LA-ICP-MS In Situ Trace Element Analysis of Pyrite from Dongtongyu Gold Deposit and Its Metallogenic Significance, Xiaoqinling Gold District
-
摘要: 位于华北克拉通南缘的小秦岭地区是我国仅次于胶东的大型金矿床集中区,但金矿床的成矿物质来源及成因问题一直存在较大争议.以华北南缘小秦岭矿集区东桐峪金矿床中的黄铁矿作为研究对象,在黄铁矿显微结构研究的基础上利用LA-ICP-MS对黄铁矿的微量元素进行原位分析,为进一步认识东桐峪金矿床及区内其他同类型矿床的成因提供新的资料和制约.东桐峪金矿床的黄铁矿从早到晚依次划分为3个世代(PyⅠ、PyⅡ和PyⅢ).PyⅠ主要形成于粗粒黄铁矿-石英阶段,颗粒粗大且自形程度高,呈星点状或斑点状赋存于乳白色石英脉中.PyⅡ主要形成于石英-中细粒黄铁矿阶段,呈半自形-他形结构且裂隙发育,常被晚期石英、多金属硫化物、自然金等矿物充填.PyⅢ主要形成于多金属硫化物阶段,常呈他形粒状结构与黄铜矿、方铅矿及闪锌矿等硫化物密切共生.LA-ICP-MS分析结果显示,PyⅠ中As平均含量为16.63×10-6,Au、Ag和Te含量较低且常位于检测限以下;相较而言,PyⅡ中As含量稍低,而Au、Ag和Te含量略高(其中Au含量为0.10×10-6~0.59×10-6);PyⅢ中Au、Ag和Te含量差异较大且显著升高,其中Au、Te含量最高可达35.58×10-6和79.79×10-6,而As含量较低且大部分数值低于检测限;不同世代黄铁矿的Co/Ni比值基本上都大于1,且PyⅢ的Co、Ni含量和Co/Ni比值明显低于PyⅡ和PyⅠ.以上结果表明,东桐峪金矿床的载金矿物黄铁矿中As的含量很低,金的富集与As无关;不同世代的黄铁矿中Au、Ag和Te之间存在显著且稳定的线性正相关关系,暗示金矿化与Te关系密切.另外,第3世代黄铁矿(PyⅢ)中Au、Ag及Te存在显著富集,指示Te(而不是As)在金和银的迁移、搬运、富集、沉淀等过程中具有重要作用.华北克拉通南缘小秦岭地区晚中生代大规模的金成矿作用及金矿床中普遍存在Te-Au-Ag矿物,且黄铁矿中As含量低、Te含量高等特征,暗示该区金矿床的成矿物质/成矿流体可能来自深部岩浆的脱挥发分或地幔脱气作用,而与区域变质作用的关系不大.Abstract: Situated in the southern margin of the North China craton, the Xiaoqinling district is one of the most important gold metallogenic belts and has been the second largest gold producer in China. Although most gold deposits have been extensively studied, issues related to the source of the ore materials and fluids remain debated. This paper presents a study of the distribution characteristics of trace elements in gold-bearing pyrite to explore the source of ore-forming materials, the precipitation mechanism and ore genesis. The Dongtongyu lode gold deposit is the important deposit in Xiaoqinling and pyrite is the predominant sulfide mineral. Three generations of pyrite were identified, broadly corresponding to the three mineralization stages, and termed as the first generation, second generation and third generation (PyⅠ, PyⅡ and PyⅢ). The first generation (PyⅠ) is mainly present as isolations or as aggregate masses dispersed in milky quartz veins, consisting of coarse-grained, euhedral to subhedral crystals. The second generation (PyⅡ) pyrite occurs as veins or veinlets generally associated with light gray quartz or cutting milky quartz. Many grains are porous and contain abundant micro-fractures that are usually filled with later-stage quartz, other sulfide minerals and free gold. The third generation (PyⅢ) pyrite is commonly intergrown with other sulfide minerals including chalcopyrite, sphalerite, and galena. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) results show that the average content of As in PyⅠ is 16.63×10-6, and the contents of Au, Ag and Te are low and often below detection limit. In contrast to PyⅠ, the content of As in PyⅡ is relatively lower, and that of Au, Ag and Te are slightly higher. Particularly, the stage PyⅢ exhibits distinguished compositions and significantly enriched in Au (up to 35.58×10-6), Ag and Te (up to 79.79 ×10-6), but with most of the content of As blow the detection limits. Moreover, The Co/Ni ratios of pyrite in different generations are basically > 1, and the contents of Co, Ni and Co/Ni in PyⅢ are much lower than those in PyⅡ and PyⅠ. The results show that As is always below or only marginally higher than the detection limits, and plays an insignificant role in gold mineralization. There is prominently positive correlation relationship between Au, Ag, and Te in the third generation of pyrite (PyⅢ), indicating that tellurium is closely related with gold and silver. Moreover, significant Au, Ag and Te are enriched in the PyⅢ, highlighting the role of Te as important scavengers in transfer, transport, enrichment and precipitation of gold and silver. An intimate Te-Au-Ag association has been widely noticed in widespread gold mineralization in Xiaoqinling gold district, and low-As, high-Te in pyrite, suggesting that the ore-forming materials and ore-forming fluids of the gold deposits may have come from the deep magma devolatilization or mantle degassing, rather than being involved with the regional metamorphism.
-
Key words:
- LA-ICP-MS /
- pyrite /
- tellurium /
- Dongtongyu gold deposit /
- Xiaoqinling /
- trace element /
- ore geology
-
图 1 华北克拉通南缘小秦岭金矿区域地质和金矿床分布
Fig. 1. The regional geology and distribution of gold deposits in the Xiaoqinling district, southern margin of the North China Craton
图 4 东桐峪金矿床围岩蚀变特征
a.围岩发生强烈的钾长石化,并有晚期石英脉体穿插,局部有绿泥石化、黄铁矿化等蚀变作用;b.捕虏的围岩角砾发生强烈的绢云母化、黄铁矿化;c.黄铁矿、方铅矿等矿物呈稠密浸染状分布在强烈绢云母化、硅化的蚀变岩石中;d.黄铁绢英岩,经过强烈的黄铁矿化、绢云母化及硅化,绢云母颗粒较粗;e.强烈绢云母化蚀变,绢云母与黄铁矿密切共生,局部并见黄铁矿颗粒包裹绢云母集合体、石英等矿物;f.绢云母化、硅化及黄铁矿化蚀变作用,存在晚期石英脉穿插早期绢云母集合体.Kf.钾长石;Chl.绿泥石;Ser.绢云母;Qz.石英;Py.黄铁矿;Gn.方铅矿
Fig. 4. The characteristics of wall rock alteration in Dongtongyu gold deposit
图 5 东桐峪金矿床中不同世代黄铁矿的结构、形态及分布特征
a~c.粗粒第1世代黄铁矿(PyⅠ)晶体,以自形、立方体晶形呈斑点状散布于乳白色石英中;d~f.中细粒第2世代黄铁矿(PyⅡ)呈半自形—他形,细脉状、网脉状等分布于烟灰色石英脉中,该世代黄铁矿碎裂尤为发育,形成众多裂隙被石英等矿物胶结;g~i.中细粒第3世代黄铁矿(PyⅢ)与黄铜矿、方铅矿及闪锌矿等硫化物密切共生,黄铁矿颗粒中常存在其他硫化物的包裹体,如方铅矿、黄铜矿等;图c, e, f, i中位于黄铁矿颗粒内的圆圈为激光剥蚀产生的剥蚀坑;Py.黄铁矿;PyⅠ.第1世代黄铁矿;PyⅡ.第2世代黄铁矿;PyⅢ.第3世代黄铁矿;Cpy.黄铜矿;Ccp.黄铜矿;Gn.方铅矿;Sp.闪锌矿;Qz.石英
Fig. 5. Photographs and reflected-light photomicrographs showing different textures and morphologies of different generations of pyrites from Dongtongyu gold deposit
表 1 小秦岭东桐峪金矿床不同世代黄铁矿LA-ICP-MS微量元素分析结果
Table 1. Trace elements analysis for different generations of pyrites from Dongtongyu gold deposit, Xiaoqinling
样品编号 黄铁矿世代 微量元素含量(10-6) Co Ni As Au Ag Te Cu Pb Zn DT43-1 PyⅠ 112.15 9.33 0.68 0.06 0.15 0.20 0.33 0.14 - DT43-2 PyⅠ 301.58 39.62 1.01 - - 0.06 0.28 0.04 - DT43-3 PyⅠ 12.60 1.17 39.20 - - 0.48 - 0.05 - DT43-4 PyⅠ 0.17 0.06 40.40 - - 0.15 - 0.02 0.19 DT43-5 PyⅠ 1.17 1.08 - 0.01 0.03 0.43 2.68 0.08 0.28 DT43-6 PyⅠ 0.61 0.39 - - - 0.78 0.62 0.01 - DT43-7 PyⅠ 7.81 4.40 1.86 0.04 0.05 0.02 0.64 1.21 - DT65-1 PyⅡ 134.26 9.69 0.98 0.40 0.66 0.65 0.37 0.36 0.22 DT65-2 PyⅡ 1.21 1.11 - 0.30 0.64 1.41 38.56 0.38 0.29 DT65-3 PyⅡ 150.76 15.04 21.08 0.59 48.05 0.17 57.13 5.35 2.27 DT65-4 PyⅡ 72.67 60.11 0.99 0.16 3.54 1.49 2.72 1.29 0.39 DT65-5 PyⅡ 13.31 10.08 - 0.18 0.96 0.85 3.79 0.15 - DT65-6 PyⅡ 126.13 18.59 12.97 0.10 0.89 - 4.58 0.10 0.20 DT65-7 PyⅡ 77.80 47.88 10.94 0.12 1.11 - 23.15 8.78 - DT42-1 PyⅢ 3.65 3.26 0.80 35.58 109.94 79.79 38.45 16.17 4.96 DT42-2 PyⅢ 3.47 3.24 0.72 13.30 39.20 29.18 121.68 8.72 3.21 DT42-3 PyⅢ 1.47 0.82 - 1.33 3.79 2.43 3.82 1.15 0.30 DT42-4 PyⅢ 5.87 5.71 - 4.36 14.26 6.98 11.90 2.10 3.91 DT42-5 PyⅢ 0.59 0.40 - 5.84 127.16 17.81 48.34 0.98 2.68 DT42-6 PyⅢ 1.21 1.33 - 13.76 6.43 23.82 2.22 20.70 - DT42-7 PyⅢ 1.24 1.15 - 3.57 9.11 7.84 1.93 30.31 - 注:-代表检测限以下. -
Afifi, A.M., Kelly, W.C., Essene, E.J., 1988a.Phase Relations among Tellurides, Sulfides, and Oxides:Ⅰ.Thermochemical Data and Calculated Equilibria.Economic Geology, 83(2):377-394.doi: 10.2113/Gsecongeo.83.2.377 Afifi, A.M., Kelly, W.C., Essene, E.J., 1988b.Phase Relations among Tellurides, Sulfides, and Oxides:Ⅱ.Applications to Telluride-Bearing Ore Deposits.Economic Geology, 83(2):395-404.doi: 10.2113/Gsecongeo.83.2.395 Ahmad, M., Solomon, M., Walsh, J.L., 1987.Mineralogical and Geochemical Studies of the Emperor Gold Telluride Deposit, Fiji.Economic Geology, 82(2):345-370.doi: 10.2113/Gsecongeo.82.2.345 Ashley, P.M., Creagh, C.J., Ryan, C.G., 2000.Invisible Gold in Ore and Mineral Concentrates from the Hillgrove Gold-Antimony Deposits, Nsw, Australia.Mineralium Deposita, 35(4):285-301.doi: 10.1007/S001260050242 Baker, T., Mustard, R., Brown, V., et al., 2006.Textural and Chemical Zonation of Pyrite at Pajingo:A Potential Vector to Epithermal Gold Veins.Geochemistry Exploration Environment Analysis, 6(4):283-293.doi: 10.1144/1467-7873/05-077 Barton, P.B., Skinner, B.J., 1979.Sulfide Mineral Stabilities.In:Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits.Wiley Interscience, New York, 278-403. Bi, S.J., 2011.The Mesozoic Large-Scale Mineralization in the Xiaoqinling Gold District:A Relationship with the Destruction of the North China Craton(Dissertation).China University of Geosciences, Wuhan, 15-74 (in Chinese with English abstract). Bi, S.J., Li, J.W., Li, Z.K., 2011.Geological Significance and Geochronology of Paleoproterozoic Mafic Dykes of Xiaoqinling Gold District, Southern Margin of the North China Craton.Earth Science, 36(1):17-32 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx201101004.htm Bi, S.J., Li, J.W., Zhou, M.F., et al., 2011.Gold Distribution in As-Deficient Pyrite and Telluride Mineralogy of the Yangzhaiyu Gold Deposit, Xiaoqinling District, Southern North China Craton.Mineralium Deposita, 46(8):925-941.doi: 10.1007/S00126-011-0359-2 Boyle, R.W., 1979.The Geochemistry of Gold and Its Deposits.Geological Survey of Canada, Ottawa, 280-584. http://publications.gc.ca/site/eng/286638/publication.html Bristol, S.K., Spry, P.G., Voudouris, P.C., et al., 2015.Geochemical and Geochronological Constraints on the Formation of Shear-Zone Hosted Cu-Au-Bi-Te Mineralization in the Stanos Area, Chalkidiki, Northern Greece.Ore Geology Reviews, 66:266-282.doi: 10.1016/J.Oregeorev.2014.11.001 Cabri, L.J., Chryssoulis, S.L., Devilliers, J., et al., 1989.The Nature of 'Invisible' Gold in Arsenopyrite.The Canadian Mineralogist, 27(3):353-362. http://ci.nii.ac.jp/naid/80004837060/ja/ Cepedal, A., Fuertes-Fuente, M., Martín-Izard, A., et al., 2006.Tellurides, Selenides and Bi-Mineral Assemblages from the Río Narcea Gold Belt, Asturias, Spain:Genetic Implications in Cu-Au and Au Skarns.Mineralogy and Petrology, 87(3-4):277-304.doi: 10.1007/S00710006-0127-7 Chen, L., Cheng, C., Wei, Z.G., 2009.Seismic Evidence for Significant Lateral Variations in Lithospheric Thickness beneath the Central and Western North China Craton.Earth and Planetary Science Letters, 286(1-2):171-183.doi: 10.1016/J.Epsl.2009.06.022 Chen, Y.C., Yin, J.Z., Zhou, J.X., et al., 1994.Geological Characteristics of Dashuigou Tellurium Ore Deposit in Shimian County, Sichuan Province, China.Scientia Geologica Sinica, 29(2):165-167 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX402.008.htm Chen, Y.J., Fu, S.G., 1992.Gold Metallogeny of Western Henan Province.Geological Publishing House, Beijing(in Chinese). Ciobanu, C.L., Birch, W.D., Cook, N.J., et al., 2010.Petrogenetic Significance of Au-Bi-Te-S Associations:The Example of Maldon, Central Victorian Gold Province, Australia.Lithos, 116(1-2):1-17.doi: 10.1016/J.Lithos.2009.12.004 Ciobanu, C.L., Cook, N.J., Pring, A., et al., 2009.'Invisible Gold' in Bismuth Chalcogenides.Geochimica et Cosmochimica Acta, 73(7):1970-1999.doi: 10.1016/J.Gca.2009.01.006 Ciobanu, C.L., Cook, N.J., Spry, P.G., 2006.Preface-Special Issue:Telluride and Selenides Minerals in Gold Deposits—How and Why? Mineralogy and Petrology, 87(3-4):163-169.doi: 10.1007/S00710-006-0133-9 Cook, N.J., Chryssoulis, S.L., 1990.Concentrations of Invisible Gold in the Common Sulfides.The Canadian Mineralogist, 28(1):1-16. https://www.researchgate.net/publication/242239484_CONCENTRATIONS_OF_INVISIBLE_GOLD_IN_THE_COMMON_SULFIDES Cook, N.J., Ciobanu, C.L., 2004.Bismuth Tellurides and Sulphosalts from the Large Hydrothermal System, Metaliferi Mts, Romania:Paragenesis and Genetic Significance.Mineralogical Magazine, 68(2):301-321.doi: 10.1180/0026461046820188 Cook, N.J., Ciobanu, C.L., Mao, J.W., 2009.Textural Control on Gold Distribution in As-Free Pyrite from the Dongping, Huangtuliang and Hougou Gold Deposits, North China Craton (Hebei Province, China).Chemical Geology, 264(1-4):101-121.doi: 10.1016/J.Chemgeo.2009.02.020 Danyushevsky, L., Robinson, P., Gilbert, S., 2012.Routine Quantitative Multi-Element Analysis of Sulphide Minerals by Laser Ablation ICP-MS:Standard Development and Consideration of Matrix Effects.Geochemistry:Exploration, Environment, Analysis, 11(1):51-60.doi: 10.1144/1467-7873/09-244 Dewaele, S., Muchez, P., Hertogen, J., 2007.Production of a Matrix-Matched Standard for Quantitative Analysis of Iron Sulphides by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry by Welding:A Pilot Study.Geologica Belgica, 10(1-2):109-119. https://www.researchgate.net/publication/271509376_Production_of_a_matrix-matched_standard_for_quantitative_analysis_of_iron_sulphides_by_laser_ablation_inductively_coupled_plasma-mass_spectrometry_by_welding_a_pilote_study Ding, L.X., Ma, C.Q., Li, J.W., et al., 2011.Timing and Genesis of the Adakitic and Shoshonitic Intrusions in the Laoniushan Complex, Southern Margin of the North China Craton:Implications for Post-Collisional Magmatism Associated with the Qinling Orogen.Lithos, 126(7):212-232.doi: 10.1016/J.Lithos.2011.07.008 Fan, H.R., Hu, F.F., Wilde, S.A., et al., 2011.The Qiyugou Gold-Bearing Breccia Pipes, Xiong'ershan Region, Central China:Fluid-Inclusion and Stable-Isotope Evidence for an Origin from Magmatic Fluids.International Geology Review, 53(1):25-45.doi: 10.1080/00206810902875370 Feng, J.Z., Yue, Z.S., Xiao, R.G., et al., 2009.Metallogeny and Prediction of Deep-Sited Gold Deposits in Xiaoqinling Area.Geological Publishing House, Beijing (in Chinese). Fleet, M.E., Chryssoulis, S.L., Maclean, P.J., 1993.Arsenian Pyrite from Gold Deposits:Au and As Distribution Investigated by SIMS and EMP, and Color Staining and Surface Oxidation by Xps and Lims.The Canadian Mineralogist, 31:1-17. https://www.researchgate.net/publication/279553357_Arsenian_pyrite_from_gold_deposits_Au_and_As_distribution_investigated_by_SIMS_and_EMP_and_color_staining_and_surface_oxidation_by_XPS_and_LIMS Fornadel, A.P., Spry, P.G., Jackson, S.E., et al., 2014.Methods for the Determination of Stable Te Isotopes of Minerals in the System Au-Ag-Te by MC-ICP-MS.Journal of Analytical Atomic Spectrometry, 29(29):623-637.doi: 10.1039/C3ja50237f Franchini, M., McFarlane, C., Maydagan, L., et al., 2015.Trace Metals in Pyrite and Marcasite from the Agua Rica Porphyry-High Sulfidation Epithermal Deposit, Catamarca, Argentina:Textural Features and Metal Zoning at the Porphyry to Epithermal Transition.Ore Geology Reviews, 66:366-387.doi: 10.1016/J.Oregeorev.2014.10.022 Fulignati, P., Sbrana, A., 1998.Presence of Native Gold and Tellurium in the Active High-Sulfidation Hydrothermal System of the La Fossa Volcano (Vulcano, Italy).Journal of Volcanology and Geothermal Research, 86(1-4):187-198.doi: 10.1016/S0377-0273(98)00078-X Genkin, A.D., Bortnikov, N.S., Cabri, L.J., et al., 1998.A Multidisciplinary Study of Invisible Gold in Arsenopyrite from Four Mesothermal Gold Deposits in Siberia, Russian Federation.Economic Geology, 93(4):463-487.doi: 10.2113/Gsecongeo.93.4.463 Goldfarb, R.J., Groves, D.I., Gardoll, S., 2001.Orogenic Gold and Geologic Time:A Global Synthesis.Ore Geology Reviews, 18(1-2):1-73.doi: 10.1016/S0169-1368(01)00016-6 Groves, D.I., Goldfarb, R.J., Gebre-Mariam, S.G., et al., 1998.Orogenic Gold Deposits:A Proposed Classification in the Context of Their Crustal Distribution and Their Relationship to Other Gold Deposit Types.Ore Geology Reviews, 13(1-5):7-27.doi: 10.1016/S0169-1368(97)00012-7 Grundler, P.V., Brugger, J., Etschmann, B.E., et al., 2013.Speciation of Aqueous Tellurium(Iv) in Hydrothermal Solutions and Vapors, and the Role of Oxidized Tellurium Species in Te Transport and Gold Deposition.Geochimica et Cosmochimica Acta, 120:298-325.doi: 10.1016/J.Gca.2013.06.009 Guo, B., Zhu, L.M., Li, B., et al., 2009.Zircon U-Pb Age and Hf Isotope Composition of the Huashan and Heyu Granite Plutons at the Southern Margin of North China Craton:Implications for Geodynamic Setting.Acta Petrologica Sinica, 25(2):265-281 (in Chinese with English abstract). http://www.oalib.com/paper/1471622 Helmy, H.M., 2005.Melonite Group Minerals and Other Tellurides from Three Cu-Ni-PGE Prospects, Eastern Desert, Egypt.Ore Geology Reviews, 26(3-4):305-324.doi: 10.1016/J.Oregeorev.2005.04.001 Hu, H., L, J.W., Deng, X.D., 2011.LA-ICP-MS Zircon U-Pb Dating of Granitoid Intrusions Related to Iron-Copper Polymetallic Deposits in Luonan-Lushi Area of Southern North China Craton and Its Geological Implications.Mineral Deposits, 30(6):979-1001(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201106003.htm Hu, J., Jiang, S.Y., Zhao, H.X., et al., 2012.Geochemistry and Petrogenesis of the Huashan Granites and Their Implications for the Mesozoic Tectonic Settings in the Xiaoqinling Gold Mineralization Belt, NW China.Journal of Asian Earth Sciences, 56:276-289.doi: 10.1016/J.Jseaes.2012.05.016 Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008.Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas.Journal of Analytical Atomic Spectrometry, 23(8):1093-1101.doi: 10.1039/B804760j Hu, Z.G., 1994.Complex Structure of the Small Qinling Metamorphic Core.Geotectonica et Metallogenia, 18(2):147-154 (in Chinese with English abstract). doi: 10.1080/00206814.2012.704673?src=recsys&journalCode=tigr20 Hoefs, J., 2009.Stable Isotope Geochemistry.Springer, Berlin. Jian, W., Lehmann, B., Mao, J.W., et al., 2014.Telluride and Bi-Sulfosalt Mineralogy of the Yangzhaiyu Gold Deposit, Xiaoqinling Region, Central China.The Canadian Mineralogist, 52(5):883-898. doi: 10.3749/canmin.1400007 Jiang, N., 1995.The Source of Ore-Forming Materials in Xiaoqinling Gold Deposits.Journal of Precious Metallic Geology, 4(4):269-274(in Chinese with English abstract). Koglin, N., Frimmel, H.E., Minter, W.E.L., et al., 2010.Trace-Element Characteristics of Different Pyrite Types in Mesoarchaean to Palaeoproterozoic Placer Deposits.Mineralium Deposita, 45(3):259-280.doi: 10.1007/S00126-009-0272-0 Large, R.R., Danyushevsky, L., Hollit, C., et al., 2009.Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique:Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits.Economic Geology, 104(5):635-668.doi: 10.2113/Gsecongeo.104.5.635 Li, C.L., 2011.The Geochronology and Tectonic Implications of Granite Gneiss and Xiaohe Granite in Taihua Group of Xiaoqinling Area(Dissertation).China University of Geosciences, Beijing, 22-23 (in Chinese with English abstract). Li, J.W., Bi, S.J., Selby, D., et al., 2012.Giant Mesozoic Gold Provinces Related to the Destruction of the North China Craton.Earth and Planetary Science Letters, 349-350:26-37.doi: 10.1016/J.Epsl.2012.06.058 Li, S.M., Qu, L.Q., Su, Z.B., et al., 1996.Geology and Metallogenic Prediction of Gold Ore in Xiaoqinling Area.Geological Publishing House, Beijing(in Chinese with English abstract). Li, Y.F., 2005.The Temporal-Spatial Evolution of Mesozoic Granitoids in the Xiong'ershan Area and Their Relationships to Molybdenum-Gold Mineralization (Dissertation).China University of Geosciences, Beijing, 15-17 (in Chinese with English abstract). Liu, D.Y., Wilde, S.A., Wan, Y.S., et al., 2009.Combined U-Pb, Hafnium and Oxygen Isotope Analysis of Zircons from Meta-Igneous Rocks in the Southern North China Craton Reveal Multiple Events in the Late Mesoarchean-Early Neoarchean.Chemical Geology, 261(1-2):139-153.doi: 10.1016/J.Chemgeo.2008.10.041 Liu, J.C., Li, X.F., Liu, Y.F., et al., 2010.Mineralogical Characteristics of Telluride and Their Precipitation Mechanism in the Jinqingding Gold Deposit, Eastern Shandong, China.Geologcal Bulletin of China, 29(9):1319-1328 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201009008.htm Liu, R., Chen, M., Tian, X.S., et al., 2014.Geochemical, Zircon SIMS U-Pb Geochronological and Hf Isotopic Study on Lantian and Muhuguan Plutons in Eastern Qinling, China:Petrogenesis and Tectonic Implications.Acta Mieralogica Sinica, 34(4):469-480 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KWXB201404006.htm Liu, R., Li, J.W., Bi, S.J., et al., 2013.Magma Mixing Revealed from In Situ Zircon U-Pb-Hf Isotope Analysis of the Muhuguan Granitoid Pluton, Eastern Qinling Orogen, China:Implications for Late Mesozoic Tectonic Evolution.International Journal of Earth Sciences, 102(6):1583-1602.doi: 10.1007/S00531-013-0900-X Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51:537-571.doi: 10.1093/Petrology/Egp082 Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/J.Chemgeo.2008.08.004 Longerich, H.P., Jackson, S.E., Günther, D., 1996.Inter-Laboratory Note:Laser Ablation Inductively Coupled Plasma Mass Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation.Journal of Analytical Atomic Spectrometry, 11(9):899-904.doi: 10.1039/Ja9961100899 Lu, H.Z., Zhu, X.Q., Shan, Q., et al., 2013.Hydrothermal Evolution of Gold-Bearing Pyrite and Arsenopyrite from Different Types of Gold Deposits.Mineral Deposits, 32(4):823-842 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201304016.htm Lu, X.X., Yu, X.D., Yu, Z.P., et al., 2003.Characteristics of Ore-Forming Fluids in Gold Deposits of Xiaoqinling-Xiong'ershan Area.Mineral Deposits, 22(4):377-385 (in Chinese with English abstract). https://www.researchgate.net/publication/285152136_Characteristics_of_ore-forming_fluids_in_gold_deposits_of_Xiaoqinling-Xiong'ershan_area_J Luo, M.J., Li, S.M., Lu, X.X., et al., 2000.The Main Mineral of Mineralization and Metallogenic Series in Henan Province.Geological Publishing House, Beijing (in Chinese with English abstract). Luo, Z.K., Guan, K., Wang, M.Z., 1992.Studies of Au-Ag-Ti-Bi Minerals of the Xiaoqinling Gold Mine.Geology and Prospecting, 28(2):31-35(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKT199202006.htm Mao, J.W., Goldfarb, R.J., Zhang, Z., et al., 2002.Gold Deposits in the Xiaoqinling-Xiong'ershan Region, Qinling Mountains, Central China.Mineralium Deposita, 37(3):306-325.doi: 10.1007/S00126-001-0248-1 Mao, J.W., Xie, G.Q., Pirajno, F., et al., 2010.Late Jurassic-Early Cretaceous Granitoid Magmatism in Eastern Qinling, Central-Eastern China:SHRIMP Zircon U-Pb Ages and Tectonic Implications.Australian Journal of Earth Sciences, 57(1):51-78.doi: 10.1080/08120090903416203 Mao, J.W., Zhang, Z.H., Yu, J.J., et al., 2003.Geodynamic Settings of Mesozoic Large-Scale Mineralization in North China and Adjacent Areas—Implication from the Highly Precise and Accurate Ages of Metal Deposits.Science in China (Series D), 33(4):289-299(in Chinese). doi: 10.1007/BF02879527 Maslennikov, V.V., Maslennikova, S.P., Large, R.R., et al., 2009.Study of Trace Element Zonation in Vent Chimneys from the Silurian Yaman-Kasy Volcanic-Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS).Economic Geology, 104(8):1111-1141.doi: 10.2113/Gsecongeo.104.8.1111 McPhail, D.C., 1995.Thermodynamic Properties of Aqueous Tellurium Species between 25 ℃ and 350 ℃.Geochimica et Cosmochimica Acta, 59(5):851-866.doi: 10.1016/0016-7037(94)00353-X Morey, A.A., Tomkins, A.G., Bierlein, F.P., et al., 2008.Bimodal Distribution of Gold in Pyrite and Arsenopyrite:Examples from the Archean Boorara and Bardoc Shear Systems, Yilgarn Craton, Western Australia.Economic Geology, 103(3):599-614.doi: 10.2113/Gsecongeo.103.3.599 Ni, Z.Y., Wang, R.M., Tong, Y., et al., 2003.207Pb/206Pb Age of Zircon and 40Ar/39Ar of Amphibole from Plagioclase Amphibolite in the Taihua Group, Luoning, Henan, China.Geological Review, 49(4):361-366 (in Chinese with English abstract). https://www.researchgate.net/publication/285499277_207Pb206Pb_age_of_zircon_and_Ar_Ar_of_amphibole_from_plagioclase_amphibolite_in_the_Taihua_Group_Luoning_Henan_China Nie, F.J., Jiang, S.H., Zhao, Y.M., 2011.Lead and Sulfur Isotopic Studies of the Wenyu and the Dongchuang Quartz Vein Type Gold Deposits in Xiaoqinling Area, Henan and Shaanxi Provinces, Central China.Mineral Deposits, 20(2):163-173 (in Chinese with English abstract). https://www.researchgate.net/publication/285504417_Lead_and_sulfur_isotopic_studies_of_the_Wenyu_and_the_Dongchuang_quartz_vein_type_gold_deposits_in_Xiaoqinling_area_Henan_and_Shanxi_provinces_central_China Norman, M., Robinson, P., Clark, D., 2003.Major-and Trace-Element Analysis of Sulfide Ores by Laser-Ablation ICP-MS, Solution ICP-MS, and XRF:New Data on International Reference Materials.The Canadian Mineralogist, 41(2):293-305. doi: 10.2113/gscanmin.41.2.293 Oberthür, T., Weiser, T., Amanor, J.A., et al., 1997.Mineralogical Siting and Distribution of Gold in Quartz Veins and Sulfide Ores of the Ashanti Mine and Other Deposits in the Ashanti Belt of Ghana:Genetic Implications.Mineralium Deposita, 32(1):2-15.doi: 10.1007/S001260050068 Oberthür, T., Weiser, T.W., 2008.Gold-Bismuth-Telluride-Sulphide Assemblages at the Viceroy Mine, Harare-Bindura-Shamva Greenstone Belt, Zimbabwe.Mineralogical Magazine, 72(4):953-970.doi: 10.1180/Minmag.2008.072.4.953 Pak, S.J., Choi, S.G., Oh, C.W., et al., 2006.Genetic Environment of the Intrusion-Related Yuryang Au-Te Deposit in the Cheonan Metallogenic Province, Korea.Resource Geology, 56(2):117-132. doi: 10.1111/rge.2006.56.issue-2 Pals, D.W., Spry, P.G., Chryssoulis, S., 2003.Invisible Gold and Tellurium in Arsenic-Rich Pyrite from the Emperor Gold Deposit, Fiji:Implications for Gold Distribution and Deposition.Economic Geology, 98(3):479-493.doi: 10.2113/Gsecongeo.98.3.479 Phillips, G.N., Powell, R., 2010.Formation of Gold Deposits:A Metamorphic Devolatilization Model.Journal of Metamorphic Geology, 28:689-718.doi: 10.1111/J.1525-1314.2010.00887.X Plotinskaya, Y.O., Kovalenker, V.A., Seltmann, R., et al., 2006.Te and Se Mineralogy of the High-Sulfidation Kochbulak and Kairagach Epithermal Gold Telluride Deposits (Kurama Ridge, Middle Tien Shan, Uzbekistan).Mineralogy and Petrology, 87(3-4):187-207.doi: 10.1007/S00710-006-0130-Z Qian, Z.Z., Hu, Z.G., 1992.The Characteristics of the Metallogenic Fractured Structures in Tongyu Mining Area, Shaanxi.Journal of Xi'an College of Geology, 14(3):5-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX199203001.htm Reich, M., Kesler, S.E., Utsunomiya, S., et al., 2005.Solubility of Gold in Arsenian Pyrite.Geochimica et Cosmochimica Acta, 69(11):2781-2796.doi: 10.1016/J.Gca.2005.01.011 Ren, Z.Y., Li, J.W., Tang, K.F., 2011.Mineralization Characteristic of the Fancha Gold Deposit in the Xiaoqinling District and Genesis of Telluride.Acta Mineralogica Sinica, 31(Suppl.1):89-90 (in Chinese). Rubin, K., 1997.Degassing of Metals and Metalloids from Erupting Seamount and Mid-Ocean Ridge Volcanoes:Observations and Predictions.Geochimica et Cosmochimica Acta, 61(17):3525-3542.doi: 10.1016/S0016-7037(97)00179-8 Seward, T.M., 1973.Thio Complexes of Gold and Transport of Gold in Hydrothermal Solutions.Geochimica et Cosmochimica Acta, 37(3):379-399.doi: 10.1016/0016-7037(73)90207-X Shackleton, J.M., Spry, P.G., Bateman, R., 2003.Telluride Mineralogy of the Golden Mile Deposit, Western Australia.The Canadian Mineralogist, 41(6):1503-1524. doi: 10.2113/gscanmin.41.6.1503 Shao, K.Z., Luan, W.L., 1989.Bi-Sulfosalts and Bi-Tellurides—Genetic and Exploration Criteria for the Exp1osive-Collapsed Breecia Gold Ore Deposits, Qiyugou Area.Journal of Hebei College of Geology, 12(3):299-305(in Chinese with English abstract). Sillitoe, R.H., Thompson, J., 1998.Intrusion-Related Vein Gold Deposits:Types, Tectono-Magmatic Settings and Difficulties of Distinction from Orogenic Gold Deposits.Resource Geology, 48(4):237-250.doi: 10.1111/J.1751-3928.1998.Tb00021.X Steadman, J.A., Large, R.R., Davidson, G.J., et al., 2014.Paragenesis and Composition of Ore Minerals in the Randalls Bif-Hosted Gold Deposits, Yilgarn Craton, Western Australia:Implications for the Timing of Deposit Formation and Constraints on Gold Sources.Precambrian Research, 243:110-132.doi: 10.1016/J.Precamres.2014.01.002 Sung, Y.H., Brugger, J., Ciobanu, L., et al., 2009.Invisible Gold in Arsenian Pyrite and Arsenopyrite from a Multistage Archaean Gold Deposit:Sunrise Dam, Eastern Goldfields Province, Western Australia.Mineralium Deposita, 44(7):765-791.doi: 10.1007/S00126-009-0244-4 Thompson, T.B., Trippel, A.D., Dwelley, P.C., 1985.Mineralized Veins and Breccias of the Cripple Creek District, Colorado.Economic Geology, 80(6):1669-1688.doi: 10.2113/Gsecongeo.80.6.1669 Tian, G., Zhang, C.Q., Peng, H.J., et al., 2014.Petrogenesis and Geodynamic Setting of the Chang'an Gold Deposit in Southern Ailaoshan Metallogenic Belt.Acta Petrologica Sinica, 30(1):125-138 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201401009.htm Tian, P.Z., Chen, J.Y., Li, X.M., et al., 1989.The Exploration and Research of the Gold in Au-Hg Series Minerals, Lead Tellurium Bismuth Compound of Gold and Maldonite.Gold Geological Technology, (1):59-70(in Chinese). Törmänen, T.O., Koski, R.A., 2005.Gold Enrichment and the Bi-Au Association in Pyrrhotite-Rich Massive Sulfide Deposits, Escanaba Trough, Southern Gorda Ridge.Economic Geology, 100(6):1135-1150.doi: 10.2113/Gsecongeo.100.6.1135 Tu, G.C., 2000.Primary Study of Ti Metallogeny.Bulletin of Mineralogy, Petrology and Geochemisty, 19(4):211-214(in Chinese). Twemlow, S.G., 1984.Archean Gold-Telluride Mineralization of the Commoner Mine, Zimbabwe.In:Foster, R.P., ed., Gold'82, the Geology, Geochemistry and Genesis of Gold Deposits.Geological Society of Zimbabwe Special Publication, Rotterdam, Bakema, 469-492. Vaughan, J.P., Kyin, A., 2004.Refractory Gold Ores in Archaean Greenstones, Western Australia:Mineralogy, Gold Paragenesis, Metallurgical Characterization and Classification.Mineralogical Magazine, 68(2):255-277.doi: 10.1180/0026461046820186 Wagner, T., Klemd, R., Wenzel, T., et al., 2007.Gold Upgrading in Metamorphosed Massive Sulfide Ore Deposits:Direct Evidence from Laser-Ablation-Inductively Coupled Plasma-Mass Spectrometry Analysis of Invisible Gold.Geology, 35(9):775-778.doi: 10.1130/G23739a.1 Wang, T.H., Mao, J.W., Xie, G.Q., et, al., 2008.Sr, Nd, Pb Isotopic Composition of the Meso-Basic Dykes in the Xiaoqinling-Xiong'ershan Area, Henan Province, Central China and Its Tectonic Significance.Acta Geologica Sinica, 82(11):1580-1591 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200811015.htm Xie, G.Q., Mao, J.W., Li, R.L., et al., 2007.SHRIMP Zircon U-Pb Dating from Volcanic Rocks of the Daying Formation from Baofeng Basin in Eastern Qinling, China and Its Implications.Acta Petrologica Sinica, 23(10):2387-2396 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200710008.htm Xue, L.W., Chai, S.G., Zhu, J.W., et al., 2004.Study on Accompanying Tellurium Resources in Xiaoqinling Gold Deposit.Conservation and Utilization of Mineral Resources, (2):42-45 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCBH200402011.htm Yang, Y., Wang, X.X., Ke, C.H., et al, .2014.Zircon U-Pb Ages, Geochemistry and Evolution of Mangling Pluton in North Qinling Mountains.Mineral Deposits, 33(1):14-36 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201401002.htm Ye, H.S., 2006.The Mesozoic Tectonic Evolution of Pb-Zn-Ag Metallogeny in South Margin of North China Craton.Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). Ye, H.S., Mao, J.W., Xu, L.G., et al., 2008.SHRIMP Zircon U-Pb Dating and Geochemistry of Taishanmiao Aluminous A-Type Granite in Western Henan Province.Geological Review, 54(5):699-711 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200805019.htm Yuningsih, E.T., Matsueda, H., Setyaraharja, E.P., et al., 2012.The Arinem Te-Bearing Gold-Silver-Base Metal Deposit, West Java, Indonesia.Resource Geology, 62:140-158.doi: 10.1111/J.1751-3928.2012.00185.X Zachariás, J., Frýda, J., Paterová, B., et al., 2004.Arsenopyrite and As-Bearing Pyrite from the Round Deposit, Bohemian Massif.Mineralogical Magazine, 68(1):31-46.doi: 10.1180/0026461046810169 Zhai, D.G., Liu, J.J., 2014.Gold-Telluride-Sulfide Association in the Sandaowanzi Epithermal Au-Ag-Te Deposit, NE China:Implications for Phase Equilibrium and Physicochemical Conditions.Mineralogy and Petrology, 108(6):853-871.doi: 10.1007/S00710-014-0334-6 Zhang, G.W., Guo, A.L., Liu, F.T., et al, 1996.Analysis of Three Dimensional Structures and Dynamics of Qinling Orogen.Science in China (Series D), 26(Suppl.):1-6(in Chinese). Zhang, G.W., Yu, Z.P., Dong, Y.P., et al., 2000.On Precambrian Framework and Evolution of the Qinling Belt.Acta Petrologica Sinica, 16(1):11-21 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb200001001.htm Zhang, J., Deng, J., Chen, H.Y., et al., 2014.LA-ICP-MS Trace Element Analysis of Pyrite from the Chang'an Gold Deposit, Sanjiang Region, China:Implication for Ore-Forming Process.Gondwana Research, 26(2):557-575.doi: 10.1016/J.Gr.2013.11.003 Zhang, J.J., Zheng, Y.D., Liu, S.W., 1998.Characteristic, Formation Mechanism and Evolution of Tectonic Systems of Metamorphic Core Complexes in Xiaoqinling Area.Ocean Press, Beijing, 17-63(in Chinese). Zhang, P.H., Zhao, Z.H., Bao, Z.W., et al., 2000.New Advances in Studies of Tellurium Metallogenesis.Geological Science and Technology Information, 19(2):55-58 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzkq200002013.htm Zhao, H.X., Frimmel, H.E., Jiang, S.Y., et al., 2011.LA-ICP-MS Trace Element Analysis of Pyrite from the Xiaoqinling Gold District, China:Implications for Ore Genesis.Ore Geology Review, 43(1):142-153.doi: 10.1016/J.Oregeorev.2011.07.006 Zhou, T.F., Zhang, L.J., Yuan, F., et al., 2010.LA-ICP-MS In Situ Trace Element of Pyrite of from the XinQiao Cu-As-S Deposit in Tongling, Anhui, and Its Constraints on the Ore Genesis.Earth Science Frontiers, 17(2):306-319(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy201002035.htm Zhu, R.X., Fan, H.R., Li, J.W., et al., 2015.Decratonic Gold Deposits.Science in China (Series D), 45(8):1153-1168 (in Chinese). Zhu, Y., Zhou, H.W., Li, S.L., et al., 2015.Late Paleoproterozoinc Crustal Anatexis and Its Tectonic Significance:Evidence from Petrology and Zircon U-Pb Ages of Magmatite from Xiaoqinling Area, West Henan.Earth Science, 40(5):824-839(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201505005.htm 毕诗健, 2011. 小秦岭金矿集中区中生代成矿作用及与华北克拉通破坏的关系(博士学位论文). 武汉: 中国地质大学, 15-74. 毕诗健, 李建威, 李占轲, 2011.华北克拉通南缘小秦岭金矿区基性脉岩时代及地质意义.地球科学, 36(1):17-32. http://earth-science.net/WebPage/Article.aspx?id=2061 陈毓川, 银剑钊, 周剑雄, 等, 1994.四川石棉县大水沟独立碲矿床地质特征.地质科学, 29(2):165-167. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX402.008.htm 陈衍景, 富士谷, 1992.豫西金矿成矿规律.北京:地质出版社. 冯建之, 岳铮生, 肖荣阁, 等, 2009.小秦岭深部金矿成矿规律与成矿预测.北京:地质出版社. 郭波, 朱赖民, 李犇, 等, 2009.华北陆块南缘华山和合峪花岗岩岩体锆石U-Pb年龄、Hf同位素组成与成岩动力学背景.岩石学报, 25(2):265-281. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200902003.htm 胡浩, 李建威, 邓晓东, 2011.洛南-卢氏地区与铁铜多金属矿床有关的中酸性侵入岩锆石U-Pb定年及其地质意义.矿床地质, 30(6):979-1001. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201106003.htm 胡正国, 1994.小秦岭陕西段变质杂岩核构造与金矿.大地构造与成矿学, 18(2):147-154. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK402.009.htm 姜能, 1995.小秦岭金矿床的成矿物质来源.贵金属地质, 4(4):269-274. http://www.cnki.com.cn/Article/CJFDTOTAL-COLO201601012.htm 李春麟, 2011. 小秦岭太华群花岗片麻岩与小河花岗岩形成时代及构造意义(硕士学位论文). 北京: 中国地质大学, 22-23. http://cdmd.cnki.com.cn/Article/CDMD-11415-1011078341.htm 黎世美, 瞿伦全, 苏振邦, 等, 1996.小秦岭金矿地质和成矿预测.北京:地质出版社. 李永峰, 2005. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用(博士学位论文). 北京: 中国地质大学, 15-17. http://cdmd.cnki.com.cn/Article/CDMD-11415-2005102541.htm 刘建朝, 李旭芬, 刘亚非, 等, 2010.胶东牟平—乳山金矿带金青顶金矿碲化物矿物的特征及沉淀机制.地质通报, 29(9):1319-1328. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201009008.htm 刘锐, 陈觅, 田向盛, 等, 2014.东秦岭蓝田和牧护关岩体地球化学、锆石SIMS U-Pb年龄及Hf同位素特征:岩石成因及构造意义.矿物学报, 34(4):469-480. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201404006.htm 卢焕章, 朱笑青, 单强, 等, 2013.金矿床中金与黄铁矿和毒砂的关系.矿床地质, 32(4):823-842. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2012S1384.htm 卢欣祥, 尉向东, 于在平, 等, 2003.小秦岭—熊耳山地区金矿的成矿流体特征.矿床地质, 22(4):377-385. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200304006.htm 罗铭玖, 黎世美, 卢欣祥, 等, 2000.河南省主要矿产的成矿作用及矿床成矿系列.北京:地质出版社. 罗镇宽, 关康, 王曼祉, 1992.小秦岭金矿金银碲铋矿物研究.地质与勘探, 28 (2):31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199202006.htm 毛景文, 张作衡, 余金杰, 等, 2003.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示.中国科学(D辑), 33(4):289-299. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304000.htm 倪志耀, 王仁民, 童英, 等, 2003.河南洛宁太华岩群斜长角闪岩的锆石207Pb/206Pb和角闪石40Ar/39Ar年龄.地质论评, 49(4):361-366. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp200304003&dbname=CJFD&dbcode=CJFQ 聂凤军, 江思宏, 赵月明, 2001.小秦岭地区文峪和东闯石英脉型金矿床铅及硫同位素研究.矿床地质, 20(2):163-173. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200102008.htm 钱壮志, 胡正国, 1992.潼峪金矿区成矿断裂构造特征.西安地质学院学报, 14(3):5-11. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX199203001.htm 任志媛, 李建威, 唐克非, 2011.小秦岭樊岔金矿矿床地质特征及碲化物成因.矿物学报, 31(增刊1):89-90. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1045.htm 邵克忠, 栾文楼, 1989.Bi-硫盐、Bi-碲化物—祁雨沟爆发—坍塌角砾岩型金矿床成因及找矿标志.河北地质学院学报, 12(3):299-305. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDX198903003.htm 田广, 张长青, 彭惠娟, 等, 2014.哀牢山长安金矿成因机制及动力学背景初探:来自LA-ICP-MS锆石U-Pb定年和黄铁矿原位微量元素测定的证据.岩石学报, 30(1):125-138. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401009.htm 田澎章, 陈静渝, 李秀梅, 等, 1989.金-汞系列两种矿物、铅金碲铋化物、黑铋金矿等金矿物的发现和研究.黄金地质科技, (1):59-70. http://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ198901011.htm 涂光炽, 2000.初论碲的成矿问题.矿物岩石地球化学通报, 19(4):211-214. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200004000.htm 王团华, 毛景文, 谢桂青, 等, 2008.小秦岭-熊耳山地区中基性岩墙的Sr、Nd、Pb同位素组成及其大地构造意义.地质学报, 82(11):1580-1591. doi: 10.3321/j.issn:0001-5717.2008.11.014 谢桂青, 毛景文, 李瑞玲, 等, 2007.东秦岭宝丰盆地大营组火山岩SHRIMP定年及其意义.岩石学报, 23(10):2387-2396. doi: 10.3969/j.issn.1000-0569.2007.10.007 薛良伟, 柴世刚, 朱嘉伟, 等, 2004.小秦岭金矿伴生碲资源研究.矿产保护与利用, (2):42-45. http://www.cnki.com.cn/Article/CJFDTOTAL-KCBH200402011.htm 杨阳, 王晓霞, 柯昌辉, 等, 2014.北秦岭蟒岭岩体的锆石U-Pb年龄、地球化学及其演化.矿床地质, 33(1):14-36. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201401002.htm 叶会寿, 2006.华北陆块南缘中生代构造演化与铅锌银成矿作用(博士学位论文).北京:中国地质科学院. 叶会寿, 毛景文, 徐林刚, 等, 2008.豫西太山庙铝质A型花岗岩SHRIMP锆石U-Pb年龄及其地球化学特征.地质论评, 54(5):699-711. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200805019.htm 张国伟, 郭安林, 刘福田, 等, 1996.秦岭造山带三维结构及其动力学分析.中国科学(D辑), 26(增刊):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1996S1000.htm 张国伟, 于在平, 董云鹏, 等, 2000.秦岭区前寒武纪构造格局与演化问题探讨.岩石学报, 16(1):11-21. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200001001.htm 张进江, 郑亚东, 刘树文, 1998.小秦岭变质核杂岩的构造特征、形成机制及构造演化.北京:海洋出版社, 17-63. 张佩华, 赵振华, 包志伟, 等, 2000.碲成矿机制研究新进展.地质科技情报, 19(2):55-58. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200002013.htm 周涛发, 张乐骏, 袁峰, 等, 2010.安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约.地学前缘, 17(2):306-319. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002035.htm 朱日祥, 范宏瑞, 李建威, 等, 2015.克拉通破坏型金矿床.中国科学(D辑), 45(8):1153-1168. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508006.htm 朱越, 周汉文, 李少林, 等, 2015.豫西小秦岭地区晚古元古代地壳深熔作用及构造意义:岩石学和锆石U-Pb年代学证据.地球科学, 40(5):824-839. http://earth-science.net/WebPage/Article.aspx?id=3092