Petrogeochemistry, Geochronology and Hf Isotopes of the Monzogranite from Xinxian, Southern Region in Henan Province
-
摘要: 新县岩体位于秦岭-大别造山带上,对其进行系统的岩石地球化学探讨有助于加深对秦岭-大别造山带中生代构造-岩浆演化及地球动力学背景的认识.岩石地球化学分析结果显示,SiO2含量为74.94%~78.16%,K2O含量为3.87%~5.86%,Na2O含量为3.82%~4.24%,Al2O3含量为12.38%~13.57%,具有高钾钙碱性和过铝质(A/CNK=1.05~1.11) 特征.岩石稀土总量较低(42.67×10-6~110.45×10-6),轻稀土元素相对富集,重稀土元素相对亏损,具有Eu的负异常,岩体富集Rb、U、Hf和Y,亏损Ba、Nb、Ta和Ti,显示出Ⅰ型高分异花岗岩的特点.3个期次岩石的U-Pb年龄分别为153.4±1.1 Ma、146.4±1.6 Ma和131.6±1.8 Ma.锆石Hf同位素分析结果表明,新县岩体的εHf(t)值为-24.5~-20.3,位于地幔演化线之下,tDM2值为2.68~2.93 Ga,指示其源于扬子板块北缘的古老地壳,其组成类似于扬子板块北缘TTG型岩浆岩.结合区域地质背景,新县岩体形成于扬子陆块与华北陆块碰撞造山后的陆内伸展环境,对应的地球动力学背景为晚侏罗世-早白垩世地壳从挤压收缩向区域性伸展的构造体制大转换过程和大规模的地壳伸展和岩石圈减薄时期.Abstract: Xinxian monzogranites are located at the Qinling-Dabie orogenic belt, and a systematic geochemical study can facilitate further studies on the Mesozoic tectono-magmatic evolution and the geodynamics background of Qinling-Dabie orogenic belt. This paper presents geochemistry, zircon U-Pb geochronology, and Hf-isotopic data of the rocks, with the aim of constraining their petrogenesis, sources and tectonic implications. The geochemical analysis shows that Xinxian monzogranites are characterized by SiO2=74.94%-78.16%, K2O=3.87%-5.86%, Na2O=3.82%-4.24%, Al2O3=12.38%-13.57%, A/CNK=1.05-1.11; the rocks are enriched in LREE, depleted HREE and negative Eu anomalies, enriched in Rb, U, Hf, Y and depleted Ba, Nb, Ta, Ti, which indicates that Xinxian monzogranites are peraluminous, high-K calc-alkaline Ⅰ-type granite. The three stages yield LA-ICP-MS zircon U-Pb ages 153.4±1.1 Ma, 146.4±1.6 Ma and 131.6±1.8 Ma respectively. According to zircon Hf isotope analysis, the εHf(t) values of the granite range from -24.5 to -20.3, which locates below the depleted mantle line. The tDM2 values range from 2.68 to 2.93 Ga, which indicates the monzogranites resulted from the lower crust of Yangtze Block. The component of the monzogranite is similar to that of Neoproterozoic TTG magmatic rocks. Xinxian monzogranites were emplaced after the major collisional period of the North China block and Yangtze block, in the post-collisional tectonic setting under the regional extension mechanism. The geodynamics setting is the transformation of tectonic regime of the Late Jurassic-Early Cretaceous and large-scale lithosphere delaminating thinning under post stretching mechanism.
-
Key words:
- Dabie mountain /
- Xinxian /
- monzogranite /
- petrology /
- geochemistry /
- geochronology /
- Hf isotope
-
图 1 新县花岗岩体地质简图
1.第四系;2.白垩系下统陈棚组;3.泥盆系南湾组;4.震旦系-奥陶系肖家庙组;5.中元古界浒湾组上段;6.中元古界浒湾组下段;7.下元古界七角山组;8.下元古界新县组;9.下元古界卡房组;10.辉长岩;11.震旦系花岗岩;12.燕山期石英二长岩;13.燕山期花岗斑岩;14.燕山期二长花岗岩;15.断层;16.地质界线;17.花岗斑岩脉;18.采样位置;据陈伟等(2013)修改
Fig. 1. Geological sketch of the Xinxian granitic batholith in Henan Province
图 3 新县二长花岗岩中锆石代表性阴极发光照片(a);中粗粒二长花岗岩(X-01) 锆石U-Pb谐和图(b);中粒二长花岗岩(X-03) 锆石U-Pb谐和图(c)和细粒二长花岗岩(X-05) 锆石U-Pb谐和图(d)
Fig. 3. CL images of representative zircons in the Xinxian monzogranite with analytical positions (a), the zircon U-Pb concordian of the medium-coarse monzogranite (X-01) (b), the zircon U-Pb concordian of the medium monzogranite (X-03) (c) and the zircon U-Pb concordian of the fine monzogranite (X-05) (d)
图 4 新县二长花岗岩K2O-SiO2(a)和ANK-ACNK(b)关系
Fig. 4. K2O-SiO2 (a) and ANK-ACNK (b) relations of the Xinxian monzogranite
图 7 新县二长花岗岩Q-A-P图解
Q.石英;A.碱性长石;P.斜长石;据Bowden and Kinnaird(1984)
Fig. 7. Q-A-P diagram of the Xinxian monzogranite
图 8 (Na2O+K2O)/CaO-Zr+Nb+Ce+Y和(Al2O3+CaO)/(Na2O+K2O+TFeO)-100×(TFeO+MgO+TiO2)/SiO2关系
图a据Whalen et al.(1987),图b据Sylvester(1989)
Fig. 8. (Na2O+K2O)/CaO-Zr+Nb+Ce+Y and (Al2O3+CaO)/(Na2O+K2O+TFeO)-100×(TFeO+MgO+TiO2)/SiO2 relations
图 9 新县二长花岗岩REE分布模式(a)及Sr-Yb关系(b)
Fig. 9. REE pattern (a) and Sr-Yb relation (b) for the Xinxian monzogranite
图 10 新县二长花岗岩造岩矿物结晶分异判别关系
PlAn50.斜长石(An=50);PlAn15.斜长石(An=15);Kfs.钾长石;Bt.黑云母;Ms.白云母;Grt.石榴子石;Amp.角闪石;据Janoušek et al.(2004)
Fig. 10. Ba-Sr and Rb-Sr relations for the Xinxian monzogranite
图 12 新县二长花岗岩构造环境判别关系
a.Al2O3-SiO2;b.TFeO/(TFeO+MgO)-SiO2;c.R1-R2;d.Rb-Y+Nb;图a, b据Pearce(1996);图c, d据Batchelor and Bowden(1985);POG.后造山花岗岩;IAG.岛弧花岗岩;CAG.大陆弧花岗岩;CCG.大陆碰撞花岗岩;RRG.裂谷型花岗岩;CEUG.大陆造陆隆升花岗岩
Fig. 12. Discriminant relations of tectonic environment of the Xinxian monzogranite
图 13 新县二长花岗岩构造环境的lg(CaO/(K2O+Na2O))-SiO2判别关系
据Brown(1982)修改
Fig. 13. The lg(CaO/(K2O+Na2O))-SiO2 discriminant relation of tectonic environment of the Xinxian monzogranite
表 1 新县二长花岗岩LA-ICP-MS锆石U-Pb分析结果
Table 1. LA-ICP-MS zircon U-Pb data for the Xinxian monzogranite
测试点号 Th
(10-6)U
(10-6)Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 年龄(Ma) 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232U 1σ X-01-01 2 542 2 136 1.19 0.055 1 0.001 0 0.155 5 0.003 1 0.020 4 0.000 3 0.006 0 0.000 1 147 3 130 2 121 3 X-01-02 3 205 2 343 1.37 0.047 1 0.000 9 0.135 9 0.002 8 0.020 8 0.000 2 0.006 3 0.000 1 129 3 132 2 126 3 X-01-03 2 839 2 259 1.26 0.052 1 0.001 1 0.148 6 0.003 4 0.020 5 0.000 2 0.006 3 0.000 2 141 3 131 2 127 3 X-01-06 182 152 1.20 0.051 4 0.003 5 0.146 3 0.008 8 0.021 6 0.000 5 0.006 4 0.000 2 139 8 138 3 128 5 X-01-07 3 170 2 295 1.38 0.050 9 0.001 0 0.141 1 0.002 7 0.020 0 0.000 2 0.006 3 0.000 1 134 2 128 1 126 3 X-01-08 357 292 1.22 0.057 2 0.003 7 0.174 0 0.013 0 0.021 3 0.000 4 0.007 5 0.000 3 163 11 136 2 152 7 X-01-09 3 580 2 777 1.29 0.049 4 0.001 0 0.139 2 0.002 9 0.020 3 0.000 2 0.006 4 0.000 2 132 3 130 2 129 3 X-01-10 4 873 2 774 1.76 0.050 3 0.001 2 0.145 5 0.003 7 0.020 9 0.000 3 0.006 9 0.000 2 138 3 133 2 139 4 X-01-11 2 791 2 250 1.24 0.048 9 0.001 1 0.139 1 0.003 5 0.020 5 0.000 3 0.006 8 0.000 2 132 3 131 2 137 4 X-01-12 5 125 2 790 1.84 0.047 9 0.000 9 0.134 5 0.002 8 0.020 3 0.000 2 0.006 7 0.000 1 128 2 129 1 134 3 X-01-14 2 406 2 374 1.01 0.054 0 0.001 2 0.160 5 0.004 5 0.021 3 0.000 3 0.006 8 0.000 2 151 4 136 2 136 3 X-03-01 3 590 5 224 0.69 0.057 0 0.001 1 0.180 2 0.003 4 0.022 7 0.000 2 0.006 9 0.000 2 168 3 144 1 140 3 X-03-02 3 724 6 079 0.61 0.051 0 0.000 9 0.159 4 0.003 1 0.022 4 0.000 2 0.006 7 0.000 2 150 3 143 1 134 3 X-03-03 2 650 3 437 0.77 0.054 1 0.001 1 0.172 5 0.004 8 0.022 8 0.000 4 0.007 3 0.000 2 162 4 145 3 147 4 X-03-04 2 694 4 649 0.58 0.079 6 0.002 2 0.235 5 0.006 8 0.021 2 0.000 2 0.008 3 0.000 3 215 6 135 2 166 7 X-03-06 655 1 064 0.62 0.053 1 0.002 0 0.168 3 0.005 7 0.023 1 0.000 3 0.007 6 0.000 2 158 5 147 2 153 4 X-03-07 2 914 4 189 0.70 0.056 8 0.001 4 0.180 5 0.004 5 0.022 9 0.000 3 0.006 9 0.000 2 168 4 146 2 139 4 X-03-08 4 121 5 773 0.71 0.054 3 0.001 0 0.171 7 0.004 0 0.022 7 0.000 3 0.007 2 0.000 2 161 4 144 2 145 4 X-03-10 4 225 4 888 0.86 0.081 2 0.002 1 0.239 2 0.007 0 0.021 1 0.000 3 0.008 2 0.000 2 218 6 134 2 165 4 X-03-12 4 157 5 321 0.78 0.061 4 0.002 2 0.179 8 0.005 7 0.021 4 0.000 3 0.007 6 0.000 2 168 5 137 2 153 4 X-03-13 5 917 6 992 0.85 0.047 8 0.000 8 0.154 0 0.003 0 0.023 2 0.000 3 0.007 1 0.000 2 145 3 148 2 144 4 X-03-14 4 375 4 597 0.95 0.060 0 0.001 2 0.187 4 0.004 5 0.022 5 0.000 3 0.007 4 0.000 2 174 4 143 2 148 3 X-03-15 2 048 4 056 0.50 0.053 9 0.001 2 0.165 3 0.004 3 0.022 0 0.000 3 0.007 9 0.000 2 155 4 140 2 159 5 X-05-01 4 557 14 296 0.32 0.051 4 0.000 8 0.173 1 0.002 9 0.024 1 0.000 2 0.006 8 0.000 3 162 3 153 1 138 6 X-05-02 3 687 4 629 0.80 0.090 4 0.002 0 0.303 4 0.008 3 0.023 9 0.000 3 0.009 4 0.000 5 269 6 152 2 189 9 X-05-03 1 922 3 688 0.52 0.083 4 0.003 3 0.278 7 0.003 1 0.024 3 0.001 0 0.011 7 0.000 8 250 10 155 6 235 17 X-05-04 9 506 17 079 0.56 0.053 3 0.001 0 0.178 6 0.004 1 0.023 9 0.000 2 0.007 2 0.000 3 167 4 152 1 145 6 X-05-05 7 929 22 043 0.36 0.068 1 0.003 0 0.238 3 0.004 4 0.024 2 0.000 3 0.010 1 0.000 6 217 12 154 2 203 12 X-05-07 3 471 13 938 0.25 0.053 6 0.001 0 0.176 5 0.003 1 0.023 8 0.000 3 0.007 5 0.000 2 165 3 152 2 152 4 X-05-08 2 275 6 130 0.37 0.0902 0.001 6 0.305 1 0.006 4 0.024 4 0.000 3 0.013 3 0.000 4 270 5 155 2 267 7 X-05-09 6 837 20 129 0.34 0.054 5 0.000 7 0.183 2 0.003 0 0.024 2 0.000 3 0.010 5 0.000 2 171 3 154 2 211 5 X-05-10 6 592 21 885 0.30 0.091 1 0.003 0 0.307 5 0.001 6 0.024 3 0.000 4 0.017 5 0.000 9 272 9 155 2 350 19 X-05-11 7 229 19 846 0.36 0.048 4 0.000 8 0.160 8 0.003 6 0.023 9 0.000 3 0.007 9 0.000 2 151 3 152 2 159 5 X-05-12 7 081 24 836 0.29 0.059 0 0.001 8 0.197 7 0.006 8 0.024 0 0.000 3 0.010 7 0.000 5 183 6 153 2 215 11 X-05-13 5 247 15 865 0.33 0.052 8 0.001 1 0.178 3 0.003 7 0.024 4 0.000 3 0.007 8 0.000 2 167 3 155 2 156 4 X-05-14 13 518 31 847 0.42 0.045 9 0.001 1 0.152 3 0.003 6 0.023 9 0.000 2 0.006 7 0.000 2 144 3 152 2 134 5 表 2 新县二长花岗岩主量元素(%)、微量和稀土元素(10-6)分析结果
Table 2. Major elements (%), trace elements and rare earth elements (10-6) composition of Xinxian monzogranite
样品号 X-01 X-02 X-03 X-04 X-05 X-06 SiO2 78.16 77.32 75.75 75.24 75.62 74.94 Al2O3 12.38 12.38 13.57 13.54 13.33 13.52 Fe2O3 0.62 0.66 0.78 0.95 1.09 1.06 MgO 0.06 0.05 0.09 0.10 0.08 0.11 CaO 0.27 0.24 0.50 0.58 0.36 0.39 Na2O 3.82 3.94 4.24 4.24 3.83 4.07 K2O 4.16 3.87 4.50 4.45 4.86 4.65 MnO 0.01 0.01 0.04 0.06 0.02 0.02 TiO2 0.04 0.03 0.08 0.05 0.09 0.10 P2O5 0.006 0.006 0.011 0.010 0.008 0.009 LOI 0.45 0.54 0.35 0.27 0.55 0.65 Total 99.98 99.05 99.91 99.49 99.84 99.52 TFeO 0.62 0.66 0.78 0.95 1.09 1.06 A/CNK 1.10 1.11 1.06 1.05 1.09 1.09 A/NK 1.15 1.16 1.15 1.15 1.15 1.15 Mg# 16.09 13.05 18.60 17.25 12.69 17.05 R1 2 874 2 872 2 478 2 460 2 530 2 459 R2 276 275 326 335 306 316 Q 39.43 39.46 32.68 32.20 33.92 32.68 An 1.31 1.17 2.42 2.84 1.75 1.90 Ab 32.49 33.86 36.05 36.18 32.66 34.85 Or 24.71 23.23 26.72 26.52 28.94 27.81 Rb 393.0 365.0 311.0 307.0 216.0 196.5 Ba 40 30 120 130 260 250 Th 20 20 30 20 20 20 U 10 10 10 10 10 10 Nb 41.3 37.5 33.3 25.8 22.6 23.1 Ta 4.8 4.3 2.8 2.1 1.8 1.9 Pb 42 40 39 39 25 29 Sr 11 11 42 44 49 49 Zr 112 134 141 120 140 127 Hf 5.9 8.0 6.2 4.7 5.0 4.8 Ti 240 180 480 300 540 600 Y 13.4 16.0 10.1 8.8 12.8 11.7 Nb/Ta 8.60 8.72 11.89 12.29 12.56 12.16 Zr/Hf 18.98 16.75 22.74 25.53 28.00 26.46 La 8.9 12.1 21.6 15.4 24.8 28.5 Ce 18.9 26.1 38.2 26.7 44.4 51.0 Pr 2.05 2.77 3.53 2.51 4.67 5.13 Nd 6.1 8.9 10.5 7.4 14.6 15.7 Sm 1.23 1.75 1.58 1.08 2.24 2.84 Eu 0.05 0.07 0.17 0.15 0.31 0.32 Gd 0.95 1.23 0.93 0.76 1.67 1.80 Tb 0.16 0.21 0.17 0.12 0.28 0.26 Dy 1.21 1.45 0.97 0.85 1.76 1.77 Ho 0.25 0.33 0.22 0.18 0.36 0.36 Er 0.93 1.11 0.88 0.62 1.22 0.96 Tm 0.18 0.20 0.13 0.11 0.20 0.17 Yb 1.54 1.81 1.17 0.90 1.35 1.48 Lu 0.22 0.27 0.18 0.12 0.18 0.16 ∑REE 42.67 58.30 80.23 56.90 98.04 110.45 LREE/HREE 6.84 7.82 16.25 14.55 12.97 14.87 (La/Yb)N 4.15 4.80 13.24 12.27 13.18 13.81 δEu=Eu/Eu* 0.14 0.14 0.39 0.48 0.47 0.40 TZr 807 824 825 809 826 816 注:主量元素单位为%,微量元素单位为10-6;LOI为烧失量,单位为%;TZr单位为℃;δEu=Eu/Eu*=2EuN/(SmN+GdN),其中N为球粒陨石标准化值(引自Sun and Mcdonough, 1989);TFeO=FeO+0.899 8×Fe2O3;A/CNK=摩尔Al2O3/(CaO+Na2O+K2O);A/NK=摩尔Al2O3/(Na2O+K2O);Mg#=100×摩尔Mg(Mg+TFe2+);里特曼指数σ=(Na2O+K2O)2/(SiO2-43);AR=[Al2O3+CaO+(Na2O+K2O)]/[Al2O3+CaO-(Na2O+K2O)];R1=摩尔[4Si-11(Na+K)-2(Fe+Ti)];R2=摩尔(6Ca+2Mg+Al);TZr=12 900/[2.95+0.85M+ln(496 000/Zrmelt)]-273.15,M=(Na+K+2Ca)/(Al×Si),Zrmelt为锆含量(Watson and Harrison, 1983). 表 3 新县二长花岗岩的锆石Hf同位素组成
Table 3. Zircon Hf isotope compositions of Xinxian monzogranite
测试点号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(t) tDM1(Ma) tDM2(Ma) X-01-01 130 0.089 913 0.002 230 0.282 019 0.000 014 -24.0 1 793 2 790 X-01-02 132 0.050 669 0.001 201 0.282 002 0.000 019 -24.5 1 768 2 876 X-01-03 131 0.069 408 0.001 663 0.282 044 0.000 016 -23.0 1 731 2 915 X-01-06 138 0.157 415 0.003 910 0.282 022 0.000 018 -23.9 1 874 2 824 X-01-07 128 0.071 049 0.001 659 0.282 089 0.000 018 -21.5 1 666 2 877 X-01-08 136 0.057 694 0.001 426 0.282 082 0.000 016 -21.6 1 666 2 722 X-01-09 130 0.121 267 0.003 078 0.282 026 0.000 016 -23.8 1 825 2 745 X-01-10 133 0.121 524 0.003 062 0.282 062 0.000 015 -22.5 1 771 2 861 X-01-11 131 0.105 876 0.002 557 0.282 077 0.000 014 -21.9 1 725 2 785 X-01-12 129 0.045 616 0.001 050 0.282 049 0.000 016 -22.8 1 695 2 751 X-01-14 136 0.124 686 0.003 099 0.282 017 0.000 015 -24.0 1 839 2 810 X-03-01 144 0.117 658 0.004 171 0.282 017 0.000 020 -23.9 1 895 2 886 X-03-02 143 0.068 153 0.002 372 0.282 067 0.000 014 -22.0 1 731 2 894 X-03-03 145 0.074 545 0.002 578 0.282 037 0.000 016 -23.1 1 783 2 786 X-03-04 135 0.086 447 0.002 916 0.282 067 0.000 016 -22.2 1 757 2 851 X-03-06 147 0.049 355 0.001 761 0.282 055 0.000 020 -22.3 1 719 2 777 X-03-07 146 0.080 706 0.002 782 0.282 004 0.000 016 -24.2 1 842 2 814 X-03-08 144 0.084 147 0.002 919 0.282 050 0.000 016 -22.7 1 781 2 925 X-03-10 134 0.097 889 0.003 540 0.282 040 0.000 021 -23.3 1 828 2 822 X-03-12 137 0.077 212 0.002 664 0.282 036 0.000 019 -23.3 1 790 2 835 X-03-13 148 0.097 509 0.003 229 0.282 090 0.000 019 -21.2 1 737 2 847 X-03-14 143 0.055 312 0.001 808 0.282 061 0.000 015 -22.2 1 713 2 738 X-03-15 140 0.065 349 0.002 206 0.282 027 0.000 016 -23.5 1 780 2 798 X-05-01 153 0.137 905 0.004 453 0.282 093 0.000 015 -21.1 1 795 2 869 X-05-02 152 0.024 449 0.000 956 0.282 063 0.000 006 -21.8 1 671 2 737 X-05-03 155 0.084 474 0.002 964 0.282 059 0.000 016 -22.1 1 770 2 802 X-05-04 152 0.077 676 0.002 707 0.282 070 0.000 019 -21.8 1 742 2 813 X-05-05 154 0.051 021 0.001 713 0.282 071 0.000 016 -20.3 1 839 2 787 X-05-07 152 0.077 947 0.002 638 0.282 067 0.000 038 -21.9 1 744 2 682 X-05-08 155 0.173 258 0.005 759 0.282 062 0.000 019 -22.3 1 914 2 795 X-05-09 154 0.144 987 0.004 498 0.282 045 0.000 014 -22.8 1 870 2 807 X-05-10 155 0.166 763 0.005 287 0.282 073 0.000 017 -21.9 1 871 2 843 X-05-11 152 0.152 313 0.004 866 0.282 109 0.000 016 -20.6 1 792 2 784 X-05-12 153 0.015 606 0.000 507 0.282 066 0.000 019 -21.7 1 648 2 702 X-05-13 155 0.134 066 0.004 520 0.282 062 0.000 016 -22.2 1 847 2 797 X-05-14 152 0.137 464 0.004 262 0.282 063 0.000 016 -22.2 1 831 2 808 注:εHf(t)=10 000×{[(176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)]/[(176Hf/177Hf)CHUR.0-(176Lu/177Hf)CHUR×(eλt-1)]-1}; tDM1=1/λ×ln{1+[(176Hf/177Hf)s-(176Hf/177Hf)DM]/[(176Lu/177Hf)s-(176Lu/177Hf)DM]}; tDM2=1/λ×ln{1+[(176Hf/177Hf)s.t-(176Hf/177Hf)DM.t]/[(176Lu/177Hf)c-(176Lu/177Hf)DM]}+t; (176Hf/177Hf)s和(176Lu/177Hf)s为样品测定值; (176Hf/177Hf)CHUR.0=0.282 772, (176Lu/177Hf)CHUR=0.033 2, (176Hf/177Hf)DM=0.283 25, (176Lu/177Hf)DM=0.038 4(Rubatto and Gebauer, 2000); λ=1.867×10-11/a ( Griffin et al., 2000 ); (176Lu/177Hf)c=0.015; t为锆石结晶时间,单位为Ma. -
Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that Do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x Ames, L., Tilton, G.R., Zhou, G.Z., 1993.Timing of Collision of the Sino-Korean and Yangtze Cratons:U-Pb Zircon Dating of Coesite-Bearing Eclogites.Geology, 21(4):339-342.doi:10.1130/0091-7613(1993)021<0339:tocots>2.3.co;2 Ajaji, T., Weis D., Giret A., et al., 1998.Coeval Potassic and Sodic Calc-Alkaline Series in the Post-Collisional Hercynian Tanncherfi Intrusive Complex, Northeastern Morocco:Geochemical, Isotopic and Geochronological Evidence.Lithos, 45(1-4):371-393.doi: 10.1016/s0024-4937(98)00040-1 Bryant, D.L., Ayers, J.C., Gao, S., et al., 2004.Geochemical, Age, and Isotopic Constraints on the Location of the Sino-Korean/Yangtze Suture and Evolution of the Northern Dabie Complex, East Central China.Geological Society of America Bulletin, 116(5-6):698-717.doi: 10.1130/b25302.2 Bowden, P., Kinnaird, J.A., 1984.The Petrology and Geochemistry of Alkaline Granites from Nigeria.Physics of the Earth and Planetary Interiors, 35(1-3):199-211.doi: 10.1016/0031-9201(84)90043-8 Blichert, J.Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258.doi: 10.1016/s0012-821x(97)00040-x Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55.doi: 10.1016/0009-2541(85)90034-8 Brown, G.C., 1982.Calc-Alkaline Intrusive Rocks-Their Diversity, Evolution and Relation to Volcanic Arcs.In:Thorpe, R.S., ed., Andesites.John Wiley, New York, 437-461. https://www.researchgate.net/publication/281348730_Calc-alkaline_intrusive_rocks_their_diversity_evolution_and_relation_to_volcanic_arcs Bureau of Geology and Mineral of Henan Province, 1989.Regional Geology of Henan Province.Geological Publishing House, Beijing (in Chinese). Chappell, B.W., 1999.Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551.doi: 10.1016/s0024-4937(98)00086-3 Chen, B., Jahn, B.M., Wei, C.J., 2002.Petrogenesis of Mesozoic Granitoids in the Dabie UHP Complex, Central China:Trace Element and Nd-Sr Isotope Evidence.Lithos, 60(1-2):67-88.doi: 10.1016/S0024-4937(01)00077-9 Chen, W., Xu, Z., Li, H.C., et al., 2013.Petrogenesis and Origin of the Xinxian Granitic Batholith in Henan Province and Its Implacation for the Tectonic Evolution of the Western Dabie Area.Acta Geologica Sinica, 87(10):1510-1524 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201310003.htm DePaolo, D.J., 1988.Neodymium Isotope Geochemistry:An Instroduction.Springer-Verlag, Berlin, 189. Faure, G., 1986.Principles of Isotope Geology (2nd edition).John Wiley and Sons, New York, 567. Fyhn, M.B.W., Nielsen, L.H., Boldreel, L.O., et al., 2009.Geological Evolution, Regional Perspectives and Hydrocarbon Potential of the Northwest Phu Khanh Basin, Offshore Central Vietnam.Marine and Petroleum Geology, 26(1):1-24.doi: 10.1016/j.marpetgeo.2007.07.014 Gao, Y., 2014.Geology, Geochemistry and Genesis of the Qian'echong and Tangjiaping Porphyry Mo Deposits, Dabie Orogen (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese with English absatract). Gao, Y., Ye, H.S., Li, Y.F, et al., 2014.SHRIMP Zircon U-Pb Ages, Hf Isotopic Compositions and Trace Elements Characteristics of the Granites from the Qian'echong Mo Deposit, Dabie Orogen.Acta Petrologica Sinica, 30(1):49-63 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201401004.htm Goldfarb, R.J., Hart, C., Davis, G., et al., 2007.East Asian Gold:Deciphering the Anomaly of Phanerozoic Gold in Precambrian Cratons.Economic Geology, 102(3):341-345.doi: 10.2113/gsecongeo.102.3.341 Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LA-MC-ICP-MS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147.doi: 10.1016/S0016-7037(99)00343-9 Hacker, B.R., Ratschbacher, L., Liou, J.G., 2004.Subduction, Collision and Exhumation in the Ultrahigh-Pressure Qinling-Dabie Orogen.In:Malpas J., Fletcher C., Ali J.R., eds., Aspects of the Tectonic Evolution of China.Geological Society, Special Publication, London, 157-175. https://www.researchgate.net/publication/249551241_Subduction_collision_and_exhumation_in_the_Qinling-Dabie_Orogen Hacker, B.R., Ratschbacher, L., Webb, L., et al., 1998.U-Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China.Earth and Planetary Science Letters, 161(1-4):215-230.doi: 10.1016/s0012-821x(98)00152-6 Hacker, B.R., Wang, X., Eide, E.A., 1996.The Qinling-Dabie Ultra-High-Pressure Collisional Orogen.In:Yin A., Harriso T.M., eds., The Tectonics of Asia.Cambridge University Press, Cambridge, 345-370. http://www.ingentaconnect.com/content/cupr/13626574/1996/00000001/00000008/art00016 He, Y.S., Li, S.G., Hoefs, J., et al., 2013.Sr-Nd-Pb Isotopic Compositions of Early Cretaceous Granitoids from the Dabie Orogen:Constraints on the Recycled Lower Continental Crust.Lithos, 156-159:204-217.doi: 10.1016/j.lithos.2012.10.011 Huang, D.H., Wu, C.Y., Du, A.D., et al., 1994.Re-Os Isotopic Ages of Molybdenum Deposits in East Qinling and Their Significance.Mineral Deposits, 13(3):221-230 (in Chinese with English abstract). doi: 10.1007/BF02872630 Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1-2):47-69.doi: 10.1016/j.chemgeo.2004.06.017 Janoušek, V., Finger, F., Roberts, M., et al., 2004.Deciphering the Petrogenesis of Deeply Buried Granites:Whole-Rock Geochemical Constraints on the Origin of Largely Undepleted Felsic Granulites from the Moldanubian Zone of the Bohemian Massif.Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2):141-159.doi: 10.1017/s0263593300000985 Leech, M.L., 2001.Arrested Orogenic Development:Eclogitization, Delamination, and Tectonic Collapse.Earth and Planetary Science Letters, 185(1-2):149-159.doi: 10.1016/s0012-821x(00)00374-5 Li, H.C., Xu, Z.W., Lu, X.C., et al., 2012.Constraints on Timing and Origin of the Dayinjian Intrusion and Associated Molybdenum Mineralization, Western Dabie Orogen, Central China.International Geology Review, 54(13):1579-1596.doi: 10.1080/00206814.2012.684460 Li, H.M., Ye, H.S., Mao, J.W., et al., 2007.Re-Os Dating of Molybdenites from Au (-Mo) Deposits in Xiaoqinling Gold Ore District and Its Geologic Significance.Mineral Deposits, 26(4):417-424 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200704006.htm Li, J.Y., 2001.Pattern and Time of the Collision between the Sino-Korean and Yangtze Blocks:Evolution of the Sinian-Jurassic Sedimentary Settings in the Middle-Lower Reaches of the Yangtze River.Acta Geologica Sinica, 75(1):25-34 (in Chinese with English absatract). https://www.researchgate.net/publication/280692385_Pattern_and_time_of_the_collision_between_the_Sino-Korean_and_Yangtze_blocks_Evolution_of_the_Sinian-Jurassic_sedimentary_settings_in_the_middle-lower_reaches_of_the_Yangtze_river Li, N., Chen, Y.J., Zhang, H., et al., 2007.Molybdenum Deposits in East Qinling.Earth Science Frontiers, 14(5):186-198 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200705021.htm Li, S., Wang, T., 1991.Geochemistry of Granitoids in Tongbaishan-Dabieshan, Central China.China Univesity of Geosciences Press, Wuhan (in Chinese). Li, X.H., Li, Z.X., Li, W.X., et al., 2007.U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?Lithos, 96(1-2):186-204.doi: 10.1016/j.lithos.2006.09.018 Li, Y.F., 2005.The Temporal-Spital Evolution of Mesozoid Granitoids in the Xiong'ershan Area and Their Ralationships to Molybdenum-Gold Mineralization (Dissertation).China University of Geosciences, Beijing (in Chinese with English absatract). Lin, W., Faure, M., Monié, P., et al., 2000.Tectonics of SE China, New Insights from the Lushan Massif (Jiangxi Province).Tectonics, 19(5):852-871.doi: 10.1029/2000tc900009 Liu, D.Y., Tang, J.F., Zhou, C.T., et al., 2002.U-Pb Zircon Dating and Its Geological Significance of the Taoyuanzhai Volcanic Rock, Central Dabie Orogenic Belt.Acta Geologica Sinica, 76(2):217-212 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200202011.htm Liu, J.L., Sun, F.Y., Lin, B.L., 2015.Geochronology, Geochemistry and Zircon Hf Isotope of Miantian Granodiorite Intrusion in Yanbian Region, Southern Jinlin Province and Its Geological Significance.Earth Science, 40(1):49-60 (in Chinese with English absatract). https://www.researchgate.net/publication/281993287_Geochronology_geochemistry_and_zircon_Hf_isotope_of_Miantian_Granodiorite_intrusion_in_Yanbian_Region_Southern_Jinlin_Province_and_its_geological_significance Liu, Q.Q., Shao, Y.J., Zhang, Z.H., et al., 2015.Zircon U-Pb Ages, Hf Isotope Characteristics and Its Implication of Granite from Yaochong, Dabie Orogen, China.The Chinese Journal of Nonferrous Metals, 25(2):479-491 (in Chinese with English absatract). https://www.researchgate.net/publication/281943544_Zircon_U-Pb_ages_Hf_isotope_characteristics_and_its_implication_of_granite_from_Yaochong_Dabie_Orogen_China Liu, Q.Q., Zhang, Z.H., Li Y.F., et al., 2014.Geologic Features, Mineralization Epoch and Tectonic Setting of Molybdenum Deposits in the Northern Dabie Mountain.Geology and Exploration, 50(2):199-215 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201402001.htm Liu, X.C., Jahn, B.M., Liu, D.Y., et al., 2004.SHRIMP U-Pb Zircon Dating of a Metagabbro and Eclogites from Western Dabieshan (Hong'an Block), China, and Its Tectonic Implications.Tectonophysics, 394(3-4):171-192.doi: 10.1016/j.tecto.2004.08.004 Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082 Lu, X.X., 1998.Qinling Granite Reveals Tectonic Evolution Process.Advance in Earth Sciences, 13(2):213-214 (in Chinese). Ma, C.Q., Yang, K.G., Ming, H.L., et al., 2004.The Timing of Tectonic Transition from Compression to Extension in Dabieshan:Evidence from Mesozoic Granites.Science China:Earth Science, 47(5):453-462.doi: 10.1360/03yd0195 Mao, J.W., Pirajno, F., Cook, N., 2011a.Mesozoic Metallogeny in East China and Corresponding Geodynamic Settings-An Introduction to the Special Issue.Ore Geology Reviews, 43(1):1-7.doi: 10.1016/j.oregeorev.2011.09.003 Mao, J.W., Pirajno, F., Xiang, J.F., et al., 2011b.Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt:Characteristics and Tectonic Settings.Ore Geology Reviews, 43(1):264-293.doi: 10.1016/j.oregeorev.2011.07.009 Mao, J.W., Zhang, Z.H., Yu, J.L., et al., 2003.The Geodynamics Setting of Mesozoic Large-Scale Mineralization in North China:The Revelation from Accurate Timing of Metal Deposits.Science in China (Series D), 33(4):289-299 (in Chinese). Martin H., Smithies, R.H., Rapp, R., et al., 2005.An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution.Lithos, 79(1-2):1-24.doi: 10.1016/j.lithos.2004.04.048 Mi, M., Chen, Y.J., Yang, Y.F., et al., 2015.Geochronology and Geochemistry of the Giant Qian'echong Mo Deposit, Dabie Shan, Eastern China:Implications for Ore Genesis and Tectonic Setting.Gondwana Research, 27(3):1217-1235.doi: 10.1016/j.gr.2014.05.006 Meng, F., 2013.Study on Rock-Forming and Ore-Forming of the Lingshan Pluton in the Northern Margin of Dabie Mountains (Dissertation).China University of Geosciences, Beijing (in Chinese with English absatract). Patchett, P.J., Kouvo, O., Hedge, C.E., et al., 1982.Evolution of Continental Crust and Mantle Heterogeneity:Evidence from Hf Isotopes.Contributions to Mineralogy and Petrology, 78(3):279-297.doi: 10.1007/bf00398923 Pearce, J., 1996.Sources and Settings of Granitic Rocks.Episodes, 19(4):120-125. http://www.episodes.org/index.php/epi/article/viewFile/62996/49159 Ren, J.S., 1991.The Basic Characteristics of the Tectonic Evolution of the Continental Lithosphere in China.Regional Geology of China, (4):289-293 (in Chinese with English absatract). https://www.researchgate.net/publication/284991609_The_basic_characteristics_of_the_tectonic_evolution_of_the_continental_lithosphere_in_China Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263.doi: 10.1016/0024-4937(89)90028-5 Rubatto, D., Gebauer, D., 2000.Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe:Some Examples from the Western Alps.Springer-Verlag, Berlin.doi: 10.1007/978-3-662-04086-7_15 Sui, Z.M., Chen, Y.J., 2011.Zircon Saturation Temperatures of Granites in Eastern Great Xing'an Range, and Its Geological Signification.Global Geology, 30(2):162-172 (in Chinese with English absatract). https://www.researchgate.net/publication/284548574_Zircon_saturation_temperatures_of_granites_in_eastern_Great_Xing'an_Range_and_its_geological_signification Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 Sylvester, P.J., 1989.Post-Collisional Alkaline Granites.The Journal of Geology, 97(3):261-280.doi: 10.1086/629302 Tang, J.F., Hou, M.J., Li, H.K., et al., 2003.Multi-Superimposed Deformations and Their Evolution in Northeastern Margin of Yangtze Block.Geotectonica et Metallogenia, 27(4):313-326 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200304002.htm Vanderhaeghe, O., Teyssier, C., 2001.Partial Melting and Flow of Orogens.Tectonophysics, 342(3-4):451-472.doi: 10.1016/s0040-1951(01)00175-5 Wang, Q., Wyman, D.A., Xu, J.F., et al., 2007.Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China:Implications for Partial Melting and Delamination of Thickened Lower Crust.Geochimica et Cosmochimica Acta, 71(10):2609-2636.doi: 10.1016/j.gca.2007.03.008 Wang, T., Guo, L., Zheng, Y.D., et al., 2012.Timing and Processes of Late Mesozoic Mid-Lower-Crustal Extension in Continental NE Asia and Implications for the Tectonic Setting of the Destruction of the North China Craton:Mainly Constrained by Zircon U-Pb Ages from Metamorphic Core Complexes.Lithos, 154:315-345.doi: 10.1016/j.lithos.2012.07.020 Wang, Y.S., Zhu, G., Wang, D.X., et al., 2004.Relation Between P-T Conditions of Two Phases of Tanlu Strike-Slip Shear Zones and Delamination of the Orogenic Belts on the Eastern Margin of the Dabie Mountains.Geotectonica et Metallogenia, 28(3):228-238 (in Chinese with English absatract). http://d.wanfangdata.com.cn/ExternalResource-ddgzyckx200601006%5e50.aspx Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304.doi: 10.1016/0012-821x(83)90211-x Wedepohl, K.H., 1995.The Composition of the Continental Crust.Geochimica et Cosmochimica Acta, 59(7):1217-1232.doi: 10.1016/0016-7037(95)00038-2 Wei, C.J., Zhang, L.F., Wang, S.G., 2001.Mesozoic High-K Granitic Rocks from the Eastern Dabie Mountains, Central China and Their Geological Implications.Science in China (Series D), 44(6):525-534.doi: 10.1007/BF02876212 Wei, Q.G., Gao, X.Y., Zhao, T.P., et al., 2010.Petrogenesis of Tangjiaping Granite Porphyry in Northern Dabie:Evidence from Zircon LA-ICP-MS U-Pb Dating and Geochemical Characteristics.Acta Petrologica Sinica, 26(5):1550-1562 (in Chinese with English abstract). https://www.researchgate.net/publication/279695719_Petrogenesis_of_Tanejianine_granite_porphyry_in_northern_Dabie_Evidence_from_Zircon_LA-ICPMS_U-Pb_dating_and_geochemical_characteristics Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419.doi: 10.1007/bf00402202 Wu, F., 2003.Highly Fractionated Ⅰ-Type Granites in NE China (Ⅰ) :Geochronology and Petrogenesis.Lithos, 66(3-4):241-273.doi: 10.1016/s0024-4937(02)00222-0 Wu, F.Y., Li, X.H., Yang, J, H., et al., 2007.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200706000.htm Wu, Y.B., Zheng, Y.F., Zhang, S.B., et al., 2007.Zircon U-Pb Ages and Hf Isotope Compositions of Migmatite from the North Dabie Terrane in China:Constraints on Partial Melting.Journal of Metamorphic Geology, 25(9):991-1009.doi: 10.1111/j.1525-1314.2007.00738.x Xie, Z., Zheng, Y.F., Zhao, Z.F., et al., 2006.Mineral Isotope Evidence for the Contemporaneous Process of Mesozoic Granite Emplacement and Gneiss Metamorphism in the Dabie Orogen.Chemical Geology, 231(3):214-235.doi: 10.1016/j.chemgeo.2006.01.028 Xiong, X.L., Adam, J., Green, T.H., 2005.Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt:Implications for TTG Genesis.Chemical Geology, 218(3-4):339-359.doi: 10.1016/j.chemgeo.2005.01.014 Xu, H.J., Ma, C.Q., Ye, K., 2007.Early Cretaceous Granitoids and Their Implications for Collapse of the Dabie Orogen, Eastern China:SHRIMP Zircon U-Pb Dating and Geochemistry.Chemical Geology, 240(3-4):238-259.doi: 10.1016/j.chemgeo.2007.02.018 Xu, H.J., Ye, K., Ma, C.Q., 2008.Early Cretaceous Granitoids in the North Dabie and Their Tectonic Implications:Sr-Nd and Zircon Hf Isotipic Evidences.Acta Petrologica Sinica, 24(1):87-103 (in Chinese with English absatract). http://www.oalib.com/paper/1473338 Xu, H.J., Ma, C.Q., Zhang, J.F., et al., 2013.Early Cretaceous Low-Mg Adakitic Granites from the Dabie Orogen, Eastern China:Petrogenesis and Implications for Destruction of the Over-Thickened Lower Continental Crust.Gondwana Research, 23(1):190-207.doi: 10.1016/j.gr.2011.12.009 Xu, K.Q., Hu, S.X., Sun, M.Z., 1982.On the Two Genetic Series of Granites in Southeastern China and Their Metallogenetic Characteristics.Mineral Deposits, 1(2):1-14 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ198202000.htm Xu, S.T., Jiang, L.L., Liu Y.C., et al., 1992.Tectonic Framework and Evolution of the Dabie Mountains in Anhui, Eastern China.Acta Geologica Sinica, 66(1):1-14 (in Chinese with English absatract). https://www.researchgate.net/publication/229927621_Tectonic_Framework_and_Evolution_of_the_Dabie_Mountains_in_Anhui_Eastern_China Xu, Z.Q., Zhang Z.M., Liu, F.L., et al., 2003.Exhumation Structure and Mechanism of the Sulu Ultrahigh-Pressure Metamorphic Belt, Central China.Acta Geologica Sinica, 77(4):433-450 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200304000.htm Xue, H.M., Dong, S.W., Liu, X.C., 2002.U/Pb Zircon Dating for Cretaceous Adakitic Volcanic Rocks in Eastern Part of the North Dabie Mountains.Geochimica, 31(5):455-463 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200205005.htm Yang, M.Z., Zeng, J.N., Qin, Y.J., et al., 2010.LA-ICP-MS Zircon U-Pb and Molybdenite Re-Os Dating for Qian'echong Porphyry-Type Mo Deposit in Northern Dabie, China, and Its Geological Significance.Geological Science and Technology Information, 29(5):35-45 (in Chinese with English abstract). https://www.researchgate.net/publication/285726385_LA-ICP-MS_Zircon_U-Pb_and_molybdenite_Re-Os_dating_for_Qian%27echong_porphyry-type_Mo_deposit_in_Northern_Dabie_China_and_its_geological_significance Yang, M.Z., Zeng, J.N., Li, F.L., et al., 2011a.Geochemistry of Mineralization and Granitic Magmatism of Dayinjian Mo Deposit, Xinxian County, Henan Province and Its Geological Significance.Acta Geologica Sinica, 32(3):279-292 (in Chinese with English abstract). https://www.researchgate.net/publication/285910830_Geochemistry_of_mineralization_and_granitic_magmatism_of_Dayinjian_Mo_deposit_Xinxian_County_Henan_Province_and_it_geological_significance Yang, M.Z., Zeng, J.N., Ren, A.Q., et al., 2011b.Characteristics of Mo Mineralization and Zircon LA-ICP-MS U-Pb Geochronology of Mushan Mo Deposit from Luoshan County, Henan Province.Mineral Deposits, 30(3):435-447 (in Chinese with English absatract). https://www.researchgate.net/publication/285910987_Characteristics_of_Mo_mineralization_and_zircon_LA-ICP-MS_U-Pb_geochronology_of_Mushan_Mo_deposit_from_Luoshan_County_Henan_Province Yang, W.R., Yang, K.G., Liu, Z.M., et al., 1999.Caledonian Tectono-Thermal Event in Tongbai-Dabie Orogenic Belt and Its Significance.Earth Science Frontiers, 6(4):247-253 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY199904011.htm Yang, Z.Q., Tang, X.W., 2015.Geochemical Characteristics and Zircon LA-ICP-MS U-Pb Isotopic Dating of the Xiaofan Rock Bodies in North Dabieshan.Acta Geologica Sinica, 89(4):692-700 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201504003.htm Zhai, M.G., 2008.State of Lithosphere beneath the North China Craton before the Mesozoic Lithospheric Disruption:A Suggestion.Geotectonica et Metallogenia, 32(4):516-520 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200804017.htm Zhang, G.W., Zhang, B.R., Yuan, X.C., et al., 2001.Qinling Orogenic Belt and Continental Dynamics.Science Press, Beijing (in Chinese). Zhang, H.F., Gao, S., Zhong, Z.Q., et al., 2002.Geochemical and Sr-Nd-Pb Isotopic Compositions of Cretaceous Granitoids:Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahigh-Pressure Metamorphic Belt, China.Chemical Geology, 186(3-4):281-299.doi: 10.1016/s0009-2541(02)00006-2 Zhang, K.J., 1997.North and South China Collision along the Eastern and Southern North China Margins.Tectonophysics, 270(1-2):145-156.doi: 10.1016/s0040-1951(96)00208-9 Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and Its Implications.Acta Petrologica Sinica, 22(9):2249-2269 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200609000.htm Zhang, S., Shi, H.F., Hao, H.J., et al., 2014.Geochronology, Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake, Tibet.Earth Science, 39(5):509-524 (in Chinese with English absatract). https://www.researchgate.net/publication/287486793_Geochronology_geochemistry_and_tectonic_significance_of_late_cretaceous_adakites_in_Bangong_Lake_Tibet Zhang, S.B., Zheng, Y.F., Zhao, Z.F., et al., 2008.Neoproterozoic Anatexis of Archean Lithosphere:Geochemical Evidence from Felsic to Mafic Intrusions at Xiaofeng in the Yangtze Gorge, South China.Precambrian Research, 163(3-4):210-238.doi: 10.1016/j.precamres.2007.12.003 Zhang, S.B., Zheng, Y.F., Zhao, Z.F., et al., 2009.Origin of TTG-Like Rocks from Anatexis of Ancient Lower Crust:Geochemical Evidence from Neoproterozoic Granitoids in South China.Lithos, 113(3-4):347-368.doi: 10.1016/j.lithos.2009.04.024 Zhao, Z.F., Zheng, Y.F., 2009.Remelting of Subducted Continental Lithosphere:Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt.Science in China (Series D), 52(9):1295-1318.doi: 10.1007/s11430-009-0134-8 Zhao, Z.F., Zheng, Y.F., Wei, C.S., et al., 2007.Post-Collisional Granitoids from the Dabie Orogen in China:Zircon U-Pb Age, Element and O Isotope Evidence for Recycling of Subducted Continental Crust.Lithos, 93(3-4):248-272.doi: 10.1016/j.lithos.2006.03.067 Zhao, Z.F., Zheng, Y.F., Wei, C.S., et al., 2008.Zircon U-Pb Ages, Hf and O Isotopes Constrain the Crustal Architecture of the Ultrahigh-Pressure Dabie Orogen in China.Chemical Geology, 253(3-4):222-242.doi: 10.1016/j.chemgeo.2008.05.011 Zheng, Y.F., Fu, B., Gong, B., 2003.Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China:Implications for Geodynamics and Fluid Regime.Earth-Science Reviews, 62(1):105-161.doi: 10.1016/S0012-8252(02)00133-2 Zheng, Y.F., Zhang, S.B., 2007.Formation and Evolution of Precambrian Continental Crust in South China.Chinese Science Bulletin, 52(1):1-12.doi: 10.1007/s11434-007-0015-5 Zhou, H.S., Liu, M.H., Yan, Y.T., et al., 2013.Zircon U-Pb Age of Xinxian Pluton in Dabie Orogenic Belt and Its Geological Implications.Journal of Xinyang Normal University (Natural Science Edition), 26(1):94-98 (in Chinese with English absatract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XYSK201301023.htm Zhu, G., Xie, C.L., Chen, W., et al., 2010.Evolution of the Hongzhen Metamorphic Core Complex:Evidence for Early Cretaceous Extension in the Eastern Yangtze Craton, Eastern China.Geological Society of America Bulletin, 122(3-4):506-516.doi: 10.1130/b30028.1 河南省地质矿产局, 1989.河南省区域地质志.北京:地质出版社. 陈伟, 徐兆文, 李红超, 等, 2013.河南新县花岗岩岩基的岩石成因、来源及对西大别构造演化的启示.地质学报, 87(10): 1510-1524. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310003.htm 高阳, 2014. 大别山千鹅冲和汤家坪斑岩钼矿地质地球化学及成因研究(博士学位论文). 北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-1014269119.htm 高阳, 叶会寿, 李永峰, 等, 2014.大别山千鹅冲钼矿区花岗岩的SHRIMP锆石U-Pb年龄、Hf同位素组成及微量元素特征.岩石学报, 30(1): 49-63. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401004.htm 黄典豪, 吴澄宇, 杜安道, 等, 1994.东秦岭地区钼矿床的铼锇同位素年龄及其意义.矿床地质, 13(3): 221-230. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ403.003.htm 李厚民, 叶会寿, 毛景文, 等, 2007.小秦岭金(钼)矿床辉钼矿铼锇定年及其地质意义.矿床地质, 26(4): 417-424. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200704006.htm 李锦轶, 2001.中朝地块与扬子地块碰撞的时限与方式——长江中下游地区震旦纪-侏罗纪沉积环境的演变.地质学报, 75(1): 25-34. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200101004.htm 李诺, 陈衍景, 张辉, 等, 2007.东秦岭斑岩钼矿带的地质特征和成矿构造背景.地学前缘, 14(5): 186-198. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200705021.htm 李石, 王彤, 1991.桐柏山-大别山花岗岩类地球化学.武汉:中国地质大学出版社. 李永峰, 2005. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用(博士学位论文). 北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-2005102541.htm 刘敦一, 汤加富, 周存亭, 等, 2002.大别造山带核部桃园寨火山岩锆石U-Pb定年及其地质意义.地质学报, 76(2): 217-221. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200202011.htm 刘金龙, 孙丰月, 林博磊, 等, 2015.吉林延边地区棉田岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学, 40(1): 49-60. http://www.earth-science.net/WebPage/Article.aspx?id=3020 刘清泉, 邵拥军, 张智慧, 等, 2015.大别山姚冲花岗岩锆石U-Pb年龄、Hf同位素及地质意义.中国有色金属学报, 25(2): 479-491. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201502027.htm 刘清泉, 张智慧, 李永峰, 等, 2014.大别山北麓斑岩型钼矿床地质特征、成矿时代及其成矿构造背景.地质与勘探, 50(2): 199-215. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201402001.htm 卢欣祥, 1998.秦岭花岗岩揭示的秦岭构造演化过程.地球科学进展, 13(2): 213-214. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ802.018.htm 毛景文, 张作衡, 余金杰, 等, 2003.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示.中国科学(D辑), 33(4): 289-299. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304000.htm 孟芳, 2013. 大别山北麓灵山岩体的成岩成矿作用研究(博士学位论文). 北京: 中国地质大学. 任纪舜, 1991.论中国大陆岩石圈构造的基本特征.中国区域地质, (4): 289-293. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199104000.htm 隋振民, 陈跃军, 2011.大兴安岭东部花岗岩类锆石饱和温度及其地质意义.世界地质, 30(2): 162-172. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201102002.htm 汤加富, 侯明金, 李怀坤, 等, 2003.扬子地块东北缘多期叠加变形及形成演化.大地构造与成矿学, 27(4): 313-326. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200304002.htm 王勇生, 朱光, 王道轩, 等, 2004.大别山东缘郯庐两期走滑剪切带形成的温压条件与造山带折返的关系.大地构造与成矿学, 28(3): 228-238. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200403001.htm 魏庆国, 高昕宇, 赵太平, 等, 2010.大别北麓汤家坪花岗斑岩锆石LA-ICP-MS U-Pb定年和岩石地球化学特征及其对岩石成因的制约.岩石学报, 26(5): 1550-1562. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005020.htm 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6): 1217-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm 续海金, 叶凯, 马昌前, 2008.北大别早白垩纪花岗岩类Sm-Nd和锆石Hf同位素及其构造意义.岩石学报, 24(1): 87-103. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801008.htm 徐克勤, 胡受奚, 孙明志, 等, 1982.华南两个成因系列花岗岩及其成矿特征.矿床地质, 1(2): 1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX198201000.htm 徐树桐, 江来利, 刘贻灿, 等, 1992.大别山区(安徽部分)的构造格局和演化过程.地质学报, 66(1): 1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199201000.htm 许志琴, 张泽明, 刘福来, 等, 2003.苏鲁高压-超高压变质带的折返构造及折返机制.地质学报, 77(4): 433-450. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200304000.htm 薛怀民, 董树文, 刘晓春, 2002.北大别东部白垩纪埃达克质火山岩及其锆石U-Pb年代学.地球化学, 31(5): 455-463. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200205005.htm 杨梅珍, 曾键年, 覃永军, 等, 2010.大别山北缘千鹅冲斑岩型钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地质科技情报, 29(5): 35-45. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201005009.htm 杨梅珍, 曾键年, 李法岭, 等, 2011a.河南新县大银尖钼矿床成岩成矿作用地球化学及地质意义.地球学报, 32(3): 279-292. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201103005.htm 杨梅珍, 曾键年, 任爱群, 等, 2011b.河南罗山县母山钼矿床成矿作用特征及锆石LA-ICP-MS U-Pb同位素年代学.矿床地质, 30(3): 435-447. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201103006.htm 杨巍然, 杨坤光, 刘忠明, 等, 1999.桐柏-大别造山带加里东期构造热事件及其意义.地学前缘, 6(4): 247-253. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199904011.htm 杨泽强, 唐相伟, 2015.北大别山肖畈岩体地球化学特征和锆石LA-ICP-MS U-Pb同位素定年.地质学报, 89(4): 692-700. http://cdmd.cnki.com.cn/Article/CDMD-82501-1014269104.htm 翟明国, 2008.华北克拉通破坏前的状态——对讨论华北克拉通破坏问题的一个建议.大地构造与成矿学, 32(4): 516-520. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200804017.htm 张国伟, 张本仁, 袁学诚, 等, 2001.秦岭造山带与大陆动力学.北京:科学出版社. 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9): 2249-2269. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm 张硕, 史洪峰, 郝海建, 等, 2014.青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义.地球科学, 39(5): 509-524. http://www.earth-science.net/WebPage/Article.aspx?id=2860 周红升, 刘明华, 严育通, 等, 2013.大别造山带新县岩体的锆石U-Pb年龄及其地质意义.信阳师范学院学报(自然科学版), 26(1): 94-98. http://www.cnki.com.cn/Article/CJFDTOTAL-XYSK201301023.htm