Petrogenesis of Mafic Microgranular Enclaves: Evidence from Petrography, Whole-Rock and Mineral Chemistry of Ziyunshan Pluton, Central Hunan
-
摘要: 暗色微粒包体广泛分布于湘中紫云山岩体中的似斑状角闪石黑云母花岗闪长岩中,但其研究程度较低.对具有火成结构的暗色微粒包体及其寄主岩进行了岩相学、全岩及长石、辉石、黑云母的矿物地球化学研究,探讨其岩石成因及构造意义.寄主岩的全岩主量、微粒元素较为均一,而暗色微粒包体变化较大,且后者相对贫SiO2而富Na2O,但总体上二者均具有准铝质、钙碱性、镁质的特征,均富集轻稀土和大离子亲石元素,而亏损重稀土和高场强元素.寄主岩和暗色微粒包体的斜长石、辉石和黑云母均分别属于中长石、次透辉石-低铁次透辉石和铁质黑云母的范畴,显示相似的矿物地球化学特征.详尽的岩相学和地球化学特征表明,寄主岩属于I型和ACG型花岗岩,具有明显壳幔混合的特点;而暗色微粒包体形成时处于液态并具有流动性,与寄主岩间存在明显的机械和化学混合作用,并具有早期为骤冷快速结晶、晚期缓慢结晶这两期过程.因此,紫云山岩体中出现大量暗色微粒包体,是印支晚期湘中地区在强烈挤压之后的松弛阶段,由于软流圈物质上涌,并与其诱发的壳源酸性岩浆混合作用的产物.Abstract: The porphyraceous hornblende biotite granodiorite is generated in the Ziyunshan pluton, Central Hunan Province, which hosts many mafic microgranular enclaves (MMEs). This paper presents petrography, major and trace elements of whole-rock, and mineral chemistry of feldspar, pyroxene, as well as biotite of the igneous-texture mafic microgranular enclaves and host rocks, their genetic mechanism and geotectonic significance were investigated. The whole-rock geochemistry of host rocks is more stable than those of mafic microgranular enclaves, and the latter were characterized by relatively depleted SiO2 and enriched Na2O. Both of them are represented by metaluminous, calc-alkaline and magnesian, and enrichment of LREE and LILE and depletion of HREE and HFSE. The plagioclase, pyroxene and biotite of host rocks and mafic microgranular enclaves belong to andesine, ferrosalite-salite and ferribiotite, respectively, showing similar characteristics of mineral chemistry. According to a comprehensive analysis of petrographical characteristics and geochemical data, it is suggested that (1) the host rock belongs to I-type and ACG-type granite, showing the characteristics of crust-mantle mixing; (2) the mafic microgranular enclaves were formed in liquid state, having liquidity and featuring both mechanical and chemical interactions with host rocks; (3) the crystallization of the mafic microgranular enclaves can be classified into two stages: the initial one is undercooling and rapid crystallization stage, and the latter is slow crystallization stage. To sum up, the mafic microgranular enclaves in the Ziyunshan pluton were generated by mixing of mafic magmas (sub-alkaline tholeiite which formed from mantle) and its induced crustal felsic magma (products of partial melting of arenaceous rock in crust) in the relaxation period after the compressive stress period in the late Indo-Chinese epoch.
-
Key words:
- Ziyunshan pluton /
- mafic microgranular enclave /
- mineral /
- geochemistry /
- magma mixing /
- pyroxene /
- igneous rock
-
图 1 湖南紫云山岩体区域综合地质简图
1.中新生界;2.上古生界;3.下古生界;4.元古界;5.花岗岩体;6.断层;7.黑(二)云母二长花岗岩;8.似斑状含角闪石黑云母二长花岗岩;9.似斑状角闪石黑云母花岗闪长岩;10.透辉石(角闪石)富黑云母二长花岗岩;11.采样位置;12.断层.图a修改自刘凯等(2014)
Fig. 1. Simplified geological maps of the Ziyunshan pluton in Hunan
图 3 寄主岩与暗色微粒包体镜下照片
a,b.寄主岩中具聚片双晶的斜长石和有明显熔蚀现象的黑云母;c,d.暗色微粒包体中粒度较大的石英包嵌多种粒度较小辉石、黑云母等暗色矿物和针状-短柱状的磷灰石;e.石英斑晶被辉石等暗色矿物环绕,构成齿冠结构;f.暗色微粒包体中由辉石为主的暗色矿物组成的暗色矿物团块.图a、e、f左边为单偏光,右边为正交偏光,图b为单偏光,图c、d为正交偏光.矿物缩写:Qtz.石英;Pl.斜长石;Bt.黑云母;Kfs.钾长石;Cpx.单斜辉石;Ap.磷灰石;Di.透辉石
Fig. 3. Thin sections photographs of host rocks and mafic microgranular enclaves
图 4 寄主岩与暗色微粒包的A/KNC-A/NC图解(a),SiO2-MALI图解(b),SiO2-Fe*图解(c)和花岗岩类TAS分类图解(d)
图a底图据Maniar and Piccoli(1989);图b和图c底图据Frost et al.(2001);图d底图据Middlemost(1994)
Fig. 4. The A/KNC-A/NC diagram (a), SiO2-MALI diagram(b), SiO2-Fe* diagram (c) and TAS diagram (d) of host rocks and mafic microgranular enclaves
图 6 寄主岩与暗色微粒包体的稀土元素球粒陨石标准化配分模式(a, b)及微量元素原始地幔标准化图解(c, d)
球粒陨石和原始地幔标准化值据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns (a, b) and primitive mantle-normalized trace element spidergrams (c, d) of their host rocks and mafic microgranular enclaves
图 9 寄主岩(a)和暗色微粒包体(b)的单斜辉石成分分类
Fig. 9. Classification of clinopyroxene from host rocks (a) and mafic microgranular enclaves (b)
图 12 云母分类图(a)和云母的Fe3+-Fe2+-Mg图解(b)
a底图据Foster(1960);b底图据Wones and Eugster(1965)
Fig. 12. Classification of micas (a) and Fe3+-Fe2+-Mg diagram (b)
图 14 寄主岩和暗色微粒包体的CaO/Na2O-Al2O3/TiO2图解(a)和(Na2O+K2O)/(MgO+TFeO+TiO2)-Na2O+K2O+MgO+TFeO+TiO2图解(b)
图a底图据Sylvester(1998);图b底图据Patino Douce(1999)
Fig. 14. CaO/Na2O-Al2O3/TiO2 (a) and (Na2O+K2O)/ (MgO+TFeO+TiO2)-Na2O+K2O+MgO+TFeO+TiO2 (b) diagrams
图 15 MgO-TFeO图(a)和Al2O3/CaO-NaO/CaO图(b)
图a底图据Zorpi et al.(1989)
Fig. 15. Diagrams of MgO-TFeO (a) and Al2O3/CaO-NaO/CaO (b)
表 1 寄主岩体及暗色微粒包体主量(%)、微量元素组成(10-6)
Table 1. Major element (%) and trace element (10-6) compositions of host rocks and mafic microgranular enclaves
样号 寄主岩 暗色微粒包体 H1 H2 H3 H4 B-1-1 B-1-2 B-2 B-3 B-5 B-6 B-7 B-8 B-9 SiO2 66.2 66.4 67.4 67.2 62.0 62.1 61.2 60.8 61.3 57.8 66.5 62.8 62.9 TiO2 0.66 0.61 0.55 0.60 1.20 1.26 1.22 0.79 0.75 1.48 0.56 0.90 1.00 Al2O3 15.10 15.00 15.50 15.30 15.90 15.65 15.75 15.80 15.55 17.75 14.75 15.60 16.10 TFeO 5.11 4.71 4.37 4.69 7.75 7.62 7.60 7.04 6.57 8.19 4.71 6.61 6.90 MnO 0.08 0.07 0.07 0.07 0.10 0.10 0.10 0.15 0.14 0.10 0.09 0.10 0.09 MgO 1.56 1.44 1.28 1.40 2.29 2.23 2.42 2.64 2.61 2.33 1.60 2.05 2.12 CaO 3.17 3.08 3.25 2.88 3.66 3.73 3.87 5.89 5.28 4.37 3.24 2.64 3.77 Na2O 3.12 3.11 3.36 3.01 3.56 3.54 3.63 3.78 3.56 4.21 2.76 2.58 3.87 K2O 4.35 4.28 3.97 4.83 2.96 2.64 2.54 1.96 2.87 2.82 4.97 6.14 2.30 P2O5 0.17 0.16 0.14 0.16 0.26 0.25 0.31 0.17 0.19 0.37 0.14 0.26 0.29 SO3 0.07 0.06 0.03 0.06 0.13 0.09 0.06 0.04 0.05 0.08 0.03 0.02 0.04 NiO <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 CuO <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 CoO <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Cr2O3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <0.01 0.02 0.01 0.01 BaO 0.07 0.07 0.06 0.09 0.04 0.03 0.02 0.02 0.05 0.02 0.09 0.07 0.03 LOI 0.32 0.79 0.45 0.42 0.41 0.36 0.68 0.43 0.28 0.35 0.31 0.61 0.48 Total 100.10 99.87 100.55 100.80 100.40 99.71 99.54 99.63 99.32 100.05 99.87 100.50 100.00 Mg# 0.38 0.38 0.37 0.37 0.37 0.37 0.39 0.43 0.44 0.36 0.40 0.38 0.38 V 64 56 54 54 117 119 112 94 112 114 57 102 94 Cr 50 40 40 40 30 30 40 50 50 20 40 50 30 Ga 19.9 19.5 19.0 18.7 23.9 24.2 23.0 20.0 20.2 26.8 17.4 20.6 24.7 Rb 246 233 212 239 279 270 272 205 229 299 251 373 237 Sr 169.0 166.5 171.5 173.5 142.0 135.5 127.5 134.5 128.0 131.0 146.5 147.5 124.5 Y 30.3 28.6 25.9 27.4 48.4 55.7 33.3 28.4 41.4 51.8 23.6 29.5 40.7 Zr 246 235 202 223 242 242 335 153 246 672 175 278 421 Nb 13.9 13.1 11.6 12.4 22.9 22.9 18.8 14.4 15.0 20.7 11.5 14.9 20.1 Sn 7 7 6 5 9 9 5 6 7 6 4 4 6 Cs 21.10 19.05 16.25 12.55 24.60 23.10 24.60 15.40 24.70 20.50 11.30 16.05 18.70 Ba 598 592 530 761 310 298 142 126 446 164 778 568 206 Hf 6.1 5.9 5.2 5.7 5.8 5.8 8.5 3.7 5.9 16.6 4.1 6.9 10.3 Ta 1.4 1.4 1.3 1.4 2.8 3.1 1.2 1.1 1.1 1.3 0.9 1.0 1.6 W 2 4 3 2 1 2 2 2 3 4 1 2 1 Th 27.80 27.30 21.70 23.80 19.45 19.45 25.50 10.95 16.95 34.20 7.93 15.95 32.70 U 6.11 5.77 4.36 4.29 20.40 19.60 8.64 14.55 5.66 14.20 7.01 10.05 3.20 La 49.9 44.8 34.2 39.7 35.4 41.4 63.7 24.4 39.9 96.9 13.8 35.7 65.3 Ce 100.0 89.1 69.3 79.6 73.1 85.8 130.0 48.5 78.6 198.5 27.3 78.8 128.5 Pr 10.60 9.53 7.58 8.85 8.34 9.81 14.35 5.44 8.61 21.20 3.22 8.50 14.45 Nd 37.1 32.8 26.6 31.1 30.8 37.0 51.3 19.9 30.8 73.8 12.8 30.4 50.6 Sm 7.05 6.54 5.46 6.15 7.84 9.27 9.65 5.14 7.51 14.45 3.68 6.74 9.70 Eu 1.22 1.19 1.15 1.21 1.08 1.14 1.00 0.95 0.93 1.29 1.02 1.14 0.95 Gd 6.10 5.91 4.90 5.59 8.07 9.44 8.35 5.11 7.49 12.55 4.17 6.31 8.68 Tb 0.91 0.85 0.74 0.84 1.31 1.64 1.19 0.86 1.19 1.83 0.64 0.98 1.25 Dy 4.95 4.79 4.47 4.59 8.27 9.88 6.64 5.19 7.31 10.15 4.00 5.42 7.04 Ho 1.06 1.02 0.91 0.98 1.71 1.98 1.27 1.05 1.52 1.96 0.86 1.10 1.46 Er 3.18 2.79 2.79 2.75 4.73 5.62 3.29 2.99 4.27 5.30 2.47 3.10 4.02 Tm 0.47 0.44 0.40 0.40 0.67 0.83 0.44 0.41 0.58 0.67 0.32 0.43 0.54 Yb 2.66 2.65 2.45 2.57 4.09 4.66 2.49 2.55 3.72 3.93 2.07 2.40 3.23 Lu 0.48 0.41 0.39 0.39 0.60 0.68 0.38 0.44 0.58 0.60 0.34 0.38 0.53 ΣREE 225.68 202.82 161.34 184.72 186.01 219.15 294.05 122.93 193.01 443.13 76.69 181.40 296.25 LREE 205.87 183.96 144.29 166.61 156.56 184.42 270.00 104.33 166.35 406.14 61.82 161.28 269.50 HREE 19.81 18.86 17.05 18.11 29.45 34.73 24.05 18.60 26.66 36.99 14.87 20.12 26.75 LREE/HREE 10.39 9.75 8.46 9.20 5.32 5.31 11.23 5.61 6.24 10.98 4.16 8.02 10.07 LaN/YbN 13.46 12.13 10.01 11.08 6.21 6.37 18.35 6.86 7.69 17.69 4.78 10.67 14.50 δEu 0.57 0.59 0.68 0.63 0.42 0.37 0.34 0.57 0.38 0.29 0.80 0.53 0.32 δCe 1.07 1.06 1.06 1.04 1.04 1.04 1.05 1.03 1.04 1.07 1.00 1.11 1.03 附表 1 长石化学成分(%)
附表 1. Chemical compositions of plagioclase(%)
样号 寄主岩 暗色微粒包体 1.1-1 1.1-2 1.1-3 1.1-4 1.1-5 1.1-6 1.1-7 1.1-8 1.2-1 1.6-1 1.6-2 1.6-4 1.6-5 1.6-6 7.3 7.4 7.6 6.2 6.7-1 6.7-2 6.7-3 6.7-3 7.1 7.2 SiO2 56.15 55.24 58.36 58.16 59.02 58.99 59.48 61.18 58.47 59.62 56.26 59.08 59.48 60.72 60.79 57.77 56.69 58.40 58.00 58.39 56.49 55.47 57.69 60.93 TiO2 0.04 0.07 0.00 0.02 0.01 0.01 0.00 0.02 0.02 0.02 0.03 0.06 0.02 0.04 0.00 0.00 0.00 0.00 0.05 0.00 0.07 0.03 0.06 0.03 Al2O3 26.89 24.68 27.06 26.58 26.54 25.64 25.54 25.08 25.29 25.33 25.80 24.71 24.86 23.27 24.32 27.92 26.41 26.15 25.24 25.55 24.93 25.94 25.77 25.22 TFeO 0.20 0.07 0.04 0.10 0.05 0.08 0.14 0.14 0.06 0.13 0.14 0.16 0.05 0.09 0.07 0.11 0.10 0.11 0.11 0.04 0.11 0.05 0.05 0.17 MnO 0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.01 0.00 0.04 0.02 0.04 0.04 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.02 CaO 9.73 7.68 9.07 8.51 8.67 7.81 7.71 7.41 8.22 8.14 7.69 6.48 6.98 5.93 6.50 9.82 8.35 7.69 8.07 7.80 7.33 8.49 7.63 6.82 Na2O 5.79 6.10 6.45 6.58 6.02 5.81 5.73 6.04 6.42 5.08 7.44 7.63 6.89 7.51 6.65 6.28 6.35 6.08 6.85 7.00 7.07 6.22 7.06 7.68 K2O 0.41 0.20 0.23 0.33 0.35 0.36 0.37 0.36 0.42 0.56 0.47 0.44 0.42 0.55 0.35 0.29 0.31 0.19 0.35 0.44 0.55 0.30 0.31 0.25 Total 99.21 94.03 101.21 100.27 100.65 98.70 99.02 100.23 98.90 98.87 97.83 98.54 98.73 98.13 98.71 102.24 98.22 98.62 98.66 99.21 96.56 96.51 98.57 101.12 O=8 Si 2.55 2.62 2.58 2.60 2.62 2.66 2.67 2.71 2.64 2.68 2.59 2.68 2.68 2.75 2.73 2.54 2.59 2.64 2.63 2.63 2.63 2.58 2.62 2.69 Al 1.44 1.38 1.41 1.40 1.39 1.36 1.35 1.31 1.35 1.34 1.40 1.32 1.32 1.24 1.29 1.45 1.42 1.39 1.35 1.36 1.37 1.42 1.38 1.31 Ca 0.47 0.39 0.43 0.41 0.41 0.38 0.37 0.35 0.40 0.39 0.38 0.31 0.34 0.29 0.31 0.46 0.41 0.37 0.39 0.38 0.37 0.42 0.37 0.32 Na 0.51 0.56 0.55 0.57 0.52 0.51 0.50 0.52 0.56 0.44 0.66 0.67 0.60 0.66 0.58 0.54 0.56 0.53 0.60 0.61 0.64 0.56 0.62 0.66 K 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.03 0.02 0.02 0.02 0.01 0.02 0.03 0.03 0.02 0.02 0.01 An 47.04 40.48 43.17 40.90 43.42 41.67 41.64 39.50 40.42 45.24 35.43 31.15 35.02 29.39 34.28 45.59 41.32 40.65 38.66 37.15 35.28 42.25 36.75 32.45 Ab 50.63 58.25 55.55 57.24 54.53 56.07 55.98 58.23 57.11 51.05 61.99 66.35 62.49 67.36 63.51 52.79 56.84 58.17 59.36 60.36 61.60 56.00 61.48 66.14 Or 2.33 1.27 1.28 1.86 2.06 2.26 2.38 2.28 2.47 3.71 2.58 2.50 2.49 3.25 2.20 1.63 1.84 1.18 1.98 2.49 3.12 1.75 1.77 1.40 注:TFeO为全铁含量(下同). 附表 2 辉石化学成分(%)
附表 2. Chemical compositions of pyroxene (%)
样号 寄主岩 暗色微粒包体 1.4 1.5 1.8-1 1.8-2 7.7 3.1 3.2 3.4 3.4-1 3.4-2 3.4-3 6.4 6.5-1 6.5-2 6.8 7.2 7.5 SiO2 50.99 50.14 50.63 53.13 51.82 49.53 51.42 53.84 40.85 53.26 47.47 51.36 51.06 50.30 49.99 49.84 48.90 TiO2 0.07 0.04 0.11 0.12 0.00 0.07 0.08 0.01 17.69 0.26 0.27 0.10 0.04 0.08 0.07 0.02 0.02 Al2O3 0.60 3.16 1.08 0.84 0.91 6.97 1.51 2.16 1.43 1.66 2.84 0.61 0.76 1.40 0.44 1.02 0.57 TFeO 16.51 14.60 14.83 14.48 14.20 13.49 12.48 10.29 8.73 9.73 11.74 14.28 15.26 13.17 15.75 14.29 16.44 Cr2O3 0.00 0.01 0.03 0.00 0.03 0.01 0.02 0.05 0.04 0.08 0.03 0.05 0.09 0.00 0.01 0.09 0.02 MnO 1.02 0.98 0.89 0.86 0.82 0.73 0.67 0.50 0.31 0.53 0.52 0.90 0.83 0.89 0.84 0.85 1.12 MgO 8.09 8.58 8.90 9.03 8.76 9.79 10.78 10.88 7.00 11.42 11.22 9.87 9.76 9.80 8.32 8.62 8.44 CaO 22.81 22.45 22.10 21.84 22.43 20.42 21.80 21.06 22.38 22.57 20.61 22.73 21.66 21.64 23.07 22.39 21.46 Na2O 0.37 0.35 0.59 0.47 0.32 0.31 0.37 0.85 0.26 0.49 0.54 0.29 0.33 0.37 0.17 0.35 0.39 Total 100.46 100.31 99.15 100.76 99.29 101.31 99.12 99.63 98.69 100.01 95.24 100.19 99.78 97.64 98.66 97.46 97.35 O=6 Si 1.978 1.926 1.972 2.017 2.003 1.855 1.972 2.016 1.601 1.995 1.899 1.975 1.974 1.971 1.973 1.974 1.963 Al(ⅳ) 0.022 0.074 0.028 0.000 0.000 0.145 0.028 0.000 0.522 0.005 0.101 0.025 0.026 0.029 0.002 0.026 0.001 Al(ⅵ) 0.005 0.069 0.022 0.037 0.041 0.163 0.040 0.096 0.000 0.068 0.033 0.002 0.009 0.036 0.000 0.022 0.000 Ti 0.002 0.001 0.003 0.004 0.000 0.002 0.002 0.000 0.522 0.007 0.008 0.003 0.001 0.002 0.002 0.001 0.001 Cr 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.002 0.001 0.002 0.003 0.000 0.000 0.003 0.001 Fe3+ 0.060 0.041 0.065 0.000 0.000 0.000 0.014 0.000 0.000 0.000 0.138 0.056 0.055 0.024 0.064 0.040 0.114 Fe2+ 0.473 0.426 0.415 0.462 0.460 0.423 0.386 0.325 0.297 0.307 0.250 0.401 0.437 0.406 0.453 0.432 0.433 Mn 0.034 0.032 0.029 0.028 0.027 0.023 0.022 0.016 0.010 0.017 0.018 0.029 0.027 0.029 0.028 0.028 0.038 Mg 0.468 0.492 0.517 0.511 0.505 0.547 0.616 0.607 0.409 0.638 0.669 0.566 0.563 0.572 0.490 0.509 0.505 Ca 0.948 0.924 0.922 0.888 0.929 0.820 0.896 0.845 0.940 0.905 0.883 0.936 0.897 0.908 0.975 0.951 0.923 Na 0.028 0.026 0.045 0.034 0.024 0.022 0.027 0.062 0.020 0.036 0.042 0.022 0.025 0.028 0.013 0.027 0.030 Wo 47.16 47.60 46.27 46.20 47.75 44.68 45.68 45.55 56.07 47.60 44.16 46.59 44.79 46.14 48.21 47.85 45.17 En 23.27 25.32 25.92 26.56 25.96 29.80 31.44 32.73 24.40 33.52 33.44 28.14 28.09 29.06 24.19 25.61 24.72 Fs 28.18 25.72 25.57 25.46 25.04 24.30 21.49 18.39 18.33 17.00 20.29 24.20 25.88 23.37 26.94 25.18 28.63 Ac 1.38 1.35 2.24 1.78 1.25 1.21 1.39 3.33 1.20 1.87 2.11 1.08 1.24 1.42 0.65 1.36 1.48 注:Al(ⅳ).四次配位铝;Al(ⅵ).六次配位铝. 附表 3 黑云母化学成分(%)
附表 3. Chemical compositions of biotite (%)
样号 寄主岩 暗色微粒包体 1.3 1.7 1.8 3.3 4.1 6.3 SiO2 34.798 37.204 36.198 36.768 35.134 34.483 TiO2 3.966 4.099 3.686 3.560 3.909 4.166 Al2O3 13.649 13.282 13.158 12.803 12.453 12.887 TFeO 23.188 23.097 22.881 20.370 23.842 22.568 MnO 0.308 0.281 0.334 0.295 0.328 0.291 MgO 8.247 7.916 7.305 9.884 8.059 8.051 CaO 0.087 0.058 0.109 0.071 0.055 0.063 Na2O 0.269 0.274 0.451 0.271 0.339 0.169 K2O 8.887 9.614 9.267 9.158 9.464 9.226 Total 93.400 95.825 93.389 93.181 93.583 91.904 O=11 Si 2.780 5 2.884 6 2.885 8 2.894 6 2.824 7 2.804 4 AlⅣ 1.219 5 1.115 4 1.114 2 1.105 4 1.175 3 1.195 6 AlⅥ 0.065 9 0.098 3 0.122 1 0.082 5 0.004 7 0.039 6 Ti 0.238 4 0.239 1 0.221 1 0.210 8 0.236 4 0.254 9 Fe3+ 0.187 8 0.234 5 0.219 0 0.218 8 0.139 3 0.185 0 Fe2+ 1.361 7 1.263 2 1.306 6 1.122 3 1.463 7 1.350 0 Mn 0.020 8 0.018 5 0.022 6 0.019 7 0.022 3 0.020 0 Mg 0.982 4 0.915 0 0.868 2 1.160 0 0.965 9 0.976 1 Ca 0.007 4 0.004 8 0.009 3 0.006 0 0.004 7 0.005 5 Na 0.041 7 0.041 2 0.069 7 0.041 4 0.052 8 0.026 6 K 0.905 9 0.951 0 0.942 5 0.919 8 0.970 7 0.957 2 Total 7.812 2 7.765 5 7.781 0 7.781 2 7.860 7 7.815 0 -
Barbarin, B., 1999.A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments.Lithos, 46(3):605-626.doi: 10.1016/s0024-4937(98)00085-1 Barbarin, B., 2005.Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California:Nature, Origin, and Relations with the Hosts.Lithos, 80(1-4):155-177.doi: 10.1016/j.lithos.2004.05.010 Baxter, S., Feely, M., 2002.Magma Mixing and Mingling Textures in Granitoids:Examples from the Galway Granite, Connemara, Ireland.Mineralogy and Petrology, 76(1):63-74. doi: 10.1007/s007100200032 Castro, A., Moreno-Ventas, I., de la Rosa, J.D., 1991.H-Type (Hybrid) Granitoids:A Proposed Revision of the Granite-Type Classification and Nomenclature.Earth-Science Reviews, 31(3-4):237-253.doi: 10.1016/0012-8252(91)90020-g Chen, G.N., 1998.About the Genesis of Enclaves in Granites and the Emplacement of Batholiths:Discussion with Professor Du Yangsong.Geological Journal of China Universities, 4(3):346-349 (in Chinese). http://www.sciencedirect.com/science/article/pii/0743954788900220 Chen, G.N., Grapes, R., 2003.An In-Situ Melting Model of Granite Formation:Geological Evidence from Southeast China.International Geology Review, 45(7):611-622.doi: 10.2747/0020-6814.45.7.611 Foster, M.D., 1960.Interpretation of the Composition of Trioctahedral Micas:A Study of the Compositional and Layer Charge Relations of Phlogopites, Biotites, Siderophyllites and Lepidomelanes Estones Originated.US Government Printing Office, 11-49. http://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=505682 Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001.A Geochemical Classification for Granitic Rocks.Journal of Petrology, 42(11):2033-2048.doi: 10.1093/petrology/42.11.2033 Fu, J.M., Ma, C.Q., Xie, C.F., et al., 2004.SHRIMP U-Pb Zircon Dating of the Jiuyishan Composite Granite in Hunan and Its Geological Significance.Geotectonica et Metallogenia, 28(4):370-378(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200404002.htm Fu, Q., Ge, W.S., Wen, C.S., et al., 2011.Geochemistry and Genesis of Michang Granites and Their Dark Microgranular Enclaves in Guangxi.Acta Geoscientica Sinica, 32(3):293-303 (in Chinese with English abstract). http://www.oalib.com/paper/1560906 Gu, S.Y., Hua, R.M., Qi, H.W., 2006.Study on Zircon LA-ICP-MS U-Pb Dating and Sr-Nd Isotope of the Guposhan Granite in Guangxi.Acta Geologica Sinica, 80(4):543-553 (in Chinese with English abstract). https://www.researchgate.net/publication/282736929_Study_on_Zircon_LA-ICP-MS_U-Pb_dating_and_Sr-Nd_isotope_of_the_Guposhan_granite_in_Guangxi Honarmand, M., Omran, N.R., Neubauer, F., et al., 2015.Geochemistry of Enclaves and Host Granitoids from the Kashan Granitoid Complex, Central Iran:Implications for Enclave Generation by Interaction of Cogenetic Magmas.Journal of Earth Science, 26(5):626-647.doi: 10.1007/s12583-015-0584-1 Irving, A.J., Frey, F.A., 1984.Trace Element Abundances in Megacrysts and Their Host Basalts:Constraints on Partition Coefficients and Megacryst Genesis.Geochimica et Cosmochimica Acta, 48(6):1201-1221.doi: 10.1016/0016-7037(84)90056-5 Kinzler, R.J., 1997.Melting of Mantle Peridotite at Pressures Approaching the Spinel to Garnet Transition:Application to Mid-Ocean Ridge Basalt Petrogenesis.Journal of Geophysical Research:Solid Earth, 102(B1):853-874. doi: 10.1029/96JB00988 Kocak, K., 2006.Hybridization of Mafic Microgranular Enclaves:Mineral and Whole-Rock Chemistry Evidence from the Karamadaz Granitoid, Central Turkey.International Journal of Earth Sciences, 95(4):587-607.doi: 10.1007/s00531-006-0090-x Kocak, K., Zedef, V., Kansun, G., 2011.Magma Mixing/Mingling in the Eocene Horoz (Nigde) Granitoids, Central Southern Turkey:Evidence from Mafic Microgranular Enclaves.Mineralogy and Petrology, 103(1-4):149-167.doi: 10.1007/s00710-011-0165-7 Lai, S.C., Qin, J.F., Li, Y.F., 2005.Trace Element Geochemistry and Classification of the Clinopyroxene in Cenozoic Trachybasalt from North Qiangtang Area, Tibetan Plateau.Journal of Northwest University(Natural Science Edition), 35(5):611-616(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDZ200505027.htm Li, C.N., Xue, C.S., Liao, Q.A., et al., 1997.Petrology of Gangbian Magma-Mixed Complex Body and Their Genesis, Hengfeng County, Jiangxi Province.Earth Science, 22(3):261-267 (in Chinese with English abstract). https://www.researchgate.net/publication/284636282_The_age_of_the_Gaojiacun_mafic-ultramafic_intrusive_complex_in_the_Yanbian_area_Sichuan_Province_Geochro-nological_constraints_by_U-Pb_dating_of_single_zircon_grains_and_40Ar39Ar_dating_of_hornblende Liang, X.Q., Li, X.H., Qiu, Y.X., et al., 2005.Indosinian Collisional Orogeny:Evidence from Structural and Sedimentary Geology in Shiwandashan Basin, South China.Geotectonica et Metallogenia, 29(1):99-112(in Chinese with English abstract). https://www.researchgate.net/publication/305387045_Indosinian_collisional_orogeny_Evidence_from_structural_and_sedimentary_geology_in_Shiwandashan_basin_South_China Liu, K., Mao, J.R., Zhao, X.L., et al., 2014.Geological and Geochemical Characteristics and Genetic Significance of the Ziyunshan Pluton in Hunan Province.Acta Geologica Sinica, 88(2):208-227(in Chinese with English abstract). doi: 10.1007/s11631-009-0053-6 Liu, Y., Li, T.D., Xiao, Q.H., et al., 2010.New Chronology of the Ningyuan Alkali Basalt in Southern Hunan, China:Evidence from LA-ICP-MS Zircon U-Pb Dating.Geological Bulletin of China, 29(6):833-841(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201006006.htm Liu, Z.P., Li, J.W., 2012.Magma Mixing Genesis of the Jinchang Quartz Diorite in West Qinling Orogen, Western China:Petrographical and Geochronological Constraints and Their Tectonic Implications.Acta Geologica Sinica, 86(7):1077-1090(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201207004.htm Ma, C.Q., Wang, R.J., Qiu, J.X., 1992.Enclaves as Indicators of the Origin of Granitoid Magma and Repeater Magma Mingling:An Example from the Zhoukoudian Intrusion, Beijing.Geological Review, 38(2):109-119 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199202001.htm Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.doi:10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224.doi: 10.1016/0012-8252(94)90029-9 Nardi, L.V.S., de Lima, E.F.D., 2000.Hybridisation of Mafic Microgranular Enclaves in the Lavras Granite Complex, Southern Brazil.Journal of South American Earth Sciences, 13(1-2):67-78.doi: 10.1016/s0895-9811(00)00006-7 Nelson, S.T., Montana, A.M., 1992.Sieve-Textured Plagioclase in Volcanic Rocks Produced by Rapid Decompression.American Mineralogist, 77:1242-1249. http://ammin.geoscienceworld.org/content/77/11-12/1242.citation Patino Douce, A.E., 1999.What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1):55-75.doi: 10.1144/gsl.sp.1999.168.01.05 Peng, Z.L., Grapes, R., Zhuang, W.M., et al., 2011.Genesis of Mafic Microgranular Enclaves in Granites in SE China.Earth Science Frontiers, 18(1):82-88 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201101014.htm Pietranik, A., Koepke, J., 2014.Plagioclase Transfer from a Host Granodiorite to Mafic Microgranular Enclaves:Diverse Records of Magma Mixing.Mineralogy and Petrology, 108(5):681-694.doi: 10.1007/s00710-014-0326-6 Qiu, J.X., Liao, Q.A., 1996.Petrogenesis and Cpx Mineralchemistry of Cenozoic Basalts from Zhejiang and Fujian of Eastern China.Volcanology & Mineral Resources, 17(1-2):16-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW198701006.htm Qiu, J.X., Zeng, G.C., 1987.The Main Characteristics and Petrological Significance of Low Pressure Clinopyroxenes in the Cenozoic Basalts from Eastern China.Acta Petrologica Sinica, 3(4):1-9 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=19870431 Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.Treatise on Geochemistry, 33:1-64.doi: 10.1016/b0-08-043751-6/03016-4 Stone, D., 2000.Temperature and Pressure Variations in Suites of Archean Felsic Plutonic Rocks, Berens River Area, Northwest Superior Province, Ontario, Canada.The Canadian Mineralogist, 38(2):455-470. doi: 10.2113/gscanmin.38.2.455 Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44.doi: 10.1016/s0024-4937(98)00024-3 Tröger, W.E., Taborszky, F., Trochim, H.D., 1969.Optische Bestimmung der Gesteinsbildenden Minerale.Schweizerbart, Stuttgart, 822. http://ci.nii.ac.jp/ncid/BA89473731 Vernon, R.H., Etheridge, M.A., Wall, V.J., 1988.Shape and Microstructure of Microgranitoid Enclaves:Indicators of Magma Mingling and Flow.Lithos, 22(1):1-11.doi: 10.1016/0024-4937(88)90024-2 Wall, V.J., Clemens, J.D., Clarke, D.B., 1987.Models for Granitoid Evolution and Source Compositions.The Journal of Geology, 95(6):731-749.doi: 10.1086/629174 Wang, K.X., Chen, W.F., Chen, P.R., et al., 2015.Petrogenesis and Geodynamic Implications of the Xiema and Ziyunshan Plutons in Hunan Province, South China.Journal of Asian Earth Sciences, 111:919-935.doi: 10.1016/j.jseaes.2015.08.017 Wang, Y.J., Fan, W.M., Sun, M., et al., 2007.Geochronological, Geochemical and Geothermal Constraints on Petrogenesis of the Indosinian Peraluminous Granites in the South China Block:A Case Study in the Hunan Province.Lithos, 96(3-4):475-502.doi: 10.1016/j.lithos.2006.11.010 Wang, Y., 2008.Origin of the Permian Baimazhai Magmatic Ni-Cu-(PGE) Sulfide Deposits, Yunnan:Implications for the Relationship of Crustal Contamination and Mineralization.Bulletin of Mineralogy, Petrology and Geochemistry, 27(4):332-343 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200804003.htm Weaver, B.L., Tarney, J., 1984.Empirical Approach to Estimating the Composition of the Continental Crust.Nature, 310(5978):575-577.doi: 10.1038/310575a0 Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419.doi: 10.1007/bf00402202 Wones, D.R., Eugster, H.P., 1965.Stability of Biotite—Experiment Theory and Application.American Mineralogist, 50(9):1228. https://arizona.pure.elsevier.com/en/publications/staurolite-stability-and-related-parageneses-theory-experiments-a Wyllie, P.J., Cox, K.G., Biggar, G.M., 1962.The Habit of Apatite in Synthetic Systems and Igneous Rocks.Journal of Petrology, 3(2):238-243.doi: 10.1093/petrology/3.2.238 Xiao, Y.L., Sun, W.D., Hoefs, J., et al., 2006.Making Continental Crust through Slab Melting:Constraints from Niobium-Tantalum Fractionation in UHP Metamorphic Rutile.Geochimica et Cosmochimica Acta, 70(18):4770-4782.doi: 10.1016/j.gca.2006.07.010 Xie, Y.C., Lu, J.J., Ma, D.S., et al., 2013.Origin of Granodiorite Porphyry and Mafic Microgranular Enclave in the Baoshan Pb-Zn Polymetallic Deposit, Southern Hunan Province:Zircon U-Pb Chronological, Geochemical and Sr-Nd-Hf Isotopic Constraints.Acta Petrologica Sinica, 29(12):4186-4214(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201312010.htm Yang, G.X., Li, Y.J., Si, G.H., et al., 2010.LA-ICP-MS Zircon U-Pb Dating of Kubusunan Granodiorite and the Enclaves from Kalamaili Area in Eastern Junggar, Xinjiang, and Its Geological Implications.Earth Science, 35(4):597-610(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201004013.htm Yang, T.L., Jiang, S.Y., 2015.Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs) form Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province:Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes.Earth Science, 40(12):2002-2020 (in Chinese with English abstract). https://www.researchgate.net/publication/290496884_Petrogenesis_of_intermediate-felsic_intrusive_rocks_and_mafic_microgranular_enclaves_MMEs_from_Dongleiwan_deposit_in_Jiurui_Ore_District_Jiangxi_Province_Evidence_from_zircon_U-Pb_geochronology_geoche Zeng, R.Y., Lai, J.Q., Mao, X.C., et al., 2015.Relationship between Two Kinds of Parental Magma of Main Orebodies during Magma Evolution in Jinchuan Cu-Ni(PGE) Sulfide Deposit, China.The Chinese Journal of Nonferrous Metals, 25(3):761-775 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgysjsxb201503029 Zeng, R.Y., Lai, J.Q., Mao, X.C., et al., 2016.Geochemistry, Zircon U-Pb Dating and Hf Isotopies Composition of Paleozoic Granitoids in Jinchuan, NW China:Constraints on Their Petrogenesis, Source Characteristics and Tectonic Implication.Journal of Asian Earth Sciences, 121:20-33.doi: 10.1016/j.jseaes.2016.02.009 Zhang, B.T., Ling, H.F., Wu, J.Q., 2013.New Thinking, Method and Calculated Examples of High Temperature Thermochronology of Granite Plutons.Geological Journal of China Universities, 19(3):385-402(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201303001.htm Zhang, J.Y., Ma, C.Q., Wang, R.J., et al., 2013.Mineralogical, Geochronological and Geochemical Characteristics of Zhoukoudian Intrusion and Their Magmatic Source and Evolution.Earth Science, 38(1):68-86(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201301011.htm Zheng, X.Z., Ye, D.N., 1978.A Pseudo-High Pressure Effect under the Conditions of Super-Cooling and Dise Quilibrium.Science in China, (4):442-451 (in Chinese). https://www.researchgate.net/publication/241389682_Electrical_conductivity_of_brucite_under_crustal_pressure_and_temperature_conditions Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015.Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens.Science in China (Series D), 58(7):1045-1069.doi: 10.1007/s11430-015-5097-3 Zorpi, M.J., Coulon, C., Orsini, J.B., et al., 1989.Magma Mingling, Zoning and Emplacement in Calc-Alkaline Granitoid Plutons.Tectonophysics, 157(4):315-329.doi: 10.1016/0040-1951(89)90147-9 陈国能, 1998.关于花岗岩岩石包体的成因及岩基的定位问题——与杜杨松教授讨论.高校地质学报, 4(3): 346-349. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX803.013.htm 付建明, 马昌前, 谢才富, 等, 2004.湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义.大地构造与成矿学, 28(4): 370-378. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200404002.htm 付强, 葛文胜, 温长顺, 等, 2011.广西米场花岗岩及其暗色微粒包体的地球化学特征和成因分析.地球学报, 32(3): 293-303. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201103006.htm 顾晟彦, 华仁民, 戚华文, 2006.广西姑婆山花岗岩单颗粒锆石LA-ICP-MS U-Pb定年及全岩Sr-Nd同位素研究.地质学报, 80(4): 543-553. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200604015.htm 赖绍聪, 秦江锋, 李永飞, 2005.青藏北羌塘新第三纪玄武岩单斜辉石地球化学.西北大学学报(自然科学版), 35(5): 611-616. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200505027.htm 李昌年, 薛重生, 廖群安, 等, 1997.江西横峰县港边岩浆混合杂岩体岩石学研究及其成因探讨.地球科学, 22(3): 261-267. http://earth-science.net/WebPage/Article.aspx?id=499 梁新权, 李献华, 丘元禧, 等, 2005.华南印支期碰撞造山——十万大山盆地构造和沉积学证据.大地构造与成矿学, 29(1): 99-112. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK20050100D.htm 刘凯, 毛建仁, 赵希林, 等, 2014.湖南紫云山岩体的地质地球化学特征及其成因意义.地质学报, 88(2): 208-227. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201402005.htm 刘勇, 李廷栋, 肖庆辉, 等, 2010.湘南宁远地区碱性玄武岩形成时代的新证据:锆石LA-ICP-MS U-Pb定年.地质通报, 29(6): 833-841. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201006006.htm 刘志鹏, 李建威, 2012.西秦岭金厂石英闪长岩的岩浆混合成因:岩相学和锆石U-Pb年代学证据及其构造意义.地质学报, 86(7): 1077-1090. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201207004.htm 马昌前, 王人镜, 邱家骧, 1992.花岗质岩浆起源和多次岩浆混合的标志:包体——以北京周口店岩体为例.地质论评, 38(2): 109-119. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199202001.htm 彭卓伦, Rodney, G., 庄文明, 等, 2011.华南花岗岩暗色微粒包体成因研究.地学前缘, 18(1): 82-88. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201101014.htm 邱家骧, 廖群安, 1996.浙闽新生代玄武岩的岩石成因学与Cpx矿物化学.火山地质与矿产, 17 (1-2): 16-25. http://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ1996Z1001.htm 邱家骧, 曾广策, 1987.中国东部新生代玄武岩中低压单斜辉石的矿物化学及岩石学意义.岩石学报, 3(4): 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198704000.htm 王焰, 2008.云南二叠纪白马寨铜镍硫化物矿床的成因:地壳混染与矿化的关系.矿物岩石地球化学通报, 27(4): 332-343. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200804003.htm 谢银财, 陆建军, 马东升, 等, 2013.湘南宝山铅锌多金属矿区花岗闪长斑岩及其暗色包体成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素制约.岩石学报, 29(12): 4186-4214. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312010.htm 杨高学, 李永军, 司国辉, 等, 2010.东准库布苏南岩体和包体的LA-ICP-MS锆石U-Pb测年及地质意义.地球科学, 35(4): 597-610. http://earth-science.net/WebPage/Article.aspx?id=2003 杨堂礼, 蒋少涌, 2015.江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石U-Pb年代学、地球化学与Sr-Nd-Pb-Hf同位素制约.地球科学, 40(12): 2002-2020. http://earth-science.net/WebPage/Article.aspx?id=3205 曾认宇, 赖健清, 毛先成, 等, 2015.金川铜镍硫化物矿床两个主要矿体的母岩浆在岩浆演化过程中的关系.中国有色金属学报, 25(3): 761-775. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201503029.htm 章邦桐, 凌洪飞, 吴俊奇, 2013.花岗岩体高温热年代学研究的新思路、方法及计算实例.高校地质学报, 19(3): 385-402. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201303001.htm 张金阳, 马昌前, 王人镜, 等, 2013.周口店岩体矿物学、年代学、地球化学特征及其岩浆起源与演化.地球科学, 38(1): 68-86. http://earth-science.net/WebPage/Article.aspx?id=2345 郑学正, 叶大年, 1978.一种过冷却结晶效应——不平衡状态下的假高压效应.中国科学(D辑), (4): 442-451. http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197804007.htm