Geochemical Simulation of Thioarsenic Speciation in High-Temperature, Sulfide-Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan
-
摘要: 天然水环境中地质成因砷的存在是世界范围内对人类威胁极大的环境问题之一.在高温富硫化物地热水中,硫代砷化物是砷的主要存在形态之一.在国内尚无硫代砷化物定量检测方法的背景下,以云南腾冲地热带的热海水热区为典型研究区,基于不同类型硫代砷化物的最新化学热力学数据wateq4f.dat,利用水文地球化学模拟软件PHREEQC开展了不同类型热泉中砷的存在形态的地球化学模拟.结果表明,热海热泉中砷的主要形态是硫代砷酸盐,砷酸盐和亚砷酸盐次之,硫代亚砷酸盐则含量极低;在各类硫代砷酸盐中,按平均百分含量降序依次为:一硫代砷酸盐→三硫代砷酸盐→四硫代砷酸盐→二硫代砷酸盐.pH、Eh和总硫化物含量是热泉中砷的形态分布的控制性因素.在酸性条件下,砷以硫代砷酸盐和亚砷酸盐为主要存在形式;而在中性/偏碱性条件下,砷的形态则以硫代砷酸盐为主,砷酸盐次之.偏还原环境和高硫化物含量是硫代砷化物、特别是三硫代砷酸盐和四硫代砷酸盐稳定存在的有利条件.Abstract: The occurrence of geogenic arsenic in natural water environment is one of the significant hazards to human beings in the world. In high-temperature, sulfide-rich geothermal waters, thioarsenicals are likely the major species of arsenic. In view that there has been so far no quantitative test method for thioarsenic species in China, a hydrogeochemical code, PHREEQC, with its wateq4f.dat database being updated by the latest thermodynamic data for thioarsenicals, was used for calculating the arsenic species distribution in various types of hot springs from the Rehai hydrothermal area located in the Tengchong geothermal belt, Yunnan Province. The results show that the major species of arsenic in the Rehai hot springs is thioarsenate, arsenate and arsenite comes second, and the thioarsenite concentrations are extremely low; the descending order of thioarsenate species in terms of their average percentages is: monothioarsenate, trithioarsenate, tetrathioarsenate, and dithioarsenate. pH, Eh and total sulfide concentration are the controlling factors for the arsenic speciation in hot springs. Under acidic condition, the main species of arsenic are thioarsenate and arsenite, whereas under neutral/weak alkaline conditions, thioarsenate is predominant with arsenate being the second most important species. Comparative reducing environment and high sulfide concentration in geothermal water are favorable for the stable existence of thioarsenicals, especially trithioarsenate and tetrathioarsenate.
-
Key words:
- hot spring /
- thioarsenic species /
- Rehai hydrothermal area /
- Tengchong geothermal belt /
- geochemistry
-
图 1 腾冲火山岩分布(a)和热海热田地热地质图及采样位置(b)
1.全新统;2.晚更新统;3.中更新统玄武岩;4.早更新统安山岩;5.中新统南林组;6.元古宙高黎贡山群;7.明矾石带;8.高岭石-玉髓或蛋白石带;9.高岭石-蒙脱石-玉髓带,高岭石-伊利石-蒙脱石混层矿物-玉髓石英带;10.伊利石-蒙脱石混层矿物-石英带;11.绿泥石-蒙脱石混层矿物带;12.蒙脱石-方解石带;13.伊利石-蒙脱石-高岭石-玉髓带;14.断层;15.取样点;16.热泉/高程(m);图a据赵慈平等(2006)修改;图b据廖志杰和赵平(1999)修改
Fig. 1. Volcanic rock distribution in Tengchong (a) and geothermal geological map of the Rehai field and sampling locations (b)
表 1 热海热泉的水化学组成
Table 1. Hydrochemical compositions of hot springs from the Rehai geothermal field
水样编号 泉名 T pH Eh SO4 Cl F NO3 Na K Ca Mg Fe(Ⅱ) Fe(Ⅲ) As(Ⅴ) As(Ⅲ) As 硫化物 NH4 酸性泉 DRTY-01 地热体验区1号泉 41.6 1.85 229.8 882.7 22.8 0.5 3.5 9.9 26.2 3.3 0.7 1.94 3.70 30.9 6.8 26.0 0.01 0.4 DRTY-02 地热体验区2号泉 65.4 1.85 199.8 776.1 22.6 0.7 4.5 4.2 4.6 8.4 0.9 1.22 2.30 35.1 7.1 35.9 0.02 3.2 DRTY-04 地热体验区4号泉 68.7 1.93 196.4 879.0 24.8 1.4 5.0 18.0 35.4 3.5 1.2 5.69 12.60 120.2 16.3 147.8 0.02 1.6 DRTY-06 地热体验区6号泉 85.4 2.04 168.1 1 634.0 22.9 0.5 5.1 5.6 20.0 3.5 1.1 2.64 7.70 108.6 9.0 98.2 0.03 13.5 DRTY-07 地热体验区7号泉 80.4 1.41 185.6 1 699.6 23.3 1.3 3.9 11.3 35.8 3.7 2.4 2.60 16.30 113.6 32.3 158.6 0.04 14.3 ZZQ-R 珍珠泉-右 86.8 2.96 128.5 135.1 41.9 1.4 0.2 56.4 26.5 2.1 0.5 0.03 0.51 11.7 47.0 62.8 0.03 6.0 ZZQ-C 珍珠泉-出 89.0 2.81 119.9 235.9 35.9 0.8 1.2 54.6 28.8 3.6 0.7 0.07 0.87 26.4 32.1 62.8 0.04 5.4 DGG-AS 大滚锅酸性泉 49.3 2.08 199.4 1 506.9 32.0 1.8 3.6 55.5 18.2 178.3 52.6 3.75 48.00 20.9 5.9 22.8 0.07 0.0 LGG-HT 老滚锅(高温) 66.1 2.73 160.6 653.8 58.1 2.6 3.6 161.1 29.4 10.1 1.8 0.56 0.58 12.6 17.9 27.9 0.02 0.0 中性/偏碱性泉 ZZQ-L 珍珠泉-左 90.1 5.10 -6.1 162.2 42.5 2.0 1.6 64.4 30.2 2.3 0.5 0.16 0.35 21.0 44.0 62.7 0.01 3.8 YJQ-C 眼镜泉汇 66.3 9.47 -404.6 34.0 561.7 14.7 3.0 793.8 139.7 1.0 0.1 0.01 0.00 107.4 597.6 958.8 0.35 0.1 YJQ-L 眼镜泉左 91.1 8.88 -435.3 33.1 594.0 15.3 2.9 771.0 133.8 1.2 0.1 0.00 0.03 31.6 574.8 347.8 3.40 0.3 YJQ-R 眼镜泉右 81.1 9.32 -439.8 33.7 612.0 15.6 3.0 786.0 136.6 1.0 0.1 0.00 0.02 49.7 628.4 768.8 2.60 0.2 ZXS 忠孝寺泉 46.3 6.09 -95.5 35.8 134.1 3.2 2.9 253.1 47.6 17.9 1.1 0.01 0.13 136.5 20.3 129.0 0.01 0.1 ZT07 澡塘河仙人澡塘 46.0 7.60 -180.4 73.2 236.8 7.5 2.9 369.6 66.7 7.6 0.3 0.28 0.00 86.4 161.5 267.4 0.04 0.2 DGG-NS 大滚锅 84.1 7.45 -334.4 40.3 715.9 19.2 2.8 893.4 153.6 1.0 0.1 0.03 0.01 940.6 104.6 548.9 0.21 0.0 HMZT-M 蛤蟆嘴亭中 57.5 7.40 -189.5 72.0 288.8 7.0 4.2 372.2 66.8 4.7 0.7 0.40 0.04 71.2 173.7 271.3 0.06 0.0 HMZT-L 蛤蟆嘴亭左 64.2 7.14 -213.1 63.7 332.0 8.1 4.6 420.9 76.5 3.6 0.5 0.45 0.01 115.3 249.3 425.5 0.13 0.0 HMZD 蛤蟆嘴池 91.6 7.13 -319.7 43.9 337.6 8.0 4.4 449.7 81.9 2.3 0.2 0.06 0.00 123.2 124.7 290.8 0.30 0.0 XKT-R 霞客亭右 95.0 7.53 -229.8 37.3 335.6 8.0 4.2 456.1 81.4 2.2 0.1 0.02 0.00 79.4 146.7 293.0 1.90 0.0 HTJ-L 怀胎井左 92.4 7.40 -385.1 33.3 560.7 13.8 4.2 692.6 124.5 1.0 0.1 0.00 0.02 127.9 461.4 573.8 2.60 0.0 HTJ-R 怀胎井右 85.4 6.88 -317.2 44.5 464.6 11.5 3.9 547.6 100.1 1.4 0.1 0.02 0.00 403.6 151.3 657.4 0.67 0.0 GMQ 鼓鸣泉 90.5 8.12 -424.2 32.2 593.9 14.5 4.2 716.2 127.9 1.3 0.1 0.01 0.01 50.7 346.9 314.6 5.00 0.0 TQL 听泉楼 82.3 7.96 -394.0 31.1 597.1 14.6 3.9 699.0 113.1 1.0 0.1 0.01 0.00 78.8 398.8 278.4 3.00 0.0 注:T的单位为℃;Eh的单位为mV;As(Ⅴ)、As(Ⅲ)和As的单位为μg/L;其他化学组分的单位为mg/L. 表 2 砷的不同形态的化学热力学数据
Table 2. Chemical thermodynamic data of arsenic species
砷的形态 化学结构式 化学反应式 lgK 来源 亚砷酸盐 HnAsO3n-3 H3AsO3=H2AsO3-+H+ -9.15 Parkhurst and Appelot (1999) H2AsO3-=HAsO32-+H+ -23.85 Parkhurst and Appelot (1999) HAsO32-=AsO33-+H+ -39.55 Parkhurst and Appelot (1999) 一硫代亚砷酸盐 HnAsSO2n-3 H3AsO3+H2S=H3AsSO2+H2O 0.4 Helz and Tossell (2008) H3AsSO2=H2AsSO2-+H+ -3.8 Zaksznova-Herzog and Seward(2012) H2AsSO2-=HAsSO22-+H+ ≤-13.5 Zaksznova-Herzog and Seward(2012) HAsSO22-=AsSO23-+H+ ≤-14.0 Zaksznova-Herzog and Seward(2012) 二硫代亚砷酸盐 HnAsS2On-3 H3AsSO2+H2S=H3AsS2O+H2O 3.8 Helz and Tossell (2008) H3AsS2O=H2AsS2O-+H+ -3.8 Zaksznova-Herzog and Seward(2012) H2AsS2O-=HAsS2O2-+H+ -6.5 Zaksznova-Herzog and Seward(2012) HAsS2O2-=AsS2O3-+H+ -14.0 Zaksznova-Herzog and Seward(2012) 三硫代亚砷酸盐 HnAsS3n-3 H3AsS2O+H2S=H3AsS3+H2O 5.6 Helz and Tossell(2008) H3AsS3=H2AsS3-+H+ -3.77 Zaksznova-Herzog and Seward(2012) H2AsS3-= HAsS32-+H+ -6.53 Zaksznova-Herzog and Seward(2012) HAsS32-=AsS33-+H+ -9.29 Zaksznova-Herzog and Seward(2012) 砷酸盐 HnAsO4n-3 H3AsO4=H2AsO4-+H+ -2.3 Parkhurst and Appelot (1999) H2AsO4-=HAsO42-+H+ -9.46 Parkhurst and Appelot (1999) HAsO42-=AsO43-+H+ -21.11 Parkhurst and Appelot (1999) 一硫代砷酸盐 HnAsSO3n-3 H3AsO4+H2S=H3AsSO3+H2O 11.0 Helz and Tossell(2008) H3AsSO3=H2AsSO3-+H+ -3.3 Thilo et al.(2004) H2AsSO3-= HAsSO32-+H+ -7.2 Thilo et al.(2004) HAsSO32-= AsSO3-3+H+ -11.0 Thilo et al.(2004) 二硫代砷酸盐 HnAsS2O2n-3 H3AsSO3+H2S=H3AsS2O2+H2O 0.1 Helz and Tossell (2008) H3AsS2O2=H2AsS2O2-+H+ 2.4 Helz and Tossell (2008) H2AsS2O2-=HAsS2O22-+H+ -7.1 Thilo et al.(2004) HAsS2O22-= AsS2O2-3+H+ -10.8 Thilo et al.(2004) 三硫代砷酸盐 HnAsS3On-3 H3AsS2O2+H2S=H3AsS3O+H2O 3.5 Helz and Tossell (2008) H3AsS3O=H2AsS3O-+H+ 1.7 Helz and Tossell (2008) H2AsS3O-= HAsS3O2-+H+ -1.5 Helz and Tossell (2008) HAsS3O2-= AsS3O3-+H+ -10.8 Thilo et al.(2004) 四硫代砷酸盐 HnAsS4n-3 H3AsS3O+H2S=H3AsS4+H2O 2.6 Helz and Tossell (2008) H3AsS4=H2AsS4-+H+ 2.3 Helz and Tossell (2008) H2AsS4-=HAsS42-+H+ -1.5 Helz and Tossell (2008) HAsS42-= AsS43-+H+ -5.2 Thilo et al.(2004) 表 3 热泉中各种硫代砷化物的含量
Table 3. Concentrations of different thioarsenate in the hot springs
样品编号 亚砷酸盐 砷酸盐 硫代亚砷酸盐 硫代砷酸盐 总砷(μg /L) 一硫代砷酸盐 二硫代砷酸盐 三硫代砷酸盐 四硫代砷酸盐 (μg/L) % (μg/L) % (μg/L) % (μg/L) % (μg/L) % (μg/L) % (μg/L) % (μg/L) % DRTY-01 2.54E+01 97.96 2.42E-05 0.000 1.99E-05 0.000 5.28E-01 2.04 25.91 0.52 98.95 0.01 1.04 0.00 0.00 0.00 0.00 DRTY-02 1.99E+01 55.56 5.11E-04 0.001 2.10E-05 0.000 1.59E+01 44.44 35.86 15.71 98.61 0.22 1.39 0.00 0.00 0.00 0.00 DRTY-04 1.10E+02 74.28 4.29E-03 0.003 3.28E-05 0.000 3.79E+01 25.71 147.50 37.77 99.60 0.15 0.40 0.00 0.00 0.00 0.00 DRTY-06 3.34E+01 33.98 1.22E-02 0.012 6.01E-06 0.000 6.49E+01 66.01 98.31 64.71 99.73 0.18 0.27 0.00 0.00 0.00 0.00 DRTY-07 7.22E+01 45.53 1.19E-02 0.008 1.74E-05 0.000 8.64E+01 54.46 158.65 86.12 99.66 0.29 0.34 0.00 0.00 0.00 0.00 ZZQ-R 2.28E-01 0.36 1.96E-02 0.031 5.65E-08 0.000 6.26E+01 99.61 62.89 61.53 98.23 1.10 1.76 0.00 0.00 0.00 0.00 ZZQ-C 8.85E-02 0.14 3.82E-03 0.006 8.96E-08 0.000 6.28E+01 99.85 62.89 59.22 94.30 3.56 5.67 0.02 0.04 0.00 0.00 DGG-AS 1.35E+01 59.17 6.14E-05 0.000 7.31E-05 0.000 9.31E+00 40.83 22.80 8.55 91.83 0.75 8.09 0.01 0.08 0.00 0.00 LGG-HT 1.35E+00 4.83 2.49E-03 0.009 9.40E-07 0.000 2.66E+01 95.16 27.96 25.63 96.35 0.97 3.63 0.00 0.02 0.00 0.00 ZZQ-L 1.58E-04 0.000 3.94E+01 62.74 3.22E-13 0.000 2.34E+01 37.26 62.79 23.39 100.00 0.00 0.00 0.00 0.00 0.00 0.00 YJQ-C 5.30E-17 0.000 4.90E+02 50.92 5.94E-22 0.000 4.72E+02 49.08 962.30 472.28 99.99 0.03 0.01 0.00 0.00 0.00 0.00 YJQ-L 2.19E-18 0.000 3.04E+00 0.87 1.28E-21 0.000 3.46E+02 99.13 349.09 336.98 97.38 2.46 0.71 5.59 1.62 1.02 0.29 YJQ-R 3.50E-18 0.000 4.67E+01 6.05 4.09E-22 0.000 7.25E+02 93.95 771.63 723.88 99.86 0.77 0.11 0.25 0.03 0.02 0.00 ZXS 8.33E-05 0.000 1.06E+02 81.89 8.64E-13 0.000 2.34E+01 18.11 129.25 23.41 100.00 0.00 0.00 0.00 0.00 0.00 0.00 ZT07 8.97E-10 0.000 1.74E+02 65.10 7.90E-16 0.000 9.35E+01 34.90 268.03 93.53 100.00 0.00 0.00 0.00 0.00 0.00 0.00 DGG-NS 7.75E-12 0.000 6.03E+01 10.93 6.09E-17 0.000 4.91E+02 89.07 551.15 490.62 99.94 0.24 0.05 0.03 0.01 0.00 0.00 HMZT-M 7.86E-10 0.000 1.32E+02 48.45 8.12E-16 0.000 1.40E+02 51.55 271.94 140.18 99.99 0.01 0.01 0.00 0.00 0.00 0.00 HMZT-L 2.68E-09 0.000 1.22E+02 28.66 3.44E-15 0.000 3.04E+02 71.34 426.56 304.27 99.98 0.05 0.02 0.00 0.00 0.00 0.00 HMZD 1.37E-13 0.000 1.43E-01 0.05 6.56E-17 0.000 2.91E+02 99.95 291.57 158.50 54.39 9.29 3.19 120.57 41.37 3.06 1.05 XKT-R 9.49E-19 0.000 4.01E-05 0.00 1.84E-20 0.000 2.94E+02 100.00 293.78 0.64 0.22 0.59 0.20 148.51 50.55 144.03 49.03 HTJ-L 9.01E-19 0.000 1.07E-05 0.00 2.99E-20 0.000 5.76E+02 100.00 575.75 0.31 0.05 0.52 0.09 229.58 39.88 345.33 59.98 HTJ-R 2.82E-12 0.000 2.02E-01 0.03 1.08E-15 0.000 6.59E+02 99.97 659.35 304.61 46.21 23.36 3.54 324.55 49.24 6.63 1.01 GMQ 2.72E-19 0.000 1.06E-03 0.00 4.37E-21 0.000 3.16E+02 100.00 315.71 4.92 1.56 1.46 0.46 132.25 41.89 177.06 56.08 TQL 7.50E-19 0.000 3.34E-04 0.00 1.52E-20 0.000 2.79E+02 100.00 279.36 2.19 0.78 0.94 0.34 119.58 42.80 156.66 56.08 注:百分比为相对于总砷浓度的百分含量. -
Bai, D.H., Liao, Z.J, Zhao, G.Z., et al., 1994.Deducing the Magma Resoures by the Result of MT Sounding in Rehai Geothermal Field in Tengchong.Chinese Science Bulletin, 39(4):344-347(in Chinese). https://www.researchgate.net/publication/287697042_Anaysis_of_the_characteristics_of_magma_activity_based_on_the_deformation_and_gravity_measurements_in_Tengchong_volcano_region Bostick, B.C., Fendorf, S., Brown, G.E., 2005.In Situ Analysis of Thioarsenite Complexes in Neutral to Alkaline Arsenic Sulphide Solutions.Mineralogical Magazine, 69(5):781-795.doi: 10.1180/0026461056950288 Cheng, D., Liao, P., Yuan, S.H., 2016.Effect of FeS Colloids on Desorption of As(V) Adsorbed on Ferric Iron.Earth Science, 41(2):325-330(in Chinese with English abstract). https://www.ncbi.nlm.nih.gov/pubmed/27017140 Cleverley, J.S., Benning, L.G., Mountain, B.W., 2003.Reaction Path Modelling in the As-S System:A Case Study for Geothermal as Transport.Applied Geochemistry, 18(9):1325-1345.doi: 10.1016/s0883-2927(03)00054-4 Guo, Q.H., Liu, M.L., Li, J.X., et al., 2014.Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China):Formed via Magmatic Fluid Absorption or Geothermal Steam Heating? Bulletin of Volcanology, 76(10):1-12. https://www.researchgate.net/publication/279888338_Structure_of_geothermal_reservoirs_and_the_temperature_of_mantle-derived_magma_hot_source_in_the_Rehai_area_Tengchong Guo, Q.H., Wang, Y.X., 2012.Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China.Journal of Volcanology and Geothermal Research, 215-216:61-73.doi: 10.1016/j.jvolgeores.2011.12.003 Guo, Q, H, ,Wang, Y.X., Liu, W., 2007.Major Hydrogeochemical Processes in the Two Reservoirs of the Yangbajing Geothermal Field, Tibet, China.Journal of Volcanology and Geothermal Research, 166(3-4):255-268.doi: 10.1016/j.jvolgeores.2007.08.004 Helz, G.R., Tossell, J.A., 2008.Thermodynamic Model for Arsenic Speciation in Sulfidic Waters:A Novel Use of Ab Initio Computations.Geochimica et Cosmochimica Acta, 72(18):4457-4468.doi: 10.1016/j.gca.2008.06.018 Hirner, A.V., Feldmann, J., Krupp, E., et al., 1998.Metal(Loid) Organic Compounds in Geothermal Gases and Waters.Organic Geochemistry, 29(5-7):1765-1778.doi: 10.1016/s0146-6380(98)00153-3 Li, J.X., Guo, Q.H., Wang, Y.X., 2015.Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Processes during Ascent to Surface:A Case Study in Rehai Geothermal Field, Tengchong.Earth Science, 40(9):1576-1584(in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S0883292712001710 Liao, Z.J., Zhao, P., 1999.Yunnan-Tibet Geothermal Belt:Geothermal Resources and Typical Geothermal System.Science Press, Beijing (in Chinese). http://www.nsfc.gov.cn/Portals/0/fj/english/fj/pdf/2009/121.doc Lima, A., Cicchella, D., Francia, S.D., 2003.Natural Contribution of Harmful Elements in Thermal Groundwaters of Ischia Island (Southern Italy).Environmental Geology, 43(8):930-940. https://www.researchgate.net/profile/Domenico_Cicchella/publication/226928297_Natural_contribution_of_harmful_elements_in_thermal_groundwaters_of_Ischia_Island_southern_Italy/links/54d21a9f0cf25ba0f04259f6.pdf?origin=publication_detail Parkhurst, D.L., Appelo, C., 1999.User's Guide to PHREEQC (Version 2):A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations.Water-Resources Investigations Report, 99-4259. https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/html/final.html Pascua, C.S., Minato, M., Yokoyama, S., et al., 2007.Uptake of Dissolved Arsenic during the Retrieval of Silica from Spent Geothermal Brine.Geothermics, 36(3):230-242.doi: 10.1016/j.geothermics.2007.03.001 Planer-Friedrich, B., Franke, D., Merkel, B., et al., 2008.Acute Toxicity of Thioarsenates to Vibrio Fischeri.Environmental Toxicology and Chemistry, 27(10):2027.doi: 10.1897/07-633.1 Planer-Friedrich, B., London, J., McCleskey, R.B., et al., 2007.Thioarsenates in Geothermal Waters of Yellowstone National Park:Determination, Preservation, and Geochemical Importance.Environmental Science & Technology, 41(15):5245-5251.doi: 10.1021/es070273v Planer-Friedrich, B., Wallschläger, D., 2009.A Critical Investigation of Hydride Generation-Based Arsenic Speciation in Sulfidic Waters.Environmental Science & Technology, 43(13):5007-5013.doi: 10.1021/es900111z Rader, K.J., Dombrowski, P.M., Farley, K.J., et al., 2004.Effect of Thioarsenite Formation on Arsenic(Ⅲ) Toxicity.Environmental Toxicology and Chemistry, 23(7):1649.doi: 10.1897/03-443 Romero, L., Alonso, H., Campano, P., et al., 2003.Arsenic Enrichment in Waters and Sediments of the Rio Loa (Second Region, Chile).Applied Geochemistry, 18(9):1399-1416.doi: 10.1016/s0883-2927(03)00059-3 Shangguan, Z.G., Bai, C.H., Sun, M.L., 2000.Characteristics of Modern Released Mantle Gases in Tengchong Geothermal Area.Science in China (Series D), 30(4):407-414 (in Chinese). https://www.researchgate.net/publication/225110045_Mantle-derived_magmatic_gas_releasing_features_at_the_Rehai_area_Tengchong_County_Yunnan_Province_China Thilo, E., Hertzog, K., Winkler, A., 1970.Über Vorgänge bei der Bildung des Arsen (V)-sulfids beim Ansäuern von Tetrathioarsenatlösungen.Zeitschrift für Anorganische und Allgemeine CHEMIE, 373(2):111-121. doi: 10.1002/(ISSN)1521-3749 Tong, W., Zhang, M.T., 1994.A Record of Springs in Hengduan Mountainous Area.Science Press, Beijing (in Chinese). http://ideas.repec.org/a/spr/climat/v110y2012i1p455-467.html Zakaznova-Herzog, V.P., Seward, T.M., 2012.A Spectrophotometric Study of the Formation and Deprotonation of Thioarsenite Species in Aqueous Solution at 22 ℃.Geochimica et Cosmochimica Acta, 83:48-60. doi: 10.1016/j.gca.2011.12.022 Zhang, D., Guo, H.M., Ni, P., et al., 2014.Effect of Redox Conditions on Arsenic Release and Transport in Groundwater Systems:A Case Study in the Tongyu County.Quaternary Sciences, 34(5):1072-1081(in Chinese with English abstract). doi: 10.1007/s11368-016-1484-4 Zhang, Z.F., Zhu, M.X., Liu, S.B., et al., 1982.Preliminary Studies of Hydrothermal Geochemistry of Xizang.Acta Scicentiarum Naturalum Universitis Pekinesis, 18(3):88-96(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ198203009.htm Zhao, C.P., Ran, H., Chen, K.H., 2006.Present-Day Magma Chambers in Tengchong Volcano Area Inferred from Relative Geothermal Gradient.Acta Petrologica Sinica, 22(6):1517-1528(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200606010.htm 白登海, 廖志杰, 赵国泽, 等, 1994.从MT探测结果推论腾冲热海热田的岩浆热源.科学通报, 39(4): 344-347. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199404017.htm 成东, 廖鹏, 袁松虎, 2016.FeS胶体对三价铁吸附态As(V)的解吸作用.地球科学, 41(2): 325-330. http://earth-science.net/WebPage/Article.aspx?id=3249 李洁祥, 郭清海, 王焰新, 2015.高温热田深部母地热流体的温度计算及其升流后经历的冷却过程:以腾冲热海热田为例.地球科学, 40(9): 1576-1584. http://earth-science.net/WebPage/Article.aspx?id=3161 廖志杰, 赵平, 1999.滇藏地热带:地热资源和典型地热系统.北京:科学出版社. 上官志冠, 白春华, 孙明良, 2000. 腾冲热海地区现代幔源岩浆气体释放特征. 中国科学(D辑), (4): 407-414. 佟伟, 章铭陶, 1994.橫断山区温泉志.北京:科学出版社. 张迪, 郭华明, 倪萍, 等, 2014.氧化还原条件对地下水中砷释放迁移的影响——以通榆县高砷地下水为例.第四纪研究, 34(5): 1072-1081. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201405016.htm 张知非, 朱梅湘, 刘时彬, 等, 1982.西藏水热地球化学的初步研究.北京大学学报:自然科学版, 18(3): 88-96. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198203009.htm 赵慈平, 冉华, 陈坤华, 2006.由相对地热梯度推断的腾冲火山区现存岩浆囊.岩石学报, 22(6): 1517-1528. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606010.htm