• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    深海热液金属硫化物矿电性结构

    席振铢 李瑞雪 宋刚 周胜

    席振铢, 李瑞雪, 宋刚, 周胜, 2016. 深海热液金属硫化物矿电性结构. 地球科学, 41(8): 1395-1401. doi: 10.3799/dqkx.2016.110
    引用本文: 席振铢, 李瑞雪, 宋刚, 周胜, 2016. 深海热液金属硫化物矿电性结构. 地球科学, 41(8): 1395-1401. doi: 10.3799/dqkx.2016.110
    Xi Zhenzhu, Li Ruixue, Song Gang, Zhou Sheng, 2016. Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits. Earth Science, 41(8): 1395-1401. doi: 10.3799/dqkx.2016.110
    Citation: Xi Zhenzhu, Li Ruixue, Song Gang, Zhou Sheng, 2016. Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits. Earth Science, 41(8): 1395-1401. doi: 10.3799/dqkx.2016.110

    深海热液金属硫化物矿电性结构

    doi: 10.3799/dqkx.2016.110
    基金项目: 

    深圳市战略新兴产业发展专项资金项目 CXZZ20120618165608947

    大洋“十二五”重大项目 DY125-11-R-03

    国家自然科学基金资助项目 41304090

    详细信息
      作者简介:

      席振铢(1966-),男,教授,主要从事瞬变电磁方法与技术相关教学工作及研究.E-mail: xizhenzhu@163.com

    • 中图分类号: P319.3

    Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits

    • 摘要: 深海热液金属硫化物矿位于水深数千米的大洋洋底,其形态、规模及电性参数难为人知,迄今尚未有由实测数据推导其电性结构的研究.依托于“大洋一号”,在大西洋洋中脊、西南印度洋洋中脊实施了多次深海热液金属硫化物矿探测试验,实地采集热液金属硫化物矿瞬变电磁响应数据,并对试验数据进行反演分析.分析表明:大西洋TAG(trans-Atlantic geotraverse)热液区及西南印度洋49°4′E,37°5′S热液区内,深海热液金属硫化物矿形似生长于洋壳内的“蘑菇”,矿体呈透镜状或似层状结构,分布于热液喷口的卤水池内,电阻率约为0.1 Ω·m,规模为50~250 m,厚度范围为20~50 m;热液烟囱直径为10~50 m,周围岩石发生热液蚀变,蚀变岩石电阻率在0.2~0.5 Ω·m,以热液通道为中心呈圈层状变化.依据深海热液金属硫化物矿的形态特征及电性参数,矿体的电性结构模型可简化为T型异常体.

       

    • 图  1  海洋瞬变电磁测线TEM06

      Fig.  1.  Marine transient electromagnetic line TEM06

      图  2  TEM06测线AB段的数据处理

      a.瞬变电磁响应多测道剖面;b.视电阻率剖面

      Fig.  2.  Data process of section AB of line TEM06

      图  3  海洋瞬变电磁测线TEM01

      Fig.  3.  Marine transient electromagnetic line TEM01

      图  4  TEM01测线CD段的数据处理

      a.瞬变电磁响应多测道剖面;b.视电阻率剖面

      Fig.  4.  Data process of section CD of line TEM01

      图  5  深海热液金属硫化物矿电性结构模型

      Fig.  5.  Electrical structure model of deep-sea hydrothermal metallic sulfide deposits

      图  6  深海热液金属硫化物矿多测道响应剖面

      Fig.  6.  Multichannel profile of deep-sea hydrothermal metallic sulfide deposits

    • Cheesman, S.J., Edwards, R.N., Chave, A.D., 1987.On the Theory of Sea-Floor Conductivity Mapping Using Transient Electromagnetic Systems.Geophysics, 52(2):204-217.doi: 10.1190/1.1442296
      Cheesman, S.J., Edwards, R.N., Law, L.K., 1990.A Test of a Short-Baseline Sea-Floor Transient Electromagnetic System.Geophysical Journal International, 103(2):431-437.doi: 10.1111/j.1365-246X.1990.tb01782.x
      Constable, S., Srnka, L.J., 2007.An Introduction to Marine Controlled-Source Electromagnetic Methods for Hydrocarbon Exploration.Geophysics, 72(2):WA3-WA12.doi: 10.1190/1.2432483
      Cox, C.S., 1981.On the Electrical Conductivity of the Oceanic Lithosphere.Physics of the Earth and Planetary Interiors, 25(3):196-201.doi: 10.1016/0031-9201(81)90061-3
      Deng, X.G., 2007.The Deposits and Mineral Compositions of Hydrothermal Sulphides in Mid-Ocean Ridge.Geological Research of South China Sea, 54-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHDZ200700009.htm
      Edwards, R.N., Law, L.K., DeLaurier, J.M., 1981.On Measuring the Electrical Conductivity of the Oceanic Crust by a Modified Magnetometric Resistivity Method.Journal of Geophysical Research, 86(B12):11609.doi: 10.1029/JB086iB12p11609
      Eidesmo, T., Ellingsrud, S., Macgregor, L.M., et al., 2002.Sea Bed Logging (SBL), a New Method for Remote and Direct Identification of Hydrocarbon Filled Layers in Deepwater Areas.First Break, 20(20):144-152. https://www.mendeley.com/research-papers/sea-bed-logging-sbl-new-method-remote-direct-identification-hydrocarbon-filled-layers-deepwater-area/
      Ellingsrud, S., Eidesmo, T., Johansen, S., et al., 2002.Remote Sensing of Hydrocarbon Layers by Seabed Logging (SBL):Results from a Cruise Offshore Angola.The Leading Edge, 21(10):972-982.doi: 10.1190/1.1518433
      Evans, R.L., Everett, M.E., 1994.Discrimination of Hydrothermal Mound Structures Using Transient Electromagnetic Methods.Geophysical Research Letters, 21(6):501-504.doi: 10.1029/94GL00418
      Key, K., Constable, S., 2002.Broadband Marine MT Exploration of the East Pacific Rise at 9°50′N.Geophysical Research Letters, 29(22):11-1-11-4.doi: 10.1029/2002GL016035
      Liu, C.S., Lin, J., 2006.Transient Electromagnetic Response Modeling of Magnetic Source on Seafloor and the Analysis of Seawater Effect.Chinese Journal of Geophysics, 49(6):1891-1898 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200606038.htm
      Myer, D.G., Constable, S., Key, K., 2006.Electromagnetic Exploration of the Loihi Seamount.American Geophysical Union, San Francisco.
      Swidinsky, A., Hölz, S., Jegen, M., 2012.On Mapping Sea Floor Mineral Deposits with Central Loop Transient Electromagnetics.Geophysics, 77(3):171-184.doi: 10.1190/geo2011-0242.1
      Tada, N., Seama, N., Goto, T.N., et al., 2005.1-D Resistivity Structures of the Oceanic Crust around the Hydrothermal Circulation System in the Central Mariana Through Using Magnetometric Resistivity Method.Earth, Planets and Space, 57(7):673-677.doi: 10.1186/BF03351846
      Wetheim, G.K., 1954.Studies of the Electric Potential between Key West, Florida, and Havana, Cuba.Earth and Space Science News, 35(6):872-882.doi: 10.1029/TR035i006p00872
      Ye, J., 2010.Mineralization of Polymetallic Sulfides on Ultra-Slow Spreading Southwest Indian Ridge at 49.6°E (Dissertation).The Institute of Oceanology, Chinese Academy of Science, Qingdao (in Chinese with English abstract).
      Zhang, F.Y., Zhang, W.Y., Zhu, K.C., et al., 2011.Resource Estimation of Co-Rich Crusts of Seamounts in Pacific.Earth Science, 36(1):1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201101002.htm
      Zhou, S., Xi, Z.Z., Song, G., et al., 2012.Response of the Towed Transient Electromagnetic Sounding on Deep Seafloor.Journal of Central South University (Sicence and Technology), 43(2):605-610 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGD201202034.htm
      Zhu, K.C., Ren, J.B., Wang, H.F., et al., 2015.Enrichment Mechanism of REY and Geochemical Characteristics of REY-Rich Clay from the Central Pacific.Earth Science, 40(6):1052-1060 (in Chinese with English abstract).
      Богданов, Ю.A., 2007.Modern Ocean Sulphide Deposits Category.Translated by Chen B.Y., Marine Geology, (4):18-30 (in Chinese).
      邓希光, 2007.大洋中脊热液硫化物矿床分布及矿物组成.南海地质研究, 54-64. http://www.cnki.com.cn/Article/CJFDTOTAL-NHDZ200700009.htm
      刘长胜, 林君, 2006.海底表面磁源瞬变响应建模及海水影响分析.地球物理学报, 49(6): 1891-1898. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200606038.htm
      叶俊, 2010. 西南印度洋超慢速扩张脊49. 6°E热液区多金属硫化物成矿作用研究(博士学位论文). 青岛: 中国科学院海洋研究所. http://cdmd.cnki.com.cn/Article/CDMD-80068-1012411037.htm
      张富元, 章伟艳, 朱克超, 等, 2011.太平洋海山钴结壳资源量估算.地球科学, 36(1): 1-11. http://earth-science.net/WebPage/Article.aspx?id=2059
      周胜, 席振铢, 宋刚, 等, 2012.深海拖曳式瞬变电磁的响应规律.中南大学学报(自然科学版), 43(2): 605-610. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201202034.htm
      朱克超, 任江波, 王海峰, 等, 2015.太平洋中部富REY深海粘土的地球化学特征及REY富集机制.地球科学, 40(6): 1052-1060. http://earth-science.net/WebPage/Article.aspx?id=3106
      尤·阿·博格达诺夫, 2007. 大洋现代硫化物矿藏分类. 陈邦彦, 译. 海洋地质, (4): 18-30. http://www.cqvip.com/Main/Detail.aspx?id=26267471
    • 加载中
    图(6)
    计量
    • 文章访问数:  5697
    • HTML全文浏览量:  2385
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-02-16
    • 刊出日期:  2016-08-15

    目录

      /

      返回文章
      返回