Using Gassmann Equation Predict Marine Sediment Porosity
-
摘要: 孔隙度对于石油勘探和海底测量等领域是一个重要的参数,但是海洋沉积物孔隙度的预测一直是个难点.对Gassmann方程进行变换,利用孔隙度和纵波声速的相关关系求解出孔隙度预测公式,并将该公式应用于南海南部海底沉积物孔隙度预测中.沉积物声速是根据南海采集的柱状样品在甲板上测量的,孔隙度是在实验室测量的.将Gassmann方程预测结果与沉积物柱状样品实验室测量结果进行对比研究.结果表明Gassmann方程能够较好的预测海底沉积物的孔隙度,对浅海地区的孔隙度预测尤为准确.利用误差范数分析法对Gassmann方程各输入参数进行敏感性分析,发现沉积物纵波声速对孔隙度预测精度影响最大.Abstract: Porosity is one of the most important parameters for oil exploration and ocean topographic survey. The prediction of porosity in marine sediments has always been a difficulty. In this paper, the Gassmann equation was rearranged and utilized to estimate porosity based on the relationship between porosity and compressional wave velocity. The compressional wave velocity was measured on the deck based on the core samples collected in the southern South China Sea, and the porosity was measured in the laboratory. Porosity calculated using Gassmann equation was compared with that measured in laboratory. The results show that Gassmann equation can better predict the seafloor sediment porosity, and that is particularly accurate at shallow water areas. The sensitivity of Gassmann equation was studied by error norm method, and the results show that compressional wave velocity is the most influential parameter for porosity prediction.
-
Key words:
- porosity /
- Gassmann equation /
- seafloor sediment /
- compressional wave velocity /
- petroleum geology /
- marine geology
-
表 1 Gassmann方程参数
Table 1. Gassmann equation parameters
方法 参数 数值 Gassmann方程 纵波声速Vp(m/s) 实测 密度ρ(kg/m3) 实测 颗粒体积模量Kg(Pa) 1.50×1010 孔隙水体积模量Kw(pa) 2.18×109 框架体积模量Kf(pa) 7.78×107 沉积物剪切模量μ(pa) 2.22×107 -
Anderson, R.S., 1974.Statistical Correlation of Physical Properties and Sound Velocity in Sediments.In:Hampton, L., Physics of Sound in Marine Sediments.Springer, New York, 481-518. Berryman, J.G., 1999.Origin of Gassmann's Equations.Geophysics, 64(5):1627-1629. doi: 10.1190/1.1444667 Biot, M.A., 1956a.Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid:I.Low-Frequency Range.The Journal of the Acoustical Society of America, 28(2):168-178. doi: 10.1121/1.1908239 Biot, M.A., 1956b.Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid:Ⅱ.Higher Frequency Range.The Journal of the Acoustical Society of America, 28(2):179-191. doi: 10.1121/1.1908241 Castagna, J.P., Batzle, M.L., Eastwood, R.L., 1985.Relationships between Compressional-Wave and Shear-Wave Velocities in Clastic Silicate Rocks.Geophysics, 50(4):571-581. doi: 10.1190/1.1441933 Ding, F.H., Han, X.L., Ha, Y.Y., et al., 2015.Relationship of Porosity and Volume Compression Coefficient of Solid Skeleton and Water in Artesian Well Aquifer.Earth Science, 40(7):1248-1253(in Chinese with English abstract). Dvorkin, J., Nur, A., 1996.Elasticity of High-Porosity Sandstones:Theory for Two North Sea Data Sets.Geophysics, 61(5):1363-1370. doi: 10.1190/1.1444059 Foti, S., Lai, C.G., Lancellotta, R., 2002.Porosity of Fluid-Saturated Porous Media from Measured Seismic Wave Velocities.Geotechnique, 52(5):359-373. doi: 10.1680/geot.52.5.359.38711 Gardner, G.H.F., Gardner, L.W., Gregory, A.R., 1974.Formation Velocity and Density—The Diagnostic Basics for Stratigraphic Traps.Geophysics, 39(6):770-780. doi: 10.1190/1.1440465 Geertsma, J., Smit, D.C., 1961.Some Aspects of Elastic Wave Propagation in Fluid-Saturated Porous Solids.Geophysics, 26(2):169-181. doi: 10.1190/1.1438855 Hamilton, E.L., 1971.Elastic Properties of Marine Sediments.Journal of Geophysical Research, 76(2):579-604. doi: 10.1029/JB076i002p00579 Hamilton, E.L., Bachman, R.T., 1982.Sound Velocity and Related Properties of Marine Sediments.The Journal of the Acoustical Society of America, 72(6):1891-1904. doi: 10.1121/1.388539 Hou, Z., Guo, C., Wang, J., et al., 2014.Tests of New In-Situ Seabed Acoustic Measurement System in Qingdao.Chinese Journal of Oceanology and Limnology, 32:1172-1178. doi: 10.1007/s00343-015-4013-1 Hou, Z.Y., Guo, C.S., Wang, J.Q., 2013.Surface Sediments Acoustic Velocity and Porosity Correlation in Nansha Sea Area Abyssal Region.Marine Sciences, 37(7):77-82 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYKX201307012.htm Jackson, D., Richardson, M., 2007.High-Frequency Seafloor Acoustics.Springer, New York. Liu, B., Han, T., Kan, G., et al., 2013.Correlations between the In Situ Acoustic Properties and Geotechnical Parameters of Sediments in the Yellow Sea, China.Journal of Asian Earth Sciences, 77:83-90.doi: 10.1016/j.jseaes.2013.07.040 Mindlin, R.D., 1949.Compliance of Elastic Bodies in Contact.Journal of Applied Mechanics, 16:259-268. http://ci.nii.ac.jp/naid/10003002284 Pickett, G.R., 1963.Acoustic Character Logs and Their Applications in Formation Evaluation.Journal of Petroleum Technology, 15(6):659-667. doi: 10.2118/452-PA Santamarina, J.C., Klein, A., Fam, M.A., 2001.Soils and Waves:Particulate Materials Behavior, Characterization and Process Monitoring.Journal of Soils and Sediments, 1(2):130-130. doi: 10.1007/BF02987719 Stoll, R.D., Bautista, E.O., 1998.Using the Biot Theory to Establish a Baseline Geoacoustic Model for Seafloor Sediments.Continental Shelf Research, 18(14):1839-1857. http://cat.inist.fr/?aModele=afficheN&cpsidt=9908697 Wang, Q., Liu, Y.C., Wu, Y.Z., et al., 2008.Relation between the Acoustic Characters of Sea Bottom Sediment and the Seawater Depth.Applied Acoustics, 27(3):217-221(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYSN200803012.htm Wood, A.B., 1941.A Textbook of Sound:Being an Account of the Physics of Vibrations with Special Reference to Recent Theoretical and Technical Developments.Macmillan Publishers Limited, Washington. Wyllie, M.R.J., Gregory, A.R., Gardner, L.W., 1956.Elastic Wave Velocities in Heterogeneous and Porous Media.Geophysics, 21(1):41-70. doi: 10.1190/1.1438217 Yoon, H.K., Lee, J.S., 2010.Field Velocity Resistivity Probe for Estimating Stiffness and Void Ratio.Soil Dynamics & Earthquake Engineering, 30:1540-1549. http://cat.inist.fr/?aModele=afficheN&cpsidt=23232790 Zhang, H., Shao, L., Zhang, G.C., et al., 2015.Distribution and Petroleum Geologic Significance of Eocene Marine Strata in the South China Sea.Earth Science, 40(4):660-670(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201504007.htm Zou, D.P., Wu, B.H., Lu, B., 2007.A Research on Error Analysis of Seabed Sediment Porosity by Calculation Method and Sonic Speed Retrieval Method.Journal of Tropical Oceanography, 26(4):32-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY200704006.htm 丁风和, 韩晓雷, 哈媛媛, 等, 2015.承压井含水层孔隙度与固体骨架和水的体积压缩系数之间的关系.地球科学, 40(7):1248-1253. http://www.earth-science.net/WebPage/Article.aspx?id=3109 侯正瑜, 郭常升, 王景强, 2013.南沙海域深水区表层沉积物声速与孔隙度相关关系.海洋科学, 37(7):77-82. http://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201307012.htm 王琪, 刘雁春, 吴英姿, 等, 2008.海底沉积物声特性与海水深度变化关系的研究.应用声学, 27(3):217-221. doi: 10.11684/j.issn.1000-310X.2008.03.010 张浩, 邵磊, 张功成, 等, 2015.南海始新世海相地层分布及油气地质意义.地球科学, 40(4):660-670. http://www.earth-science.net/WebPage/Article.aspx?id=3076 邹大鹏, 吴百海, 卢博, 2007.海底沉积物孔隙度计算方法与声速反演的误差分析研究.热带海洋学报, 26(4):32-36. http://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200704006.htm