Thin Section-Based Geochemical Dissolution Experiments of Ooid Carbonates
-
摘要: 为了更好地认识鲕粒灰岩及鲕粒云岩的溶蚀机制,并指导油气勘探,通过岩石薄片溶蚀模拟实验,结合环境扫描观察和能谱分析进行原位微观形貌观察和分析,并采用分形与多重分形对能谱面扫描图像进行分析.实验结果显示,硫酸介质下鲕粒灰岩溶蚀从结构缺陷点(解理或裂隙)开始,钙含量高的点溶蚀速率快,而钙含量低的点和含硅部分溶蚀慢或不溶蚀,从而形成凹凸不平的溶蚀坑孔隙空间;而鲕粒云岩在硫酸介质中的溶蚀从白云石晶体间裂隙开始,这是因为颗粒及颗粒间有大量微裂隙.相同条件下,鲕粒云岩的溶蚀丢失质量比鲕粒灰岩多出约80%,这表明硫酸介质对白云岩具有更强的溶蚀能力.通过对溶蚀微观形貌的观察发现,硫酸对鲕粒白云岩结构的破坏作用而形成的颗粒状表面,更有利于溶蚀作用的深入进行,进而发育优质孔隙.此外,分形与多重分形分析结果表明,碳酸盐岩薄片表面的Ca、Mg、Si含量分布的非均质性的差异控制着溶蚀反应,成分差异大、元素含量非均质性强能促进溶解反应的进行.Abstract: To explore the law of carbonate dissolution evolution to facilitate oil and gas exploration, the dissolution process and kinetic mechanisms of oolitic limestone and oolitic dolomite in sulfuric acid medium under normal temperatures are discussed in the paper. In-situ micromorphology of the reaction surface was observed by environmental scanning electron microscope (ESEM) and the elemental distribution was analyzed by fractal and multifractal theory using the X-ray mapping capabilities of the ESEM. The different dissolutions observed in the experiment indicate that the dissolution of the mineral starts at points of structure defects (as cleavage or fracture), and that the dissolution rate of oolitic limestone at the point with high Ca content is faster than that with low Ca or high Si content, which results in an uneven corrosion pits and pore spaces formed on the reaction surface. Moreover, the sulfuric acid cracks the ooid dolomite into granular and intergranular fractures and pore space in or between particles. Analysis of the weight loss by dissolution of thin section shows that the weight loss of oolitic dolomite is about 80% higher than that of oolitic limestone, indicating that the sulfuric acid has a stronger dissolution ability for oolitic dolomite. It is found by micromorphology observation that the granular surface of oolitic dolomite formed by sulfuric acid dissolution is more conducive to deepening of dissolution, which further improves development of pore space and connectivity. The fractal and multifractal analyses indicate that the dissolution process is controlled by differences between the element distribution heterogeneity of Ca, Mg and Si. Additionally, large difference of composition, strong heterogeneity of element distribution can promote the dissolution reaction.
-
Key words:
- carbonate reservoir /
- thin section /
- dissolution difference /
- multifractal /
- geochemistry
-
表 1 矿物成分分析结果
Table 1. Data of XRD analysis results
样品编号 方解石(%) 白云石(%) 石英(%) 伊利石(%) RX-1 79.72 - 6.77 13.51 DP-1 - 96.12 3.88 - 表 2 各阶段薄片质量(g)
Table 2. Mass (g) of thinsection at different experiment procedures
样品 初始质量 浸泡1 h质量 浸泡3 h(含沉淀)质量 去除沉淀质量 沉淀质量 净溶蚀量 RX-3-1 4.090 7 4.080 3 4.047 3 3.986 5 0.060 8 0.104 2 DP-1-1 4.200 3 4.181 7 4.101 3 4.014 5 0.086 8 0.185 8 表 3 能谱面扫描元素分布分形参数
Table 3. Fractal parameters describing the distribution characteristics of element X-ray mappings
样品及元素 未溶蚀 溶蚀后 Δα后-前 ΔαL后-前 ΔαR后-前 Δα Δf(α) ΔαL ΔαR Δα Δf(α) ΔαL ΔαR Ca DP-1 1.311 0 2.208 5 0.172 6 1.138 4 1.489 4 2.121 5 0.294 2 1.195 2 0.178 4 0.056 9 0.121 6 RX-3 1.200 2 2.280 9 0.094 9 1.105 2 1.305 9 2.073 9 0.201 6 1.104 4 0.105 8 -0.000 9 0.106 6 Mg DP-1 1.427 4 2.224 0 0.225 0 1.202 4 1.525 6 2.176 9 0.349 2 1.176 4 0.098 2 -0.026 0 0.124 2 RX-3 1.239 1 1.470 1 0.386 5 0.852 7 1.049 9 1.192 0 0.340 6 0.709 3 -0.189 3 -0.143 4 -0.045 9 Si DP-1 1.726 3 1.881 0 0.540 9 1.185 4 1.361 6 1.604 5 0.364 7 0.996 9 -0.364 7 -0.188 5 -0.176 2 RX-3 1.483 2 1.913 8 0.417 3 1.065 9 1.251 2 1.435 1 0.404 5 0.846 8 -0.232 0 -0.219 1 -0.012 9 注:Δα.分形谱线的宽度;Δf(α).分形谱线的高度;ΔαL, ΔαR.分形谱线左半部分与右半部分的宽度. -
Brantley, S.L., Kubicki, J.D., White, A.F., 2008.Kinetics of Mineral Dissolution.Kinetics of Water-Rock Interaction.Springer, Berlin. Bureau of Geology and Mineral Resources of Sichuan Province, 1991.Regional Geology of Sichuan Province.Geological Publishing House, Beijing, 70-92(in Chinese). Busenberg, E., Plummer, L.N., 1982.The Kinetics of Dissolution of Dolomite in CO2-H2O Systems at 1.5-Degrees C to 65-Degrees C and O-atm to 1-atm p(CO2).American Journal of Science, 282(1):45-78.doi: 10.2475/ajs.282.1.45 Chen, J.S., Li, Z., Wang, Z.Y., et al., 2007.Paleokarstification and Reservoir Distribution of Ordovician Carbonates in Tarim Basin.Acta Sedimentologica Sinica, 25(6):858-868(in Chinese with English abstract). http://www.kjdb.org/EN/abstract/abstract11732.shtml Cheng, Q., 2014.Generalized Binomial Multiplicative Cascade Processes and Asymmetrical Multifractal Distributions.Nonlinear Processes in Geophysics, 21(2):477-487.doi: 10.5194/npg-21-477-2014 Cross, M.M., Manning, D.A.C., Bottrell, S.H., et al., 2004.Thermochemical Sulphate Reduction (TSR):Experimental Determination of Reaction Kinetics and Implications of the Observed Reaction Rates for Petroleum Reservoirs.Organic Geochemistry, 35(4):393-404.doi: 10.1016/j.orggeochem.2004.01.005 Cui, Z.A, Bao, Z.Y., Zhang, T.F., et al., 2007.Experiment Study on Carbonate Rock Dissolution in Buried Condition.Journal of Oil and Gas Technology, 29(3):204-207 (in Chinese). https://www.researchgate.net/profile/Linda_Luquot/publication/222545906_Experimental_determination_of_porosity_and_permeability_changes_induced_by_injection_of_CO2_into_carbonate_rocks/links/0046352824155abb2f000000.pdf?disableCoverPage=true Duguid, S.M.A., Kyser, T.K., James, N.P., et al., 2010.Microbes and Ooids.Journal of Sedimentary Research, 80(3):236-251.doi: 10.2110/jsr.2010.027 Fan, M., He, Z.L., Li, Z.M., et al., 2011.Dissolution Window of Carbonate Rocks and Its Geological Significance.Oil & Gas Geology, 32(4):499-505 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201104005.htm Fan, M., Jiang, X.Q., Liu, W.X., et al., 2007.Dissolution of Carbonate Rocks in CO2 Solution under the Different Temperatures.Acta Sedimentologica Sinica, 25(6):825-830(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0883292715000761 Halsey, T.C., Jensen, M.H., Kadanoff, L.P., et al., 1986.Fractal Measures and Their Singularities:The Characterization of Strange Sets.Physical Review A, 33(2):1141-1151.doi: 10.1103/PhysRevA.33.1141 Huang, K.J., Wang, W., Bao, Z.Y., et al., 2011.Dissolution and Alteration of Feixianguan Formation in the Sichuan Basin by Organic Acid Fluids under Burial Condition:Kinetic Dissolution Experiments.Geochimica, 40(3):289-300 (in Chinese with English abstract). Huang, S.J., Qing, H., Hu, Z.W., et al., 2007.Influence of Sulfate Reduction on Diagenesis of Feixianguan Carbonate in Triassic, NE Sichuan Basin of China.Acta Sedimentologica Sinica, 25(6):815-824(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200706001.htm Huang, W.H., Wang, A.J., Wan, H., et al., 2012.Discussion on Characteristics of the Cambrian-Ordovician Carbonate Rocks Reservoirs and Origin of Dolostones in Tarim Basin.Journal of Palaeogeography, 14(2):197-208(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201202007.htm Jia, C.Z., Li, B.L., Zhang, X.Y., et al., 2007.The Formation and Evolution of Marine Basin in China.Chinese Science Bulletin, 52(Suppl.1):1-8(in Chinese). Jiang, X.Q., Wang, S.Y., Fan, M., et al., 2008.Study of Simulation Experiment for Carbonate Rocks Dissolution in Burial Diagenetic Environment.Petroleum Geology & Experiment, 30(6):643-646(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200806023.htm Jin, S.A., Li, D.S., 2005.Geological Exploration and Research of China Marine Oil and Gas:Visit Desheng Li Academicians.Marine Origin Petoleum Geology, 10(2):1-8(in Chinese). http://www.sciencedirect.com/science/article/pii/S1876380411600517 Jin, Z.J., 2005.Particularity of Petroleum Exploration on Marine Carbonate Strata in China Sedimentary Basins.Earth Science Frontiers, 12(3):15-22(in Chinese with English abstract). https://www.researchgate.net/publication/284025232_Particularity_of_petroleum_exploration_on_marine_carbonate_strata_in_China_sedimentary_basins Kang, Y.Z., 2007.Reservoir Rock Characteristics of Paleozoic Marine Facies Carbonate Rock in the Tarim Basin.Petroleum Geology & Experiment, 29(3):217-223(in Chinese with English abstract). https://www.researchgate.net/publication/285002973_Reservoir_rock_characteristics_of_Paleozoic_marine_facies_carbonate_rock_in_the_Tarim_Basin Lasaga, A.C., Blum, A.E., 1986.Surface Chemistry, Etch Pits and Mineral-Water Reactions.Geochimica et Cosmochimica Acta, 50(10):2363-2379.doi: 10.1016/0016-7037(86)90088-8 Lu, Y.R., Zhang, F.E., 2007.Sulphate Rock Karst and Sulphate-Carbonate Rocks Compound Karst:Development Mechanism and Engineering Effect Research.Higher Education Press, Beijing, 142-151 (in Chinese). Luo, P., Zhang, J., Liu, W., et al., 2008.Characteristics of Marine Carbonate Hydrocarbon Reservoirs in China.Earth Science Frontiers, 15(1):36-50(in Chinese with English abstract). https://www.researchgate.net/publication/285905634_Characteristics_of_marine_carbonate_hydrocarbon_reservoirs_in_China Ma, Y.S., Guo, X.S., Guo, T.L., et al., 2005.Discovery of the Large-Scale Puguang Gas Field in the Sichuan Basin and Its Enlightenment for Hydrocarbon Prospecting.Geological Review, 51(4):477-480(in Chinese with English abstract). https://www.researchgate.net/publication/286682011_Discovery_of_the_large-scale_Puguang_Gas_Field_in_the_Sichuan_Basin_and_its_enlightenment_for_hydrocarbon_prospecting Machel, H.G., 2001.Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings—Old and New Insights.Sedimentary Geology, 140(1-2):143-175.doi: 10.1016/s0037-0738(00)00176-7 Meshri, I.D., 1989.On Prediction of Reservoir Quality through Chemical Modeling:Abstract.AAPG Bulletin, 71(11):1436-1439.doi: 10.1306/703ca14e-1707-11d7-8645000102c1865d Moore, C.H., 2001.Carbonate Reservoirs:Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework:Developments in Sedimentology.Elsevier Science.Sara Burgerhartstraat 25 P.O. Box211, 1000 AE Amsterdam, Netherlands. Morse, J.W., Arvidson, R.S., 2002.The Dissolution Kinetics of Major Sedimentary Carbonate Minerals.Earth-Science Reviews, 58(1-2):51-84.doi: 10.1016/s0012-8252(01)00083-6 Nedkvitne, T., Karlsen, D.A., Bjørlykke, K., et al., 1993.Relationship between Reservoir Diagenetic Evolution and Petroleum Emplacement in the Ula Field, North Sea.Marine and Petroleum Geology, 10(3):255-270.doi: 10.1016/0264-8172(93)90108-5 Plummer, L.N., Busenberg, E., 1982.The Solubilities of Calcite, Aragonite and Vaterite in CO2-H2O Solutions between 0 and 90 ℃, and an Evaluation of the Aqueous Model for the System CaCO3-CO2-H2O.Geochimica et Cosmochimica Acta, 46(6):1011-1040.doi: 10.1016/0016-7037(82)90056-4 Plummer, L.N., Wigley, T.M.L., Parkhurst, D.L., 1978.The Kinetics of Calcite Dissolution in CO2-Water Systems at 5 Degrees to 60 Degrees C and 0.0 to 1.0 atm CO2.American Journal of Science, 278(2):179-216.doi: 10.2475/ajs.278.2.179 Pokrovsky, O.S., Golubev, S.V., Schott, J., 2005.Dissolution Kinetics of Calcite, Dolomite and Magnesite at 25 ℃ and 0 to 50 atm pCO2.Chemical Geology, 217(3-4):239-255.doi: 10.1016/j.chemgeo.2004.12.012 Qian, H.T., Sun, Q., Wang, S.J., 2014.Effects of Geo-Stress on Carbonate Dissolution and Karst Evolution.Earth Science, 39(7):896-904(in Chinese with English abstract). Saigal, G.C., Bjorlykk, K., 1992.The Effects of Oil Emplacement on Diagenetic Processes:Examples from the Fulmar Reservoir Sandstones, Central North Sea:Geologic Note (1).AAPG Bulletin, 76(7):1024-1033.doi: 10.1306/bdff8966-1718-11d7-8645000102c1865d Tenger, Gao, C.L., Hu, K., et al., 2006.High-Quality Source Rocks in the Lower Combination in Southeast Upper-Yangtze Area and Their Hydrocarbon Generating Potential.Petroleum Geology & Experiment, 28(4):359-365(in Chinese with English abstract). https://www.researchgate.net/publication/285820358_High_quality_source_rocks_of_lower_combination_in_the_northern_Upper-Yangtze_area_and_their_hydrocarbon_potential Tribollet, A., Godinot, C., Atkinson, M., et al., 2009.Effects of Elevated pCO2 on Dissolution of Coral Carbonates by Microbial Euendoliths.Global Biogeochemical Cycles, 23(3):GB3008.doi: 10.1029/2008gb003286 Xiang, L.W., Zhu, Z.L., Li, S.J., et al., 1999.China Stratigraphic Canon:Cambrian System.Geological Publishing House, Beijing, 41-42 (in Chinese). Xie, S.Y., Bao, Z.Y., 2004.Fractal and Multifractal Properties of Geochemical Fields.Mathematical Geology, 36(7):847-864.doi: 10.1023/b:matg.0000041182.70233.47 Xie, S.Y., Cheng, Q.M., Li, Z.H., et al., 2009.Assessing Microstructures of Ore-Minerals by Multifractal.Earth Science, 34(2):263-269(in Chinese with English abstract). https://www.researchgate.net/publication/46056394_Assessing_microstructures_of_pyrrhotites_in_basalts_by_multifractal_analysis Yang, Y.K., Liu, B., Qin, S., et al., 2014.Re-Recognition of Deep Carbonate Dissolution Based on the Observation of In-Situ Simulation Experiment.Acta Scientiarum Naturalium Universitatis Pekinensis, 50(2):316-322(in Chinese with English abstract). https://www.researchgate.net/publication/287870686_Re-recognition_of_deep_carbonate_dissolution_based_on_the_observation_of_in-situ_simulation_experiment Zhang, J.Y., Liu, W.H., Fan, M., et al., 2008.Whether TSR Products can Meliorate Reservoir Property of Carbonate Rock or Not:An Evidence from Experimental Geology.Marine Origin Petroleum Geology, 13(2):57-61(in Chinese with English abstract). Zhang, T.F., Bao, Z.Y., Ma, M., et al., 2009.Dissolution Kinetic Characteristics and Morphology Evolution of Oolitic Limestone.Acta Sedimentologica Sinica, 27(6):1033-1042(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200906003.htm Zhang, Z.R., Mao, H.H., Cheng, Q.M., 2001.Fractal Geometry of Element Distribution on Mineral Surfaces.Math.Geol., 33:217-228. doi: 10.1023/A:1007587318807 Zhao, S., Zhao, D.J., Liu, L., et al., 2015.Diagenetic Characteristics of Quaternary Reef-Carbonates from Well Xike-1, Xisha Islands, the South China Sea.Earth Science, 40(4):711-717(in Chinese with English abstract). https://www.researchgate.net/publication/282299548_Diagenetic_characteristics_of_Quaternary_reef-carbonates_from_well_Xike-1_Xisha_Islands_the_South_China_Sea Zhu, G.Y., Zhang, S.C., Liang, Y.B., et al., 2006.Dissolution and Alteration of the Deep Carbonate Reservoirs by TSR:An Important Type of Deep-Buried High-Quality Carbonate Reservoirs in Sichuan Basin.Acta Petrologica Sinica, 22(8):2182-2194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200608007.htm 陈景山, 李忠, 王振宇, 等, 2007.塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布.沉积学报, 25(6):858-868. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200706007.htm 崔振昂, 鲍征宇, 张天付, 等, 2007.埋藏条件下碳酸盐岩溶解动力学实验研究.石油天然气学报, 29(3):204-207. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200703059.htm 范明, 何治亮, 李志明, 等, 2011.碳酸盐岩溶蚀窗的形成及地质意义.石油与天然气地质, 32(4):499-505. doi: 10.11743/ogg20110402 范明, 蒋小琼, 刘伟新, 等, 2007.不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用.沉积学报, 25(6):825-830. 黄康俊, 王炜, 鲍征宇, 等, 2011.埋藏有机酸性流体对四川盆地东北部飞仙关组储层的溶蚀改造作用:溶解动力学实验研究.地球化学, 40(3):289-300. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201103009.htm 黄思静, Hairuo, Qing, 胡作维, 等, 2007.四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响.沉积学报, 25(6):815-824. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200706001.htm 黄文辉, 王安甲, 万欢, 等, 2012.塔里木盆地寒武-奥陶系碳酸盐岩储集特征与白云岩成因探讨.古地理学报, 14(2):197-208. doi: 10.7605/gdlxb.2012.02.006 贾承造, 李本亮, 张兴阳, 等, 2007.中国海相盆地的形成与演化.科学通报, 52(S1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1001.htm 蒋小琼, 王恕一, 范明, 等, 2008.埋藏成岩环境碳酸盐岩溶蚀作用模拟实验研究.石油实验地质, 30(6):643-646. doi: 10.11781/sysydz200806643 金顺爱, 李德生, 2005.中国海相油气地质勘探与研究——访李德生院士.海相油气地质, 10(2):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200502001.htm 金之均, 2005.中国海相碳酸盐岩层系油气勘探特殊性问题.地学前缘, 12(3):15-22. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503002.htm 康玉柱, 2007.塔里木盆地古生代海相碳酸盐岩储集岩特征.石油实验地质, 29(3):217-223. doi: 10.11781/sysydz200703217 卢耀如, 张凤娥, 2007.硫酸盐岩岩溶及硫酸盐岩与碳酸盐岩符合岩溶:发育机理与工程效应研究.北京:高等教育出版社, 142-151. 罗平, 张静, 刘伟, 等, 2008.中国海相碳酸盐岩油气储层基本特征.地学前缘, 15(1):36-50. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200801005.htm 马永生, 郭旭升, 郭彤楼, 等, 2005.四川盆地普光大型气田的发现与勘探启示.地质论评, 51(4):477-480. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200504020.htm 钱海涛, 孙强, 王思敬, 2014.地应力对碳酸盐岩溶解和岩溶发育的影响.地球科学, 39(7):896-904. http://www.earth-science.net/WebPage/Article.aspx?id=2890 四川省地质矿产局, 1991.四川省区域地质志:寒武系.北京:地质出版社, 70-92. 腾格尔, 高长林, 胡凯, 等, 2006.上扬子东南缘下组合优质烃源岩发育及生烃潜力.石油实验地质, 28(4):359-365. doi: 10.11781/sysydz200604359 项礼文, 朱兆玲, 李善姬, 等, 1999.中国地层典:寒武系.北京:地质出版社, 41-42. 谢淑云, 成秋明, 李增华, 等, 2009.矿物微观结构的多重分形.地球科学, 34(2):263-269. http://www.earth-science.net/WebPage/Article.aspx?id=1823 杨云坤, 刘波, 秦善, 等, 2014.基于模拟实验的原位观察对碳酸盐岩深部溶蚀的再认识.北京大学学报:自然科学版, 50(2):316-322. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201402015.htm 张建勇, 刘文汇, 范明, 等, 2008.TSR产物对碳酸盐岩储层是否具有改良作用——实验地质学的依据.海相油气地质, 13(2):57-61. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200802008.htm 张天付, 鲍征宇, 马明, 等, 2009.鲕粒灰岩的溶解动力学特征和微观形貌的发育演化.沉积学报, 27(6):1033-1042. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906003.htm 赵爽, 张道军, 刘立, 等, 2015.南海西沙海域西科1井第四系生物礁-碳酸盐岩成岩作用特征.地球科学, 40(4):711-717. http://www.earth-science.net/WebPage/Article.aspx?id=3077 朱光有, 张水昌, 梁英波, 等, 2006.TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式.岩石学报, 22(8):2182-2194. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608007.htm