇, 等, 2011.莺歌海盆地DF1-1-11井有孔虫生物地层与沉积环境研究.地层学杂志, 35(1): 81-87. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201101015.htm 何小胡, 钟泽红, 董贵能, 等, 2015.莺琼盆地新近纪海流的研究新进展及深水油气勘探的启示.天然气勘探与开发, 38(1): 4-11. http://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201501003.htm 李乐, 姚光庆, 刘永河, 等, 2015.塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义.地球科学, 40(9): 1480-1496. http://earth-science.net/WebPage/Article.aspx?id=3152 廖婉琳, 肖龙, 张雷, 等, 2015.新疆西准噶尔早石炭世沉积地层的物源及构造环境.地球科学, 40(3): 485-503. http://earth-science.net/WebPage/Article.aspx?id=3031 庞雄, 彭大钧, 陈长民, 等, 2007.三级"源-渠-汇"耦合研究珠江深水扇系统.地质学报, 81(6): 857-864. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200706015.htm 裴健翔, 于俊峰, 王立锋, 等, 2011.莺歌海盆地中深层天然气勘探的关键问题及对策.石油学报, 32(4): 573-579. doi: 10.7623/syxb201104003 孙珍, 钟志洪, 周蒂, 等, 2006.南海的发育机制研究:相似模拟证据.中国科学(D辑), 36(9): 797-810. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200609001.htm 童传新, 王振峰, 李绪深, 2012.莺歌海盆地东方1-1气田成藏条件及其启示.天然气工业, 32(8): 11-15, 26. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201208004.htm 王华, 陈思, 甘华军, 等, 2015.浅海背景下大型浊积扇研究进展及堆积机制探讨:以莺歌海盆地黄流组为例.地学前缘, 22(1): 21-34. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501004.htm 汪品先, 1995.大洋钻探与青藏高原.地球科学进展, 10(3): 254-257. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ503.008.htm 谢玉洪, 范彩伟, 2010.莺歌海盆地东方区黄流组储层成因新认识.中国海上油气, 22(6): 355-359, 386. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502015.htm 谢玉洪, 张迎朝, 李绪深, 等, 2012.莺歌海盆地高温超压气藏控藏要素与成藏模式.石油学报, 33(4): 601-609. doi: 10.7623/syxb201204009 张伙兰, 裴健翔, 张迎朝, 等, 2013.莺歌海盆地东方区黄流组超压储集层特征.石油勘探与开发, 40(3): 102-112. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201303006.htm 张启明, 1999.莺琼盆地的演化与构造-热体制.天然气工业, 19(1): 12-18. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG901.003.htm 赵梦, 邵磊, 梁建设, 等, 2013.古红河沉积物稀土元素特征及其物源指示意义.地球科学, 38(1): 61-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2013S1008.htm 钟泽红, 刘景环, 张道军, 等, 2013.莺歌海盆地东方区大型海底扇成因及沉积储层特征.石油学报, 34(增刊2): 284-293. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S2013.htm